Sample problems for applicants to the study programme "Master in Mathematics" at Saarland University

1 Basic courses

Solid knowledge of material in basic courses is expected.

1.1 Linear Algebra

Recommended literature:

- M. Artin, Algebra, Prentice Hall, Englewood Cliffs, NJ, 1991
- S. Lang, *Linear algebra*, reprint of the third edition, Undergraduate Texts in Mathematics, Springer, New York, 1989

Problem 1

Let M be a set and $\emptyset \neq N \subsetneq M$. On the power set $\mathcal{P}(M)$ we define the following relations

$$U \sim V : \iff U \cap N = V \cap N$$
$$U R V : \iff U \setminus N \subseteq V.$$

- 1. Show that \sim is an equivalence relation on $\mathcal{P}(M)$.
- 2. Is R always reflexive, always symmetric or always transitive? Is it an equivalence relation, a partial order or neither?
- 3. In the case of $M := \{1, 2, 3, 4, 5\}$ and $N := \{1, 3, 5\}$ find all elements of the equivalence class of $\{1, 2, 3\} \in \mathcal{P}(M)$ with respect to \sim .
- 4. Which of the following rules define a map? If yes, is the map injective, surjective, bijective?

$$f_1: \mathcal{P}(M)/_{\sim} \to \mathcal{P}(M), \quad [U]_{\sim} \mapsto U \cup N$$

$$f_2: \mathcal{P}(M)/_{\sim} \to \mathcal{P}(N), \quad [U]_{\sim} \mapsto U \cap N.$$

Given the matrix

$$A := \begin{pmatrix} 1 & 0 & 3 & 1 & 3 \\ 0 & 2 & -4 & 1 & 2 \\ 1 & 1 & 1 & -1 & -1 \\ 2 & 0 & 6 & -1 & 0 \end{pmatrix} \in \mathbb{R}^{4 \times 5}$$

and the two vectors

$$b_1 := \begin{pmatrix} 2\\ -3\\ 3\\ 7 \end{pmatrix} \text{ and } b_2 := \begin{pmatrix} 0\\ 1\\ -2\\ -1 \end{pmatrix} \text{ in } \mathbb{R}^4.$$

- 1. Compute the set of solutions of the linear equations $Ax = b_1$ and $Ax = b_2$.
- 2. Let $U \leq \mathbb{R}^4$ be a subspace. Show that $V := \{v \in \mathbb{R}^5 \mid Av \in U\}$ is a subspace of \mathbb{R}^5 . Let now U be the span of $b_1, b_2, b_1 b_2$. Compute a basis of V.

Problem 3

We consider the permutations $\sigma := (16)(35)(24)$ and $\tau := (125)(364) \in S_6$.

- 1. Show that σ and τ commute, i.e., $\sigma \circ \tau = \tau \circ \sigma$.
- 2. Let $U := \langle \sigma, \tau \rangle \leq S_6$ be the subgroup generated by σ and τ . Show that U is abelian, cyclic and generated by $\sigma \circ \tau$.

Problem 4

Let (G, \star) and (H, \circ) be two groups and $\varphi : G \to H$ a group homomorphism. The set

$$G \times H := \{ (g, h) \mid g \in G, h \in H \}$$

is a group with the following group law $(g_1, h_1) \bullet (g_2, h_2) := (g_1 \star g_2, h_1 \circ h_2).$

- 1. What is the neutral element of $G \times H$ and what is the inverse of $(g, h) \in G \times H$?
- 2. Show that $F := \{(g, \varphi(g)) \mid g \in G\}$ is a subgroup of $G \times H$.
- 3. In addition, let φ be surjective. Show that the map,

$$\psi: G \times H \to H, \quad (g,h) \mapsto \varphi(g) \circ h$$

is a group homomorphism if and only if H is abelian.

Problem 5

For any $n \in \mathbb{N}$ define the real matrix

$$A_n := \begin{pmatrix} 1 & 1 & 0 & 0 & \dots & 0 \\ 1 & 2 & 2 & 0 & \dots & 0 \\ 0 & 1 & 3 & 3 & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & \ddots & 0 \\ 0 & \dots & 0 & 1 & n-1 & n-1 \\ 0 & \dots & \dots & 0 & 1 & n \end{pmatrix} \in \mathbb{R}^{n \times n}.$$

Page 2

- 1. Compute $det(A_2)$ and $det(A_3)$.
- 2. Find a formula for $det(A_n)$ depending on n and prove it.

Hint: Laplace expansion of the last row or column.

Problem 6

Given the matrix

$$A := \frac{1}{2} \begin{pmatrix} 1 + \frac{1}{\sqrt{2}} & 1 - \frac{1}{\sqrt{2}} & -1 \\ 1 - \frac{1}{\sqrt{2}} & 1 + \frac{1}{\sqrt{2}} & 1 \\ 1 & -1 & \sqrt{2} \end{pmatrix} \in \mathbb{R}^{3 \times 3} \text{ and the vector } v := \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix} \in \mathbb{R}^3$$

- 1. Show that A is an orthogonal matrix.
- 2. Show that v is an eigenvector of A. What is the corresponding eigenvalue?
- 3. The map $\phi_A : \mathbb{R}^3 \to \mathbb{R}^3, v \mapsto Av$ is a rotation in \mathbb{R}^3 . Calculate the corresponding plane of rotation and the angle of rotation.
- 4. Consider the linear hull

$$V := \operatorname{Lin}\begin{pmatrix} 1\\-2\\0\\-1 \end{pmatrix}, \begin{pmatrix} -1\\4\\1\\3 \end{pmatrix}) \quad \text{and} \quad p := \begin{pmatrix} 1\\-3\\1\\-5 \end{pmatrix}$$

in \mathbb{R}^4 . Calculate the distance of V and p with respect to the standard metric.

Problem 7

Calculate the Jordan normal form of

$$A := \begin{pmatrix} 1 & -1 & 0 & 1 \\ -1 & 1 & 1 & 1 \\ 1 & 0 & 0 & -1 \\ -1 & 0 & 1 & 2 \end{pmatrix} \in \mathbb{C}^{4 \times 4}.$$

Problem 8

1. Consider the vector space $\mathbb{R}^2 \otimes \mathbb{R}^3$ with basis

$$B := \{ d_i \otimes e_j \mid i = 1, 2 \text{ and } j = 1, 2, 3 \}.$$

where d_1, d_2 and e_1, e_2, e_3 denote the standard basis vectors of \mathbb{R}^2 , respeively \mathbb{R}^3 and \otimes the tensor product. Express the vector $\begin{pmatrix} 1\\ -2 \end{pmatrix} \otimes \begin{pmatrix} 3\\ 0\\ 2 \end{pmatrix}$ as linear combination

of the basis B.

2. Let V, W be two finite dimensional \mathbb{R} -vector spaces and V^*, W^* their duals. For $\alpha \in V^*, \beta \in W^*$ we define the map

$$\psi_{\alpha,\beta}: V \otimes W \to \mathbb{R}, \quad v \otimes w \mapsto \alpha(v)\beta(w).$$

Show that $\psi_{\alpha,\beta}$ is a well defined linear map.

3. Show that there is no alternating, multilinear map $\mu : \mathbb{R}^4 \times \mathbb{R}^4 \times \mathbb{R}^4 \to \mathbb{R}^5$ whose image contains the standard basis $\{e_1, e_2, \ldots, e_5\} \subseteq \mathbb{R}^5$.

1.2 Real analysis

Recommended literature:

- K. R. Davidson and A. P. Donsig, *Real analysis and applications*, Undergraduate Texts in Mathematics, Springer, New York, 2010
- W. Rudin, *Principles of mathematical analysis*, third edition, International Series in Pure and Applied Mathematics, McGraw-Hill, New York-Auckland-Düsseldorf, 1976
- M. Spivak, Calculus, fourth edition, Publish or Perish, 2008

Problem 9

Determine which of the following series converge:

1.
$$\sum_{n=1}^{\infty} \frac{(n+1)!}{(2n)!}$$
.
2. $\sum_{n=1}^{\infty} \frac{n^2 + \sin(n)}{2n}$.
3. $\sum_{n=1}^{\infty} \frac{1}{(n+1)\log(n+1)}$.

Problem 10

Let $n \in \mathbb{N}$ be even and let a, b > 0. Let

$$f : \mathbb{R} \to \mathbb{R}, \quad f(x) = x^n - ax - b.$$

Find all local extrema of f and show that f has exactly two zeros.

Problem 11

Let (a_n) be a sequence of real numbers. Assume that the subsequences (a_{2n}) , (a_{2n+1}) and (a_{3n}) are all convergent. Is (a_n) itself convergent? Either provide a proof or a counterexample.

Problem 12

Let (a_n) be a decreasing sequence of non-negative real numbers. Show that $\sum_{n=0}^{\infty} a_n$ converges if and only if $\sum_{n=0}^{\infty} 2^n a_{2^n}$ converges.

Problem 13

Let X and Y be metric spaces and let $f: X \to Y$ be a uniformly continuous map.

- (a) Let (x_n) be a Cauchy sequence in X. Show that $(f(x_n))$ is a Cauchy sequence in Y.
- (b) Show that the conclusion of (a) may fail if f is merely assumed to be continuous.

Problem 14

Let X be a metric space. We say that a family $(A_i)_{i \in I}$ of subsets of X has the finite intersection property if for every finite subset $J \subset I$, we have $\bigcap_{j \in J} A_j \neq \emptyset$.

Show that the following assertions are equivalent:

- (i) X is compact;
- (ii) Whenever $(A_i)_{i \in I}$ is a family of closed subsets of X satisfying the finite intersection property, then $\bigcap_{i \in I} A_i \neq \emptyset$.

Let $I \subset \mathbb{R}$ be an open interval and let

$$f: I \times I \to \mathbb{R}, \quad (x, y) \mapsto f(x, y),$$

be continuous and continuously partially differentiable with respect to y. Let $a \in I$ and define

$$F: I \to \mathbb{R}, \quad F(y) = \int_a^y f(x, y) \, dx.$$

Show that F is differentiable with

$$F'(y) = f(y,y) + \int_a^y \frac{\partial f}{\partial y}(x,y) \, dx \quad \text{for all } y \in I.$$

1.3 Numerics

Recommended literature:

• J. Stoer and R. Z. Bulirsch, *Introduction to numerical analysis*, translated from the German by R. Bartels, W. Gautschi and C. Witzgall Third edition, Texts in Applied Mathematics, 12, Springer, New York, 2002

Problem 16

Consider the matrix

$$A := \begin{pmatrix} 4 & 0 & -2 & 0 \\ 0 & 9 & 3 & -3 \\ -2 & 3 & 11 & -1 \\ 0 & -3 & -1 & 5 \end{pmatrix} \in \mathbb{R}^{4 \times 4}.$$

- (a) Show that the matrix A is positive definite.
- (b) Determine a Cholesky decomposition of the matrix A.
- (c) Calculate the solution of the system of equations Ax = b with the right-hand side

$$b = (-10, -6, 12, 14)^{\top} \in \mathbb{R}^4.$$

Problem 17

Determine the natural cubic interpolating spline for the following values:

Page 5

Consider the integral $I(f) := \int_1^2 \frac{1}{x} dx.$

- (a) Use the trapezoidal rule for $h = \frac{1}{3}$ to calculate an approximation for I(f).
- (b) Let $h = \frac{1}{4}$. Calculate an approximation of I(f) using the Simpson's rule.
- (c) How large must the number of subintervals N be chosen such that the error with the trapezoidal rule is not greater than 0,001?

Problem 19

For the parabola

$$f(t) = (t - \alpha) \cdot (t - \beta)$$

the real parameters α und β are to be determined from the following table:

(a) Formulate this task as a linear minimization problem

$$||Ax - b||_2^2 \to \min$$

with an appropriate matrix A and vector b.

(b) Solve part (a) using the normal equation and determine α and β .

Problem 20

The system of equations

$$\begin{pmatrix} 1 & \frac{1}{2} \\ \frac{1}{2} & 1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} 0 \\ -\frac{1}{2} \end{pmatrix}$$

is to be solved using both the Jacobi method and the Gauss-Seidel method.

- (a) For both methods, provide the respective iteration matrix and its spectral radius. Justify that both methods converge independently of the choice of the initial vector.
- (b) Starting with the initial value $x_0 = (0, 1)^{\top}$, perform two iterations for each method.
- (c) Calculate the relative error of the second iterated value in each method compared to the exact solution of the system.

1.4 Stochastics

Recommended literature:

• A. Klenke, *Probability theory—a comprehensive course*, third edition, Universitext, Springer, 2020

- A. N. Shiryaev, *Probability.* 1, Graduate Texts in Mathematics, 95, Springer, New York, 2016
- H. Bauer, *Probability theory*, De Gruyter Studies in Mathematics, 23, de Gruyter, Berlin, 1996

Let X be a real-valued random variable on a probability space $(\Omega, \mathcal{A}, \mathbb{P})$ that is distributed according to the exponential distribution (with arbitrary parameter $\lambda \in (0, \infty)$). Show that $\mathbb{P}[\{X > t + s\} | \{X > t\}] = \mathbb{P}[\{X > s\}]$ for all $t, s \in (0, \infty)$.

Problem 22

Let X_1 and η be two independent real-valued random variables on a probability space $(\Omega, \mathcal{A}, \mathbb{P})$. Assume that X_1 is distributed according to the standard normal distribution and η is distributed according to the Bernoulli distribution with parameter 1/2. Let $X_2 := (2\eta - 1)X_1$. Show:

- (i) X_2 is a standard normally distributed random variable.
- (ii) X_1 and X_2 are uncorrelated.
- (iii) X_1 and X_2 are not independent.
- (iv) The joint distribution $\mathbb{P}_{(X_1,X_2)}$ of X_1 and X_2 is not a (bivariate) normal distribution.

Problem 23

Let $X_n, n \in \mathbb{N}$, be independent real-valued random variables on a probability space $(\Omega, \mathcal{A}, \mathbb{P})$ with $\mathbb{P}_{X_n} = \mathbb{B}_{1,p_n}$ (Bernoulli distribution) for some $p_n \in (0, 1), n \in \mathbb{N}$. For each of the following statements, find an equivalent condition on the sequence $(p_n)_{n \in \mathbb{N}}$:

- (i) X_n converges in probability to 0 as $n \to \infty$.
- (ii) X_n converges in \mathcal{L}^p to 0 as $n \to \infty$.
- (iii) X_n converges \mathbb{P} -a.s. to 0 as $n \to \infty$.

Problem 24

For any $m \in \mathbb{R}$ use δ_m to denote the Dirac measure at m. For any $m \in \mathbb{R}$ and $v \in (0, \infty)$ use $N_{m,v}$ to denote the univariate normal distribution with mean m and variance v. Show that the following statement holds for any $m \in \mathbb{R}$ and any sequence $(v_n)_{n \in \mathbb{N}}$ in $(0, \infty)$ with $\lim_{n \to \infty} v_n = 0$:

(i) N_{m,v_n} converges weakly to δ_m as $n \to \infty$.

Let $(X_j)_{j \in \mathbb{N}}$ be a sequence of i.i.d. real-valued random variables on a probability space $(\Omega, \mathcal{A}, \mathbb{P})$ with expectation $\mathbb{E}[X_1] = 0$ and variance $\mathbb{V}ar[X_1] = 1$. Set $S_n := \sum_{j=1}^n X_j$, $n \in \mathbb{N}$. Show:

(ii) $\sqrt{n} \frac{S_n}{\sum_{i=1}^n X_i^2}$ converges in distribution to N_{0,1}.

Here the denominator is set to 1 when $\sum_{j=1}^{n} X_j^2 = 0$.

2 Advanced courses

Knowledge of material in some advanced courses is an asset.

2.1 Algebra

Recommended literature:

- Siegfried Bosch, Algebra From the Viewpoint of Galois Theory, Birkhäuser, 2018
- Serge Lang, Algebra, Springer, 2002

Problem 25

Let G, H be groups and $\varphi: G \to H$ a group homomorphism.

- a) Which of the following statements is true? (Give a proof or a counterexample.)
 - i) The image $\varphi(N)$ of a normal subgroup $N \subseteq G$ is normal.
 - ii) The preimage $\varphi^{-1}(N)$ of a normal subgroup $N \subseteq H$ is normal.
- b) Show that each subgroup U of G of index 2 is a normal subgroup. *Hint* Let $g \in G$. What happens if gU = U and what happens if $gU \neq U$?

Problem 26

Let $\varphi: R \to S$ be a ring homomorphism. Show the following statements:

- a) If $q \subseteq S$ is a prime ideal, then $\varphi^{-1}(q)$ is also a prime ideal.
- b) Give an example of φ and a maximal ideal m in S, such that $\varphi^{-1}(m)$ is not maximal.
- c) If a and b are ideals in R and p is a prime ideal in R with $ab \subseteq p$ then $a \subseteq p$ or $b \subseteq p$.

Problem 27

Let \mathbb{F}_3 be the field with 3 elements and let $f = X^2 + 1 \in \mathbb{F}_3[X]$.

- a) Show that $K = \mathbb{F}_3[X]/(f)$ is a field. Determine a basis of K as \mathbb{F}_3 -vector-space. How many elements has K?
- b) What is the inverse of X + 1 in K?
- c) Write the polynomial $X^8 1 \in \mathbb{Z}[X]$ as product of irreducible polynomials.
- d) Show that K has a primitive eight root of unity, i.e. there is a $u \in K$ with $u^8 = 1$ and 8 is minimal with this property.

2.2 Complex analysis

Recommended literature:

• J. B. Conway, *Functions of one complex variable*, second edition, Graduate Texts in Mathematics, 11, Springer, New York-Berlin, 1978

Problem 28

Let $f : \mathbb{C} \to \mathbb{C}$ be a non-constant entire function. Show that $f(\mathbb{C})$ is dense in \mathbb{C} .

Problem 29

Let $\emptyset \neq D \subset \mathbb{C}$ be open and let $\mathcal{O}(D)$ denote the ring of holomorphic functions on D. Show that $\mathcal{O}(D)$ is an integral domain if and only if D is connected.

Problem 30

Let $\mathbb{D} = \{z \in \mathbb{C} : |z| < 1\}$ and let $f : \mathbb{D} \to \mathbb{C}$ be holomorphic with f(0) = 0. Show that the series

$$\sum_{n=0}^{\infty} f(z^n)$$

converges uniformly on compact subsets of \mathbb{D} .

Problem 31

Let m and n be integers satisfying $0 \le m \le n-2$. Show that

$$\int_0^\infty \frac{x^m}{1+x^n} \, dx = \frac{\pi}{n \sin(\frac{m+1}{n}\pi)},$$

for instance using the method of residues.

Problem 32

Let $f, g: \mathbb{C} \to \mathbb{C}$ be entire functions satisfying $f^2 + g^2 = 1$. Show that there exists an entire function $h: \mathbb{C} \to \mathbb{C}$ such that $f = \cos h$ and $g = \sin h$.

2.3 Measure theory

Recommended literature:

• D. L. Cohn, *Measure theory*, second edition, Birkhäuser Advanced Texts: Basler Lehrbücher, Birkhäuser/Springer, New York, 2013

Problem 33

Let (X, \mathcal{A}, μ) be a measure space and let $g : X \to [0, \infty]$ be a measurable function. Define

$$\nu: \mathcal{A} \to [0, \infty], \quad \nu(A) = \int_A g \, d\mu.$$

Show:

Page 9

- (a) ν is measure.
- (b) A measurable function $f: X \to \mathbb{R}$ is ν -integrable if and only if $\int_X |f| g \, d\mu < \infty$. In this case,

$$\int_X f \, d\nu = \int_X f g \, d\mu.$$

Let $f : \mathbb{R} \to \mathbb{R}$ be differentiable. Show that the derivative f' is Borel measurable.

Problem 35

Let (X, \mathcal{A}, μ) be a σ -finite measure space and let $f: X \to [0, \infty)$ be measurable.

(a) Show that

$$\{(x,t) : X \times \mathbb{R} : 0 \le t < f(x)\}$$

belongs to the product σ -algebra of \mathcal{A} with the Borel σ -algebra $\mathcal{B}(\mathbb{R})$.

(b) Show that

$$\int_X f d\mu = \int_{[0,\infty)} \mu(\{x \in X : f(x) > t\}) dt.$$