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1 Introduction

X-ray diffraction is a standard laboratory method for determining the structure of crystalline mate-
rials. The periodic arrangement of atoms in crystals leads to coherent scattering of photons (x-rays) 
that depends on the distance separating the atoms (lattice parameter), on the size of the crystalline 
regions in which the atoms are located (grain size), and on fluctuations in atomic position about 
the expected position in the crystal lattice (strain). In this experiment you will measure all three of 
these quantities for the nanocrystalline Pd sample prepared by inert-gas condensation.

In order to gain a basic understanding of the diffraction of x-rays by crystalline matter, it is 
helpful to consult one or both of the following references:

1. H. Ibach und H. Lüth, Festkörperphysik: Eine Einführung in die Grundlagen, Kapitel 2 & 3;

2. C. Kittel, Einführung in die Festkörperphysik, Kapitel 1& 2.

In these books the standard notation for describing crystal structures is described, and the origin of
coherent x-ray scattering from crystals in the form of Bragg peaks is explained. To test and develop
your understanding of these points, we have provided a problem set that is to be completed before
starting the x-ray diffraction experiment (see Sec. 7). The questions in the problem set provide the
theoretical basis for the data analysis that you will perform on your diffraction measurements.

During the actual experiment we will have time to discuss several issues not covered in the two
references provided above. Foremost among these is the production of x-rays by bombarding a target
material with high-energy electrons; this occurs in the x-ray tube, whose position is indicated in the
schematic diagram describing a typical x-ray diffractometer (Fig. 1). We will also discuss various
means for measuring the intensity of x-rays diffracted by a given sample into the detector, and we
will review the basic electronic components necessary for generating x-rays, detecting them and
controlling the movement of the goniometer.

Finally, you will analyze the diffraction data recorded during the experiment. Your goal will be
to learn as much as possible about the structure of the nanocrystalline sample. Questions that you
will try to answer include: Is the nanocrystalline sample crystalline? What is its lattice parameter?
How does the lattice parameter differ from that of the same material prepared in a coarse-grained
state? What is the average grain size of the material? How much inhomogeneous strain is present in
the sample? The following discussion should help you to understand the types of data analysis that
must be performed in order to answer these questions.

2 Determining the lattice parameter

2.1 The Bragg equation

The angles at which coherent scattering should be expected from an array of atomic planes with
interplanar spacing d′ can be calculated from the Bragg equation. This equation is normally written

2d′ sin θ = nλ, (1)
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Figure 1: Schematic diagram of an x-ray diffractometer illustrating its main components.

where θ is half of the angle between the incident and diffracted beams, λ is the wavelength of the
x-ray radiation, and n is the order of the diffraction peak. It is customary, however, to divide both
sides of Eq. (1) by n and define an ”effective planar spacing” d ≡ d′/n. Then the Bragg equation
becomes

2d sin θ = λ. (2)

In question 1(c) of the problem set, you will evaluate d for a simple cubic lattice and show that it is
equal to a/

√
h2 + k2 + l2 in this case. The quantity a is the side length of the unit cell of the simple

cubic lattice; a is called the lattice parameter. The symbols h, k and l are the Miller indices for
various atomic planes in the lattice. Suppose that a given Bragg peak arises by diffraction from the
(111) planes of a simple cubic lattice. Then d(111) = a/

√
3 and the Bragg equation will be satisfied

when sin θ(111) = λ/2d(111). Now let’s consider the Bragg peak arising from the (222) planes. In
this case d(222) = a/2

√
3, which is just d(111)/2. Therefore, the Bragg equation is satisfied when

sin θ(222) = λ/2d(222) = λ/d(111). Let us compare these two expressions for the angles at which the
(111) and (222) Bragg peaks are expected to occur:

2d(111) sin θ(111) = λ (111) (3)
2d(111) sin θ(222) = 2λ (222). (4)

Comparing Eqs. (3) and (4) with Eq. (1), we see that the (222) diffraction peak is just the second
order (i.e., n = 2) of the (111) diffraction peak! In other words, the Miller indices automatically keep
track of the various orders of diffraction in a systematic (although somewhat complicated) manner.

For most crystal structures, many (hkl) combinations will lead to no measurable intensity at
the angle fulfilling the Bragg equation. The reason for this is that enough destructive interference
occurs to cancel out the constructive interference from the atomic planes of interest. This destructive
interference arises from atomic planes associated with the basis of the crystal structure rather than
with the crystal structure’s lattice type. We’ll discuss a few examples during the laboratory session
that should clarify this point, but even if you don’t have a well-developed intuitive feel for the reasons
behind these “missing” (hkl) values, you can calculate them for any crystal structure by working
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out the structure factor. In problem 2(a) you’ll do this for palladium, which has the fcc structure
with a four-atom basis, and find that, for instance, the (100) peak is excluded while the (200) is not!
Intuitively, you might think that if the second-order peak is present, then the first-order peak must
be, too. This is wrong, however, because in (100) Bragg orientation the atoms located on the (200)
plane of the fcc unit cell diffract exactly 180◦ out of phase with the atoms located on the (100) plane,
resulting in zero net diffracted intensity.1

2.2 Correcting for sample-positioning error

Once you have measured a Bragg peak with x-rays of known λ, you can determine d from the peak
position θ using Eq. (2).2 If you also know the lattice type and the (hkl) value, then you can calculate
the lattice parameter a from the relationship between a and d. In general, if you do this for more
than one Bragg peak (even for different orders of diffraction from the same atomic planes), you will
calculate a slightly different lattice parameter a for each peak! There are several reasons for this,
but the main one is the fact that the sample being measured can never be mounted in the x-ray
diffractometer at exactly the correct position relative to the x-ray tube and detector: the sample is
always a little bit too high or too low, when viewed from the side as in Fig. 1. This mounting error
leads to a systematic variation in a because the misorientation of the sample causes small shifts in
the angles θ of the Bragg peaks used to calculate a.

Fortunately, there are techniques available for correcting this systematic error. A simple calcu-
lation shows that a displacement d̃ of the sample normal to the plane defined by its surface causes a
relative shift ∆a/a in the lattice parameter as given by the following equation:

∆a

a
= − d̃

r

cos2 θ

sin θ
, (5)

where r is the radius of the diffractometer. (The displacement d̃ is positive when the sample lies
above the correct position—that is, when the sample is too high in Fig. 1.) If we let the symbol
a0 represent the true lattice parameter of the sample and a represent the measured value, then
∆a/a = (a− a0)/a0, which, when substituted into Eq. (5), implies

a = a0 −
(

a0
d̃

r

)
cos2 θ

sin θ
. (6)

Thus, a plot of a against the function cos2 θ/ sin θ should give a straight line (if sample displacement
is the main source of error). The true lattice parameter a0 is just the intercept of the straight line
with the cos2 θ/ sin θ = 0 axis, as illustrated in Fig. 2.

3 Determining the average crystallite size

3.1 One-dimensional crystal

In question 3 of the problem set, you will calculate the dependence of Bragg-peak width on crystal
size for the case of a one-dimensional crystal. You should find that the width of the peak is inversely
proportional to the number of lattice points M contributing to the diffraction signal. Let’s develop
an expression relating M to the width of a Bragg peak measured as a function of 2θ. Referring

1Complete destructive interference requires that the total scattering factor of atoms in the (200) plane equal that
of the atoms in the (100) plane. This is true for the fcc lattice structure if all of the atomic sites are occupied by the
same type of atom.

2X-ray diffraction measurements are usually plotted as a function of 2θ rather than of θ, so you’ll have to divide the
measured peak position by 2 before using Eq. (2).
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Figure 2: Plot of measured lattice parameter a against cos2 θ/ sin θ. The intercept of the straight line
fit to the data points with the vertical axis gives the lattice parameter a0 corrected for the influence
of sample-positioning error.

to Fig. 3, we assume that the peak center is at a · ∆k = 2πh and that the width of the peak can
be estimated from the difference between a ·∆k = 2πh + (ε/2) and 2πh − (ε/2). We must express
these positions along the horizontal axis in terms of θ. From Fig. 4 we see that |∆k| = 2|k| sin θ.
By definition of k, |k| = 2π/λ; also, the vectors a and ∆k are parallel to each other, so the angle
between them is zero. Thus, a ·∆k = 4πa sin θ/λ.

Now we can express the peak center by equating 2πh to 4πa sin θ/λ—this is just the Bragg
equation! Let’s use the symbol θ0 to denote the angle θ that satisfies this equation. There are two
other angles, θ0 + (δθ0/2) and θ0 − (δθ0/2), at which a · ∆k equals 2πh + (ε/2) and 2πh − (ε/2),
respectively. Subtracting 2πh− (ε/2) from 2πh + (ε/2), we have:

ε =
4πa

λ

[
sin

(
θ0 +

δθ0

2

)
− sin

(
θ0 − δθ0

2

)]

=
4πa

λ

[
sin θ0 cos

(
δθ0

2

)
+ cos θ0 sin

(
δθ0

2

)
− sin θ0 cos

(
δθ0

2

)
+ cos θ0 sin

(
δθ0

2

)]

≈ 4πa

λ
δθ0 cos θ0, (7)

where we have used sin(δθ0/2) ≈ δθ0/2 for small δθ0. But in question 3(d) of the problem set, you
show that ε = 2π/M . Equating Eq. (7) to 2π/M , we find

Ma ≈ λ

δ(2θ0) cos θ0
. (8)

For a one-dimensional crystal, the length L is equal to (M − 1)a. Since M − 1 ≈ M for large M , we
can write Eq. (8) as

L ≈ λ

δ(2θ0) cos θ0
. (9)

This equation relates the size L of a one-dimensional crystal to the width δ(2θ0) of an x-ray diffraction
peak arising from that crystal. (Note that δ(2θ0) must be expressed in radians in order for the units
to come out correctly!)
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Figure 3: Plot of Bragg peak calculated in question 3 of the problem set (M = 10). The peak width
is estimated to be half of the distance 2ε between the first zero-crossings of peak intensity (at 2πh±ε)
relative to the peak maximum.

3.2 Three-dimensional crystal

Surprisingly, diffraction from a three-dimensional crystal is qualitatively identical to diffraction from
a one-dimensional crystal if we identify the diffracting planes in the 3D crystal with the diffracting
points in the 1D crystal! We will discuss during the laboratory session why this is true, but you
should try to find a good explanation ahead of time. In 1918, Scherrer published a more precise
derivation of Eq. (9) than we have performed here and found that

D =
1.2λ

δ(2θ0) cos θ0
, (10)

where the constant 1.2 is exact only for spherical crystallites of diameter D. Equation (10) relates
the Bragg-peak broadening δ(2θ0) (measured in radians!) from a single crystallite to the crystallite
diameter D. In the case of our nanocrystalline materials, x-ray diffraction occurs simultaneously
from a huge number of crystallites, each having a different size. In this case, the quantity D that one
calculates using Eq. (10) is an average diameter. This average is somewhat different from the one
ordinarily encountered in physical measurements: instead of averaging the crystallite sizes according
to the number of crystallites of a given size, the x-ray diffraction process averages the crystallite
sizes according to the volume of each crystallite. In other words, the bigger crystallites carry more
weight in the averaging process than the smaller ones. Therefore, the average size D calculated from
Eq. (10) is always an upper bound for the numerical average size 〈D〉.

5

N 
lL 

2rrh - E'. 2rrh 21th+ E'. 

21th -E/2 21th +E'./2 
a- Af< 



koutkinc

∆ k

kout

kinc

θθ

θ

θ

Figure 4: Vector plot identifying the relative orientation of the incident x-ray beam kinc, the diffracted
x-ray beam kout and the change ∆k = kout − kinc that occurs upon diffraction. Note that |kinc| and
|kout| are both equal to |k| = 2π/λ because the scattering process is elastic (i.e., scattering occurs
with no change in x-ray beam energy).

4 Measuring inhomogeneous strain

The schematic diagrams that you see in textbooks of crystal structures always imply that the inter-
atomic spacing (i.e., the nearest-neighbor spacing) is a constant determined by the lattice parameter.
That’s not true! In fact, the spacing between adjacent atoms is always changing due to the atomic
vibrations induced by thermal energy (phonons). Atoms vibrate about average positions that are,
indeed, separated by a constant distance determined by the lattice parameter, but the instantaneous
spacing between any two atoms varies with time due to the thermal motion of the atoms themselves.
Even if it were possible to cool a crystal down to absolute zero Kelvin, these vibrations would be
present thanks to quantum mechanics: just as with a harmonic oscillator, the lowest possible energy
state is one in which there is still a finite amount of kinetic energy stored in atomic motion. (The
vibrations at T = 0 K are called zero-point motion.) The influence of atomic vibrations on x-ray
diffraction peaks can be measured through the dependence of peak intensity with diffracting angle;
the mathematical factor describing this angular dependence is called the Debye-Waller factor and is
too complicated for us to consider in this experiment.

However, atomic vibrations aren’t the only cause of variations in interatomic spacing: the presence
of inhomogeneous strain in a sample can cause them, too. Inhomogeneous strain is a variation in
spacing between atomic planes rather than between the atoms themselves (Fig. 5). (Of course, if the
plane spacing varies, then so will the spacing between atoms located in different planes). Such strain
can be induced by subjecting a material to mechanical force, such as pressing, grinding, milling,
stretching or cutting. In the case of the nanocrystalline sample prepared by inert-gas condensation,
the crystallites that condensed in the gas phase were collected by convection onto a cold surface and
then scraped into a press, where they were compacted at high pressure. It is this last step—cold
compaction—that can introduce inhomogeneous strain into the nanocrystalline samples.

Why are we interested in inhomogeneous strain? In question 4 of the problem set, you show that
a distribution of lattice parameters causes a broadening of Bragg peaks. The variation in interplanar
spacing that we call inhomogeneous strain is equivalent to the presence of a distribution of lattice
parameters! That is, a material containing strain has a local lattice parameter that varies about
some average value a0. The larger the relative variation |δa0/a0|, the larger the resulting Bragg-peak
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Figure 5: Schematic diagram illustrating the difference between a crystal without inhomogeneous
strain (left) and a crystal with inhomogeneous strain (right). The local variation in interplanar
spacing is equivalent to a distribution of lattice parameters (see question 4 of the problem set).

broadening δ(2θ0) will be. In question 4(a) you show that

δ(2θ0) = 2 tan θ0

∣∣∣∣
δa0

a0

∣∣∣∣ , (11)

where 2θ0 is the Bragg-peak position. Thus, from a measurement of the strain-induced peak broad-
ening, one can calculate the amount of strain present in the sample. (Note that strain is defined to
be the quantity 1

2 |δa/a|, which is usually written as e in the literature.)

5 Correcting for size-broadening and strain-broadening simultane-
ously

5.1 Instrumental broadening

In the above sections we have seen that there are at least two independent effects (crystallite size and 
inhomogeneous strain) that can cause Bragg peaks to broaden. In fact, there are many more than 
two such effects, but these are two of the three most important. The third one, which we have not 
yet discussed, is called instrumental broadening. This is the width of a Bragg peak that one would 
measure from a perfect single crystal of infinite size containing no inhomogeneous strain. According 
to theory, Bragg peaks should be delta functions in this case (consider the form of |F |2 in question 
3(b) of the problem set in the limit M → ∞). In practice, Bragg peaks are never delta functions; 
instead, they have a finite (i.e., non-infinite) height and a nonzero width. There are many reasons 
for this: for instance, (i) the detector cannot measure the angular variation of intensity with infinite 
resolution, (ii) there always exists a slight dispersion ∆λ in the wavelength of x-rays used to irradiate 
the sample, and (iii) the x-rays are scattered at various depths from the sample rather than all from 
the top atomic plane. We’ll discuss these factors during the laboratory session.

What’s important for analyzing our nanocrystalline materials is to know how much of the peak 
broadening is due to size and strain and how much is due to instrumental sources. To determine the 
latter, we will measure the Bragg peaks from a LaB6 reference sample known to have large grains (i.e., 
much larger than 100 nm) and almost no strain. Then any residual peak broadening must be due to 
instrumental sources. We will denote this amount of broadening as δ(2θ0)inst.
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5.2 Total peak broadening

The total amount of Bragg-peak broadening is a combination of δ(2θ0)inst and the broadening due to
crystallite size, δ(2θ0)size, and that due to inhomogeneous strain, δ(2θ0)strain. Unfortunately, we don’t
know exactly how these various effects combine with one another; mathematically, we know only that
the three sources of broadening are convoluted together to yield the total broadening (convolution =
Faltung). In order to make separation of the various effects possible, we must assume a mathematical
form for each of the three types of broadening. For example, we may assume that each of the three
results in a Lorentzian broadening of the Bragg peaks. A Lorentzian intensity curve is defined as

I(2θ) =
C

(2θ − 2θ0)2 + (Γ/2)2
, (12)

where C is a constant and Γ is the full-width at half maximum (FWHM) of a Bragg peak centered at
2θ0 (Fig. 6). In this case, it’s easy to show that the FWHM of the convolution of three Lorentzians

Figure 6: Plot of Lorentzian and Gaussian peak forms with FWHM equal to Γ. Note that the tails
of the Gaussian peak fall off much more quickly than those of the Lorentzian, although the FWHM
is identical in both cases; on the other hand, the peak of the Lorentzian is sharper than that of the
Gaussian.

is just the sum of the FWHM’s of each Lorentzian function:

δ(2θ0)total = δ(2θ0)inst + δ(2θ0)size + δ(2θ0)strain (all Lorentzian), (13)

where we assume that the δ(2θ) quantities are intrinsically positive, of course. On the other hand,
we might assume that each of the three sources of peak broadening is best described by a Gaussian
function:

I(2θ) = C exp

[
−4 ln 2

(2θ − 2θ0)
2

Γ2

]
, (14)

where C is a constant and Γ is the FWHM (Fig. 6). From the properties of convolution integrals,
one can show that the square of the FWHM of the convolution of three Gaussians is just the sum of
the squares of the FWHM’s of each Gaussian:

[δ(2θ0)total]2 = [δ(2θ0)inst]2 + [δ(2θ0)size]2 + [δ(2θ0)strain]2 (all Gaussian). (15)
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5.3 Separating the various broadening contributions

We already know how large the instrumental-broadening term δ(2θ0)inst is (we measure it directly
from the large-grained Pd reference sample), and we can measure the total broadening δ(2θ0)total

for any Bragg peak from the nanocrystalline Pd sample. How do we figure out what δ(2θ0)size and
δ(2θ0)strain are? To answer this question we will use a clever trick, but first we note that separating
the size broadening from the strain broadening will be impossible from a measurement of just one
Bragg peak. Why? Because from one measurement of δ(2θ0)total we cannot possibly decide how much
of the total broadening results from crystallite size and how much from inhomogeneous strain—the
problem is underdetermined. Would it help to measure more than one Bragg peak? Yes! Then we
will have two or more measurements of δ(2θ0)total, which should be enough to enable calculation of
both δ(2θ0)size and δ(2θ0)strain. Let’s see how this works.

In question 4(b) of the problem set you show that the change of variable s = 2(sin θ)/λ enables
us to express the strain broadening [Eq. (11)] in the following form:

(δs0)strain = s0

∣∣∣∣
δa0

a0

∣∣∣∣ , (16)

where a0 is the lattice parameter and |δa0/a0| is the relative change in lattice parameter due to
inhomogeneous strain; note that the peak broadening due to strain is now expressed in terms of s
rather than in terms of 2θ. We can perform the same change of variable with the size broadening.
Recall from Eq. (10) that

[δ(2θ0)]size =
1.2λ

D cos θ0
. (17)

Making the change of variable s = 2(sin θ)/λ, we find

(δs0)size =
cos θ0

λ
[δ(2θ0)]size

=
cos θ0

λ
· 1.2λ

D cos θ0

=
1.2
D

. (18)

When we compare Eqs. (16) and (18), we see immediately that, while (δs0)strain depends on
s0, (δs0)size is a constant! This is the fact that allows us to separate the broadening due to strain
from that due to size—at low angles (i.e., low s0) Bragg peaks will have a small amount of strain
broadening (because s0 is small), whereas at large angles Bragg peaks will have a large amount of
strain broadening; the size broadening, on the other hand, will be constant with respect to angle
because (δs0)size does not depend on s0.

To perform the actual size/strain separation, we proceed as follows. First, we will assume that
the total broadening should be corrected for instrumental broadening simply by subtracting (δs0)inst

from (δs0)total; this will yield a corrected total broadening that we’ll call (δs0)corr. Then we can
assume that both strain and size broadening are Lorentzian: in this case we substitute Eqs. (16) and
(18) into Eq. (13) to get

(δs0)corr =
1.2
D

+ 2es0 (Lorentzian size and strain), (19)

where we have followed the common practice of writing the strain 1
2 |δa0/a0| as e. This is the equation

of a straight line! Therefore, if we plot (δs0)corr against s0 for each Bragg peak measured, we should
find that the points lie roughly along a straight line [Fig. 7(a)]. Fitting such a line to the points
allows us to evaluate e from the slope of the line and D from the inverse of its intercept.
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Figure 7: (a) Plot of (δs0)corr against s0 for the Bragg peaks of a nanocrystalline material; (b) plot
of [(δs0)corr]2 against s2

0 for the Bragg peaks plotted in (a). The straight-line fits enable evaluation
of the average crystallite size D and the inhomogeneous strain e, according to Eqs. (19) and (20).

Similarly, we can perform the same analysis under the assumption that the size and strain broad-
ening are both Gaussian. In this case, substitution of Eqs. (16) and (18) into Eq. (15) yields

[(δs0)corr]2 =
(

1.2
D

)2

+ (2es0)2 (Gaussian size and strain). (20)

Again, this is the equation of a straight line, though as a function of s2
0 rather than of s0. If we plot 

[(δs0)corr]2 against s2
0 for each Bragg peak measured, then we should find that the points lie roughly 

along a straight line [Fig. 7(b)]. As in the Lorentzian case, the slope gives e and the intercept gives 
D. During the laboratory session we will discuss which of these two analysis techniques is more
reliable and trustworthy for determining D and e.

6 Data evaluation

In this experiment you will measure the Bragg peaks of a coarse-grained LaB6 reference sample, a 
nanocrystalline Pd90Au10 sample and a nanocrystalline and coarse-grained CeO2 sample. The data 
evaluation that you are expected to carry out consists of the following tasks:

1. Determine instrumental broadening using the LaB6 reference sample and fitting the FWHM-
values with the Caglioti function : FWHM=sqrt(A+B*tan(theta)+C*(tan(theta))2)

2. Determine the lattice parameter of the nanocrystalline Pd90Au10 sample and the CeO2 samples 

using the correction technique for sample-positioning error.

3. Estimate the average crystallite size D and the inhomogeneous strain e in the nanocrystalline 
samples under the assumption that both size and strain broadening are Lorentzian. Give 
the value for D in nanometers and the value for e in percent (%).

4. Estimate the average crystallite size D and the inhomogeneous strain e in the nanocrystalline 
samples under the assumption that both size and strain broadening are Gaussian. Give 
the value for D in nanometers and the value for e in percent (%).
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7 Problem set

In diesem Versuch werden Sie die Struktur einer nanokristallinen Pd-Probe mittels Röntgenbeugung
charakterisieren. Es ist notwendig, die folgenden Aufgaben schon vor der ersten Röntgenbeugungsmessung
gelöst zu haben, um die Prinzipien der während des Versuchs durchzuführenden Messungen und
Auswertungen verstehen zu können.

1. Abstand zwischen den Ebenen. (s. Kittel, Kap. 2, Nr. 1) Betrachten Sie eine Ebene hkl
in einem Kristallgitter.

(a) Zeigen Sie, daß der reziproke Gittervektor G = hA+ kB+ lC senkrecht auf dieser Ebene
steht.

(b) Beweisen Sie, daß der Abstand zwischen zwei aufeinanderfolgenden parallelen Ebenen des
Gitters gleich d(hkl) = 2π/|G| ist.

(c) Zeigen Sie für ein einfach kubisches Gitter, daß gilt

d =
a√

h2 + k2 + l2
,

wobei a der Gitterparameter ist.

2. Das Material, das Sie messen werden, ist u.a. eine Pd90Au10-Legierung. Pd ist kubischflächenzentriert (fcc)
undhat einen Gitterparameter a von ungefähr 3.89 Å.

(a) Berechnen Sie explizit (d.h. nicht einfach das Ergebnis aus Kittel kopieren) den Struktur-
faktor für Palladium. Nehmen Sie dafür an, daß der Atomformfaktor von Palladium f ist.
Welches sind die hkl-Werte der ersten acht erlaubten Bragg-Reflexe?

(b) Benutzen Sie das Ergebnis von Aufgabe 1(c) in Kombination mit der Bragg-Gleichung,
um die zu erwartenden Positionen der ersten acht erlaubten Bragg-Reflexe von Pd zu 
berechnen. Nehmen Sie an, daß das Material mittels Kupfer-Strahlung (λ = 1.54056 Å) 
gemessen wird. Vergessen Sie nicht, die Positionen als Winkel 2θ anzugeben.

3. Beugung eines eindimensionalen Kristalls (s. Kittel, Kap. 2, Nr. 3) Wir nehmen an, daß in
einem linearen Kristall auf jedem Gitterpunkt ρm = ma (m ist eine ganze Zahl) ein identisches,
punktförmiges Streuzentrum sitzt. Die Gesamtamplitude der Streustrahlung ist proportional
zu F =

∑
exp[−im(a ·∆k)].

(a) Zeigen Sie, daß die Summe über M Gitterpunkte den Wert

F =
1− exp[−iM(a ·∆k)]
1− exp[−i(a ·∆k)]

hat, unter Verwendung des Ergebnisses

M−1∑

m=0

xm =
1− xM

1− x
.

(b) Die gestreute Intensität ist proportional zu |F |2. Zeigen Sie, daß gilt

|F |2 = F ∗F =
sin2 1

2M(a ·∆k)
sin2 1

2(a ·∆k)
.

(c) Wir wissen, daß für a ·∆k = 2πh (h ist eine ganze Zahl) ein Beugungsmaximum erscheint.
Was ergibt sich für |F |2, wenn a ·∆k = 2πh ist?
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(d) Wir ändern ∆k geringfügig und definieren eine Quantität ε so, daß, wenn a ·∆k = 2πh+ ε
in sin 1

2M(a · ∆k) eingesetzt wird, die Funktion |F |2 ihren ersten Nullwert hat. Zeigen
Sie, daß gilt ε = 2π/M – das heißt, daß die Breite des Beugungsmaximums proportional
zu 1/M ist und dadurch für große Werte von M extrem schmal werden kann.

(e) Nehmen wir an, daß a · ∆k = 4πa sin θ/λ. Zeichnen Sie das erste Beugungsmaximum
(h = 1) für M = 10, 100 und 1000 unter der Annahme, daß λ = 0.7093 Å und a = 3.89 Å.

4. Verteilung von Gitterparametern. Nehmen Sie an, daß ein bestimmtes Material eine rela-
tiv schmale Verteilung von Gitterparametern δa um den mittleren Wert a hat. Diese Verteilung
führt zu einer Verbreiterung δ(2θ) von Bragg-Reflexen.

(a) Mit Hilfe der Bragg-Gleichung zeigen Sie, daß gilt

|δ(2θ)| = 2 tan θ

∣∣∣∣
δa

a

∣∣∣∣ ,

wobei 2θ die Lage eines Bragg-Reflexes ist.

(b) Diese Gleichung für |δ(2θ)| nimmt eine einfachere Form an, wenn θ durch einen neuen
Parameter s = 2(sin θ)/λ ersetzt wird. Zeigen Sie in diesem Fall, daß gilt

|δs| = s

∣∣∣∣
δa

a

∣∣∣∣ .
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