Comment on “Disorder Induced Quantum Phase Transition in Random-Exchange Spin-1/2 Chains”

In a recent Letter Hamacher, Stolze, and Wenzel [1] studied the disordered spin-1/2 antiferromagnetic XXZ chain

\[H = J \sum_{i=1}^{L-1} \left[\lambda_i \left(S_i^z S_{i+1}^z + S_i^y S_{i+1}^y \right) + \Delta S_i^y S_{i+1}^z \right] \]

(1)

with \(\lambda_i \) independent identically distributed random variables uniformly distributed over the interval \([1 - W; 1 + W]\), with the parameter \(W \) controlling the strength of the disorder. The authors claim that for \(\Delta < 1 \) they found numerical evidence for nonuniversal behavior for weak disorder (\(W < 1 \)) manifested in a continuously varying exponent \(\eta(W) \) describing the asymptotic decay of the transverse spin correlations

\[C_{xx}(r) = \langle S_i^x S_{i+r}^x \rangle \propto r^{-\eta(W)}, \]

(2)

where \(\langle \cdot \cdot \cdot \rangle \) denotes the ground state expectation value averaged over the disorder and the sites \(i \). They concluded that there is no universal infinite randomness fixed point (IRFP) as predicted by Fisher [2].

In this Comment we show that these conclusions are inadequate because the numerical data presented in [1] are not in the asymptotic regime. We demonstrate that the observed behavior is very compatible with the IRFP scenario due to the existence of a \(W \)-dependent crossover length scale \(\xi_W \) that describes the crossover from the pure fixed point to the only relevant IRFP: For \(L < \xi_W \) one observes the critical behavior of the pure system (\(\lambda_i = \text{const} \)), and only for \(L > \xi_W \) the true asymptotic critical behavior \(\eta(W) = 2 \), independent of \(W > 0 \) of the disordered chain becomes visible. Even for strong disorder \(W = 1.0 \) \(\xi_W \) is of the same order of magnitude as the system sizes considered in [1].

In order to be able to reach sufficiently large system sizes we restrict ourselves to \(\Delta = 0 \) in which case (1) reduces to a free fermion model and the ground state computations are done following [3]. In Fig. 1 we show the averaged bulk correlation function \(C_{xx}(L/2) \) for different strengths of the disorder. We observe that asymptotically (i.e., for \(L \to \infty \)) the data follow the behavior \(C_{xx}(L) \propto L^{-2} \) as predicted by the real space renormalization group [2]. Only for small \(L \) do the data appear to follow a nonuniversal (i.e., \(W \)-dependent) power law, and this is the region on which [1] reports.

Because of the presence of a crossover length scale \(\xi(W) \), the correlation function obeys the scaling form

\[C_{xx}(L/2) = L^{-1/2} \xi(W), \]

(3)

where \(\xi(W) \) is constant for \(x \to 0 \), and \(\xi(W) \to x^{-3/2} \) for \(x \to \infty \). This implies \(C_{xx}(L/2) \propto L^{-1/2} \) for \(L < \xi_W \) (the pure behavior) and \(C_{xx}(L/2) \propto L^{-2} \) for \(L > \xi_W \) (the IRFP behavior). In the inset of Fig. 1 we show such a scaling plot of the data in the main figure. We have chosen \(\xi_W \) for \(W = 1 \) such that the crossover region is centered around \(L/\xi_W = 1 \); the other estimates for \(\xi_W \) are then chosen to give the best data collapse. We see that for all disorder strengths the maximum system sizes used in [1] are still well within the crossover region and not in the asymptotic regime. We do not expect that this situation will improve for \(\Delta > 0 \). In general \(\xi_W \) diverges when \(W \to 0 \), and we found that our estimates for \(\xi_W \) obey \(\xi_W \propto \delta_W^{-0.8} \) where \(\delta \) is the \(W \)-dependent variance of the random variable \(\ln \lambda_i \). We obtain \(\Phi = 1.8 \pm 0.2 \).

To conclude we have shown that the asymptotic behavior of model (1) belongs to the universality class described by an IRFP also for weak disorder as predicted by [2].

We would like to thank IDRI (Orsay, France) for using their supercomputer facilities.

Nicolás La florence\(^1\) and Heiko Rieger\(^2\)
\(^1\)Laboratoire de Physique Théorique, CNRS-UMR5152
Université Paul Sabatier
F-31062 Toulouse, France
\(^2\)Theoretische Physik, Universität des Saarlandes
66041 Saarbrücken, Germany

Received 4 December 2002; published 26 November 2003
DOI: 10.1103/PhysRevLett.91.229701
PACS numbers: 75.10.Jm