FACILE SYNTHESIS OF V₂O₃/CARBON CORE/SHELL **HYBRIDS AS AN ANODE FOR LITHIUM-ION BATTERIES**

Öznil Budak,^{1,2} Pattarachai Srimuk,^{1,2} Aura Tolosa,¹ Simon Fleischmann,^{1,2} Juhan Lee,^{1,2} and Volker Presser^{1,2}

¹ Energy Materials Group, INM - Leibniz Institute for New Materials, Saarbrücken, Germany ² Department of Materials Science & Engineering, Saarland University, Saarbrücken, Germany

V₂O₃ is a **promising** LIB electrode material but there have been only very few studies exploring V_2O_3 as an anode for LIBs so far.^[2-5] The current state of the art assumes that V_2O_3 undergoes structural volume change during cycling; this effect and the low electronic conductivity explain the poor cycling stability.^[4] For example, there is a 50-60 % capacity loss of bulk V_2O_3

POST MORTEM ANALYSIS

Sample	Phase	Volume (ų)
Lithiation at 1.5 V (a)	V ₂ O ₃	298
Lithiation at 0.75 V (b)	V ₂ O ₃	298
Lithiation at 0.01 V (c)	V_2O_3	297

ample	State	I _D /I _G ratio		
/203/VC-CDC-1:2	Initial	1.1		
	500 cycles	2.7		
/ ₂ O ₃ /VC-CDC-1:2.5	Initial	1.1		
	500 cycles	2.3		
/203/VC-CDC-1:3	Initial	2.1		
	500 cycles	2.2		
ommercial V ₂ O ₃	Initial	2.0		
	500 cycles	0.9		
VC-CDC becomes structurally mo				

Raman data analysis after 500 cycles

Delithiation at 0.75 V (d)	V_2O_3	297	
Delithiation at 1.5 V (e)	V_2O_3	297	
Delithiation at 3.0 V (f)	V ₂ O ₃	297	_
 No significant of V₂O₃ volume of the art in the 	crystal nange al cycli It per e litera	lograph via ng the stat ature	ic

e disordered after cycling Ergo: carbon plays an active role in

the energy storage process

REFERENCES

[1] Nitta et al. (2015), Mater Today 18, 252-264. [2] Jiang et al. (2015), Appl. Mater. Interfaces 7,1595-1601. [3] Shi et al. (2015), J. Power Sources 275, 392-398. [4] Sun et al. (2011), J. Power Sources 196, 8644-8650. [5] Yan et al. (2016), J. Power Sources 329, 148-169. [6] Budak et al. (2019), Batteries&Supercaps, 2, 74-82.

CONCLUSIONS

- **Using an optimized precursor ratio, we synthesized a V₂O₃/VC-CDC** hybrid material with a core/shell particle architecture.
- The material afforded a capacity of 160 mAh/g with high performance stability up to 500 cycles.