Universität des Saarlandes

Lehrstuhl für Elektronik und Schaltungstechnik

Elektronik I, WS 13/14 — Übung 10

Aufgabe 1) Dotierung.

Ein homogen dotierter **Si**-Halbleiter soll eine Leitfähigkeit von $0.05\,\Omega^{-1} \text{cm}^{-1}$ bei 300 K haben. Zur Auswahl steht **As** und **B**. Welche Dotierung und welches Material wählt man, um das geforderte Ergebnis zu erhalten?

Aufgabe 2) Leitfähigkeit.

Ein mit der Akzeptorendichte $N_A=10^{19}~{\rm cm}^{-3}$ dotierter Silizium-Halbleiter wird bei $T=300~{\rm K}$ (Raumtemperatur) betrachtet. Die Ladungsträgerverteilung im Halbleiter ist homogen.

Es gilt für die Beweglichkeiten $\mu_p=400~\frac{\rm cm^2}{\rm Vs}=0.1\cdot\mu_n$ und für die Eigenleitungsdichte $n_i=1\cdot 10^{14}~{\rm cm}^{-3}$.

- a) Wie groß sind die Leitfähigkeiten σ_n und σ_p aufgrund der Elektronen- und Löcherleitung in dem Halbleiter?
- b) Welche Näherung kann aufgrund des Ergebnisses gemacht werden?

Aufgabe 3) Energie und Impuls von Photonen/Phononen.

Berechnen Sie Näherungswerte für Energie und Impuls von Phononen und Photonen. Geben Sie die Ergebnisse bezogen auf die jeweiligen Werte eines Elektrons an. Verwenden Sie zur Abschätzung folgende Annahmen:

Photonen mit Wellenlänge $\lambda=0.6\,\mu\text{m}$, Kristall mit Gitterkonstante $a_0\approx0.5\,\text{nm}$, dem Elastizitätsmodul $Y=107\cdot10^9\,\text{N}\,\text{m}^{-2}$ und der Atommasse $m_a=4.65\cdot10^{-26}\,\text{kg}$.