Extremal Optimization (EO), a new general-purpose heuristic for the approximation of hard combinatorial problems is introduced. EO is motivated by the far-from-equilibrium dynamics of extremally driven systems, such as the Bak-Sneppen model. In this co-evolutionary process, worst-adapted variables are forced to change, driving the system into a self-organized critical state featuring large fluctuations and frequent returns to highly adapted (low energy) configurations. Early experiments on partitioning and coloring problems established EO as a state-of-the-art alternative. Recent work on spin glasses has yielded a quite accurate (<0.1%) confirmation of ground-breaking theoretical calculations for finite connected Bethe lattices. Paired with a new technique of tracing out most spins, we can now tackle finite-dimensional spin glasses with 10^4-10^5 variables to address some long-standing questions about low-temperature excitations.

Prof. Dr. Stefan Boettcher

Physics Department
Emory University, Atlanta

“Optimization with Extremal Dynamics”

Dienstag, 17. November 2009, 14.00 c.t.
Gebäude E2 6, Seminarraum E.04

Alle Interessenten sind herzlich eingeladen.

Die Sprecher des Graduiertenkollegs
Manfred Lücke und Ludger Santen