Be positive! Norm-related implications and beyond
Galit W. Sassoon, ILLC/UvA

Statements with ‘negative’ adjectives trigger norm-related implications. For example, the question *how short is Bill* and equative *Bill is as short as Mary* imply that *Bill is short*, while the question *how tall is Bill* and equative *Bill is as tall as Mary* do not imply *Bill is tall*. Furthermore, negative (‘marked’) antonyms have a narrower distribution (cf. *two meters tall/*short; *twice as tall/*short, etc.) Rett (2007) argues that negative adjectives are banned from linguistic contexts in which their substitution with the positive (‘unmarked’) antonym preserves truth conditions. For ex., the neutral (not norm-related) reading of *as short as* is banned since individuals are equally tall if they are equally short.

However, in many pairs of antonyms, both the negative and the positive member are norm-related (1-2) and none licenses measure phrases (3) (none is ‘unmarked’):

1. [Bill and Mary are skinny] #Bill is as fat as Mary; #How fat is Bill?
2. ??This ice-cream is as warm as that one; ??How warm is the ice-cream?
3. *Bill is 150kgs fat /*1,000$ rich /*20° warm (Schwarzschild, 2005).

Such pairs appear in languages as diverse as English, German, Chinese and Hebrew (Bierwisch 1989; Breakstone 2009; Kennedy 2009). Moreover, in languages like Russian, all adjectives not morphologically marked for comparison (unlike, e.g., ‘taller’) are norm-related and do not license measure phrases (Krasikova 2009). These cross-linguistic generalizations call for a unified account of norm-relatedness in natural language and its interactions with polarity and measure phrases.

Proposal 1. Let contexts c be represented via a context-set T_c, s.t. a statement S is true in c iff ∀t∈T_c, S is true in t; S is false in c iff ∀t∈T_c, S is false in t; S is undetermined in c, otherwise (Kamp 1975; Stalnaker 1978). Let D_x and D_r be the domain of possible individuals x and degrees r, respectively, with 0∈D_r, s.t. gradable predicates denote in indices t measure functions, f(P,t): D_x→D_r; x is P true in t iff f(P,t)(x) exceeds P’s standard in t, standard(P,t) (Kennedy, 1999). Importantly, let adjectival interpretations include, besides a cutoff point, also a zero point. Like the former, also the latter can be either semantically determined or context relative. Formally, let P’s zero in t be the set of entities whose P value in t is 0: zero(P,t) = {x∈D_x: f(P,t)(x) = 0}. P’s zero is absolute in c iff it is index invariant (∀t1,t2∈T_c, zero(P,t1) = zero(P,t2)) and marks absence of P-hood, by constituting P’s absolute lower bound (∀t∈T_c, ∀x∉zero(P,t), f(P,t)(x) > 0); Otherwise, P’s zero is relative.

Main consequences. What, then, distinguishes neutral adjectives (like *tall, wide* and *old* in English) from norm-related ones (like *fat, rich, warm, cold* and negative antonyms in general)? In the former, the zero is absolute. It marks complete absence of height, weight, age, etc. Conversely, in the latter, the zero is relative. The ‘out of the blue’ context fails to determine precisely which entities cease to have any amount of the measured properties. Which entities are minimally fat? Rich? Short? At which point on the warm-cold scale are entities not even somewhat cold? Warm? Our linguistic capacity is as indeterminate with regard to the zero (or minimum) of these adjectives as it is with regard to the cutoff point of *tall*. Some of them (e.g., *short*) have no minimum at all (because there is no maximal height). Others (e.g., *fat*) could have had an absolute zero (0 weight), but in actuality, *fat* doesn’t appear to measure mere weight, but rather – overweight. The points at which entities begin to have a noticeable amount of overweight (‘minimum fatness’) is context relative. So is the point at which entities begin to have noticeable deficits compared to the average height (‘shortness’), etc.
Proposal 2. Denotation members always have positive degrees ($\forall t \in T_c$, standard(P,t) ≥ 0), but non-members may have negative degrees. In each context, entities’ value fails to exceed 0 iff they fail to have a contextually noticeable or significant amount of the measured property. Thus, adjectives cannot be used to rank these entities:

(4) Be positive! Use adjectives P to rank entities whose value in P exceeds zero. Formally, then, x is P in c iff $\forall t \in T_c$, $f(P,t)(x) > 0$ (cf., Heim and Kratzer’s 1998 and Kennedy’s 2007 claims for various sorts of adjectival domain restrictions). The maxim in (4) can only be violated when, in denying P, its application turns P’s negation unusable; i.e., it makes sense to apply not P of entities whose P value fails to exceed 0 in c iff all non-Ps fail to do so ($\forall t \in T_c$, standard(P,t) ≤ 0), namely in minimum standard adjectives (cf. the door isn’t open vs. #the surface isn’t tall).

Main consequences. First, by (4), tall, whose zero is absolute (marks complete absence of height), can be used to rank entities iff they have some height, but not necessarily much height. Hence, tall is neutral. Conversely, almost only fat entities are surely ‘somewhat fat’ (have a noticeable overweight and so a positive degree). So we can only use fat ‘safely’ to rank denotation members (or ‘somewhat fat’ entities).

Second, the strength of an evaluative implication varies with the location of the zero. For example, soon after switching on a slow oven to warm up some cold bread, one can ask how warm is the bread? In this context, soon after the oven is switched on, some heat is added to the bread, rendering it at least ‘somewhat warm’ (more than ‘zero’ warm), which is all that is required for an appropriate use of warm by (4). Likewise, how red only implies somewhat red, even out of the blue. Stronger constraints, directly relating to cutoff points, fail here (cf. Rett 2007; Kennedy 2007).

Third, languages like Russian provide additional evidence for relative zeros even for, e.g., tall. Combinations like ‘entirely short’, whereby a maximizer modifies a relative adjective, are just fine in Russian. Yet they do not refer to tall’s absolute zero, but to some context dependent minimum height (Tribushinina 2009), namely tall’s relative zero. Again, contra Kennedy (2007) this zero is not the standard of tall/short.

Fourth, (4) is a restriction on the use of adjectives P, but not of other lexical items, including ones decomposed of P, like unP or Per. In fact, although the interpretation of the latter is mediated by P’s degree function, they can be used without implying P-hood. Thus, (4) captures the fact that, for instance, unhappy doesn’t imply happy, and shorter doesn’t imply being short. Conversely, less short, as short and how short are correctly predicted to imply short. The Russian data is similarly captured.

Also, for Bierwisch (1989), Krasikova (2009) and Kennedy (2001), more P differs from Per in being norm-related, as predicted. Notice, however, that er-comparatives, being lexical entries in their own right, may have either an absolute or a relative zero. If Per has a relative zero, then only entity pairs whose values in P differ to a contextually noticeable/ significant extent, count as somewhat Per. This explains why sometimes Per implies (somewhat) P; e.g.?this feather is heavier is odd, because differences in weight between feathers (unlike, say, bags) are too fine grained for heavier to capture, rendering heavier semi norm-related. The sentence improves if, say, a wet feather is compared to a dry one, since their weights differ more notably.

Fifth, it weighs conveys It weighs a lot, rather than It weighs something (Bierwisch 1989) perhaps due to the triviality of the latter, which, by (4), holds true of all weigh’s domain. Perhaps the meaning of adjectival positive forms (e.g. x is tall) can also derive from triviality (cf., Gajewsky 2009; Heim 2009; Rett 2007).

In sum, if an adjective has a relative zero, it is norm-related (or ‘zero-related’). This is probably also why it bans measure phrases (e.g. (3)), as extensively argued in Krantz et al (1971) and van Rooij (2009).