
Universität des Saarlandes

Lehrstuhl für Elektronik und Schaltungstechnik

Physikalische Grundlagen (Elektronik I)

Aufgabe 1) Energie und Impuls von Photonen/Phononen.

Berechnen Sie Näherungswerte für Energie und Impuls von Phononen und Photonen. Geben Sie die Ergebnisse bezogen auf die jeweiligen Werte eines Elektrons an. Verwenden Sie zur Abschätzung folgende Annahmen:

Photonen mit Wellenlänge $\lambda=0.6\,\mu\text{m}$, Kristall mit Gitterkonstante $a_0\approx0.5\,\text{nm}$, dem Elastizitätsmodul $Y = 107 \cdot 10^9 \, \frac{\text{N}}{\text{m}^2}$ und der Atommasse $m_a = 4,65 \cdot 10^{-26} \, \text{kg}$.

Aufgabe 2) Rekombinationsmechanismen, Netto-Rekombinationsrate.

- a) Wodurch unterscheidet sich Auger- und SRH-Rekombination?
- b) Zeigen Sie, dass Gl. (2.168) gilt:

$$n_1 \cdot p_1 = n_i^2.$$

c) In welchen Fällen ist die Netto-Rekombinationsrate der Elektronen unter den in der Vorlesung gemachten Annahmen in einem Halbleiter ungleich Null?

(a)	Immer, wenn sich der Halbleiter in thermodynamischem Gleichgewicht	
	befindet	
(b)	Immer, wenn der Halbleiter von einem Strom durchflossen wird	
(c)	Immer bei zeitlicher Änderung der Ladungsträgerdichte	

Aufgabe 3) Stromdichte im Halbleiter.

Für einen mit 10^{19} cm⁻³ Arsen-Atomen und 10^{16} cm⁻³ Bor-Atomen dotierten **Si**-Halbleiter wird ein linearer Verlauf der Leitungsband-Kante mit einer Steigung von 0,1 eVm⁻¹ bei Raumtemperatur ermittelt. Die Ladungsverteilung ist homogen. Das Quasiferminiveau für Elektronen W_{En} liegt um 0,025 eV unter W_C . Wie groß ist die Stromdichte der Elektronen in diesem Halbleiter? Ist der Löcherstrom dagegen vernachlässigbar?

(d) Immer, wenn die Nettorekombinationsrate der Löcher $\neq 0$ ist.

Aufgabe 4) Relaxation, Rekombination, Drift-Diffusions-Modell.

Ein mit As dotierter Si-Halbleiter bei Raumtemperatur befindet sich zum Zeitpunkt t=0 gemäß des Verlaufs

$$\Delta p(x, 0) = 10^8 \text{ cm}^{-4} \cdot x,$$

 $\Delta n(x, 0) = 0$

außerhalb des thermodynamischen Gleichgewichts. An den Halbleiter ist ein äußeres elektrisches Feld mit einer Feldstärke von $100\frac{V}{m}$ angelegt. Es gilt Störstellenerschöpfung, $N_D=10^{18}\,\mathrm{cm}^{-3}$.

- a) Nach welcher Zeit ist die Raumladungsdichte $\rho(x,t)$ durch Relaxation auf $\frac{1}{100}$ ihres ursprünglichen Werts gesunken?
- b) Nach welcher Zeit kann aufgrund von Rekombination an der Position x=1 mm der Diffusionsstrom der Minoritätsladungsträger gegenüber dem Driftstrom der Minoritätsladungsträger als vernachlässigbar (d.h. $\leq 10\,\%$) angesehen werden? Es gilt: $\tau_p=10^{-5}\,\mathrm{s}$.
- c) Wann ist der Diffusionsstrom der Majoritätsträger gegenüber dem Driftstrom der Majoritätsladungsträger vernachlässigbar?

Besprechung des Blatts am 16.01.2018.