
Universität des Saarlandes

Lehrstuhl für Elektronik und Schaltungstechnik

Physikalische Grundlagen (Elektronik I)

Aufgabe 1) Energien im Bändermodell.

Für einen Halbleiter werden, bezogen auf einen bestimmten Nullpunkt, die Energiewerte

Makropotential
$$\phi_0 = 3 \text{ V}$$

Leitungsbandkante $W_C = -6 \text{ eV}$
Valenzbandkante $W_V = -7 \text{ eV}$

festgelegt.

- a) Zeichnen Sie das zugehörige Bänderdiagramm, wobei der Nullpunkt der Energie auf die Valenzbandkante gelegt werden soll.
- b) Die Austrittsarbeit W_H im Halbleiter wird als Abstand der Fermi-Energie W_F vom Makropotential definiert ($W_H = -e\phi_0 W_F$). Die Elektronenaffinität W_ϕ ist definiert als die Energiedifferenz zwischen Makropotential und Leitungsbandkante ($W_\phi = -e\phi_0 W_C$). Wie groß sind (im obigen Beispiel) die Energie der Bandlücke W_g , sowie W_ϕ und W_H ? (Nehmen Sie an, dass das Ferminiveau in der Mitte der Bandlücke liegt.)
- c) Berechnen Sie die Ionisierungsenergie $(W_I = -e\phi_0 W_V)$ und erklären Sie warum diese bei Halbleitern von besonderer Bedeutung ist.

Aufgabe 2) Zustandsdichte.

Betrachten Sie einen würfelförmigen Kristall mit Kantenlänge $L=1\,\mathrm{mm}$. Für die potentielle Energie der Elektronen soll gelten:

$$W_{pot} = egin{cases} 0 & \text{innerhalb des Kristalls} \\ \infty & \text{außerhalb des Kristalls} \end{cases}$$

a) Berechnen Sie unter Zuhilfenahme des Ansatzes $\Psi = a \cdot \mathrm{e}^{\mathrm{j}\,\vec{k}\,\vec{r}}$ als Lösung der Schrödingergleichung

$$-\frac{\hbar^2}{2\,\mathrm{m_e}}\cdot\left(\frac{\partial^2}{\partial x^2}\,\psi+\frac{\partial^2}{\partial y^2}\,\psi+\frac{\partial^2}{\partial z^2}\,\psi\right)=W\cdot\psi$$

die Energie W des Elektrons, das zu dem Wellenvektor \vec{k} gehört.

b) Um die periodische Randbedingung zu erfüllen, wird folgender Ansatz gewählt:

$$k_x = \frac{n_x \cdot 2\pi}{I}$$
 $k_y = \frac{n_y \cdot 2\pi}{I}$ $k_z = \frac{n_z \cdot 2\pi}{I}$ mit n_x , n_y , $n_z \in \mathbb{Z}$

Welchen Einfluss hat diese Wahl auf die Energie des Elektrons im k-Raum?

- c) Berechnen Sie die ersten vier Energieniveaus, die das Elektron einnehmen kann!
- d) Wie viele Zustände N_Z ergeben sich auf diesen ersten vier Energieniveaus? Durch wie viele Elektronen N_{EZ} können diese eingenommen werden?

Aufgabe 3) Stromleitung im Band.

Warum können Elektronen in einem vollbesetzten Band keinen Strom leiten?

Aufgabe 4) Bedeutung der Fermi-Energie.

Was sagt die Fermi-Energie eines freien Elektronen-Gases aus?

Aufgabe 5) Volumenabhängigkeit der Fermi-Energie.

Wie ändert sich die Fermi-Energie (T=0) des freien Elektronen-Gases eines Metalls mit dem Volumen L^3 , wenn die Kantenlänge L verdoppelt wird?

Aufgabe 6) Fermikugel.

Wie viele freie Elektronen sind in einem Festkörper mit einem Volumen von 1 mm³, wenn die Fermienergie 1 eV beträgt?

Besprechung des Blatts: 22.11.2016.