Network based mathematical modelling of HPV transmission and cervical cancer in Germany

Werthner, Q.1; Rissland, J.2; Selzer, D.1; Berko, B.2; Wagenpfeil, S.3; Smola S.2; Lehr, T.1

1Clinical Pharmacy, Saarland University, Campus C2 2, 66123 Saarbrücken, Germany
2Institute for Virology, Saarland University Hospital, 66421 Homburg, Germany
3Institute for Medical Biometry, Epidemiology and Medical Informatics, Saarland University Hospital, 66421 Homburg, Germany

BACKGROUND AND OBJECTIVES

Worldwide, there are an estimated 569,800 cervical cancer cases per year due to an infection with human papilloma viruses (HPV) which is associated with about 311,400 deaths every year. Despite recommendations for screening programs and HPV vaccinations by the German Standing Committee on Vaccination (STIKO), Germany is facing about 4,600 cervical cancer cases and 2,000 deaths per year [1]. Considering Germany’s low vaccination rate of 44.6% in female teenagers (2) compared to other western countries like Denmark (81%) or Sweden (78.5%) [1], and the recent recommendation for the vaccination of boys, it is of ever more importance to establish a tool providing the ability to precisely estimate potential interventions for the reduction of cervical cancer cases. Our aim was the development of a network based mathematical model, describing the transmission of HPV, incidences of cervical cancer as well as the evaluation of potential implications of policy and behavioral changes on the spreading and prevalence of infections and mortality due to cervical cancer.

METHODS

The underlying stochastic, dynamic, individual based network model used in an open population modelling approach was implemented in the R programming language (version 3.6) within the EpiModel package [5]. A network approach allows the modelling of individuals as separate nodes and dynamic stochastic processes which might lead to a more precise and flexible modelling of interactions and impact of interventions [4]. The sexual network was governed by an exponential random graph model which allows relationships to form and dissolve stochastically. For computational reasons, the initial model population was set to 10,000 nodes with reasonable heterosexual interaction patterns and an infection distribution for men and women (ages 12 to 100, Fig. 2) to closely reflect the circumstances in the Saarland region of Germany. Net migration with flexible infection and coverage rates was implemented as well. Information regarding population aging, birth, immigration, emigration and natural death of individuals was taken from the Federal Statistical Office and demographic data (6). Model baseline, infection rates and cancer incidences were calibrated on the number of cancer cases and deaths due to cervical cancer. The calibration end points were obtained from literature [8-10]. Both the bi- and the nonavalent vaccines were analyzed in different infection and coverage settings, (44.6% vaccination of women and 20% future vaccination of men). For each scenario 100 simulations were performed.

RESULTS

The chosen model was an extended susceptible-infected-recovered (SIR) model with individuals passing from a susceptible to an infected state after being infected via the formation of a relationship with an infected individual. Furthermore, individuals could pass from the infections to a recovered as well as back to the susceptible state through recovery. Infections are subdivided into different HPV types on which the different vaccines and risk factors for cancer hinge. From all stages death and emigration were possible, but arrival into the system was limited to births and immigration into the susceptible compartment with different infection and vaccination rates, respectively (Fig. 1).

Figure 3: Schematic compartmental diagram for the spreading of HPV infections throughout the population based on a SIR-compartiment model, taking into account different demographic factors, HPV types and vaccines. The susceptible compartment is shown in blue, infected and its sub compartments in orange and recovered in green.

The above mentioned calibrations in combination with projections regarding the future demographic structure showed good concordance (Fig. 2-4). In addition the model predictions for cancer cases and deaths align well with literature extrapolations (Fig. 5-7). If only women are vaccinated the model shows a mean reduction by 25.8% for the HPV types 16/18 and 18.3% for vaccinable high risk types. This is amplified by the vaccination of men to values of 37.8% and 26.3%. In contrast the unvaccinated HPV prevalence does not decrease (Fig. 8). Over the course of the next 100 years, the model predicts an annual reduction of cervical cancer cases of 27.1% for the vaccination of women and of 34.1% if men are also vaccinated. Likewise, the annual number of cancer deaths is reduced by 23.1% and 38.4% per 100,000 women for these two scenarios. Depending on the actual vaccination turn out this might become even more amplified by the upcoming vaccinations for boys in Germany (Fig. 9).

CONCLUSION

A functional model for the description of the natural history and spreading of HPV has been developed. Furthermore, the model allows analyzing of potential impacts of behavioral parameters and policy changes on the prevalence of HPV and cervical cancer in the Saarland region.

Network based mathematical modelling of HPV transmission and cervical cancer in Germany

However, especially in view of the over all low vaccination rate the level of acceptance for HPV vaccination for boys might prove to be a critical point.

OUTLOOK

The model will be linked and calibrated with data provided by University Hospital Homburg as well as German healthcare providers for continual evaluations and additional recommendations regarding the prevention of cervix carcinoma in Germany.

Presented at the RAGE Meeting 2019 in Stockholm, Sweden