A Monomeric Cyclopentadienyl Aluminylene
UNIVERSITÄT

INTRODUCTION

The isolation of mono-substituted aluminum compounds with the aluminum atom in the oxidation state $+\mathrm{I}-$ so called aluminylenes - is challenging and typically requires bulky substituents for kinetic stabiiization and/or donor-type ligands to compensate the inherent electron deficiency. ${ }^{[1]}$ In 1991, Schnöckel reported the isolation and structural characterization of (pentamethylyyclopentadienyl) aluminum(II), highlighting the ability of tetrameric form in the solid-state and in solution at room temperature, although Schnöckel demonstrated in a follow-up work that monomeric cyclopentadienyl aluminylenes can be obtained at room temperature, with more bulky substitution patterns on the Cp moiety. ${ }^{[3]}$ The first isolation of a monomeric cyclopentadienyl aluminylene was achieved by Braunschweig only recently, complementing some other aluminylenes reported by Roesky, Power, Liu and Hinz in recent years. ${ }^{[4]}$

Schnöckel 1991 Braunschweig 2019 Roesky 2000

Power 2020

Liu/ Hinz 2021

SYNTHESIS AND STRUCTURE

(Pentaisopropylcyclopentadienyl)aluminylene (${ }^{5} \mathrm{CPAI}$) $\mathbf{1}$ was synthsized by treatment of the pentamethylcyclopentadienyl aluminum(l) tetramer ${ }^{[2]} \quad\left\{\mathrm{CD}^{*} \mathrm{Al}\right\}_{4}$ with \quad (pentaisopropylcyclopentadienyl) ithium diethyletherate (${ }^{5} \mathrm{C} \mathrm{p}^{*} \mathrm{~L} \mathrm{i} \cdot \mathrm{OE}_{2}$). 1 was fully characterized by multinuclear NMR spectroscopy in solution and in the solid-state, and its structure was determined by single crystal X -ray diffraction.

Molecular structure of in the crystal (di
and overview of selected bond lenghts.
The molecular structure of 1 shows well-seperated monomeric (pentaisopropylcyclopentadienyl)aluminum moieties with an η^{5} coordination of the ${ }^{5} \mathrm{Cp}$ ligand towards aluminum, resulting in a pentagonal pyramidal structure, or rather a nido cluster.

$\delta^{27} \mathrm{Al}\left(60^{\circ} \mathrm{C}\right)=-150 \mathrm{ppm} \quad \delta^{27} \mathrm{Al}(\mathrm{rt})=-155 \mathrm{ppm}$

$$
\underset{\mathrm{Me}_{3} \mathrm{Si}}{\stackrel{\ddot{\mathrm{Al}}}{\sim}}
$$

$$
\delta^{27} \mathrm{~A}(\mathrm{rt})=-168 \mathrm{ppm} \quad \delta^{27} \mathrm{~A}(\mathrm{rt})=-165 \mathrm{ppm}
$$

METAL COMPLEXES

Treatment of $\mathbf{1}$ with AlBr_{3} at room temperature in toluene gives adduct 2 with a Al1-Al2 bond length of $255.5(1) \mathrm{pm}$, which is similar to that found in Braunschweig's (tritert-butylcyclopentadienyl) aluminylene aluminum tribromide complex (255.4(1)). ${ }^{[4 a]}$

1
Reaction of $\mathbf{1}$ with $\mathrm{W}(\mathrm{CO})_{6}$ in thf under UV irradiation $(365 \mathrm{~nm})$ yields

3 the corresponding tungsten pentacarbonyl complex 3 .

Bond distances in 2 and 3 in [pm]:

	${ }^{5} \mathrm{CpAl} \rightarrow \mathrm{AlBr}_{3}$	${ }^{5} \mathrm{CpAl} \rightarrow \mathrm{W}(\mathrm{CO})_{5}$
Al1-[M]	$\begin{gathered} 255.5(1) \\ \left([\mathrm{M}]=\mathrm{AlBr}_{3}\right) \end{gathered}$	$\begin{gathered} 258.5(6) \\ \left([\mathrm{M}]=\mathrm{W}(\mathrm{CO})_{5}\right) \end{gathered}$
Al1-Cp ${ }^{\text {cent }}$	178.3(9)	183.5(6)
$\mathrm{C}^{\text {Cp_C }} \mathrm{Cl}^{\text {cp }}$	$\begin{gathered} \hline \text { 142.9(4) to } \\ 143.9(4) \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { 142.8(1) to } \\ 143.6(9) \\ \hline \end{gathered}$
$\mathrm{M}-\mathrm{CO}^{\text {cis }}$	-	$\begin{gathered} \text { 202.2(3) to } \\ 204.5(3) \end{gathered}$
M-COrans	-	199.7(3)
$\mathrm{C}-\mathrm{O}^{\text {cis }}$	-	$\begin{aligned} & \text { 113.7(3) to } \\ & 115.0(3) \end{aligned}$
C-Otrans	-	114.4(4)

Molecular structure of 2 in the crystal (dispolacement, ellipsoids at 50 .
probability level,
a atoms omitted).

Reaction of (pentamethylcyclopentadienyl)aluminum(I) tetramer with 8 equivalents of ${ }^{5} \mathrm{CpLi} \cdot \mathrm{OEt}_{2}$ results in the formation of dimetallocene 4.

Molecular structure of 3 in the crystal
displacement (displacement ellipsoids at 50%
probability level, H atoms omitted).

In both complexes, 2 and 3, the Al1-Cp cent distance decreases in comparison to 1, due to the electron deficiency at the aluminum(I) center, the electronwithdrawal power of the coordinated metal fragment respectively, and the corresponding compensation

Dimetallocene 4 is the first main-group and heterobimetallic dimetallocene with an Al1-Li1 bond of 258.1(6) pm.
The orbital interaction is dominated by the donation of the lone pair of the aluminum atom of the ${ }^{5} \mathrm{CpAl}$ fragment into the formally vacant orbital of the lithium atom of the ${ }^{5} \mathrm{CpLi}$ fragment. The dispersion interactions between the ${ }^{5} \mathrm{Cp}$ ligands are the key factor to stabilizing the $\mathrm{Al}-\mathrm{Li}$ bonding interaction in 4

References:

[1] X. Zhang, Y. Mei, L. L. Liu Chem. Eur. J. 2022, 28, e202202102.

[2] C. Dohmeier, C. Robl, M. Tacke, H. Schnöckel Angew. Chem. Int. Ed. Engl. 1991, 30, 564.
[3] H. Sitzmann, M. F. Lappert, C. Dohmeier, C. Üffing, H. Schnöckel J. Organomet. Chem. 1998, 561, 203.
 Soc. 2020, 142, 49, 20554; d) X. Zhang, Y. Mei, L. L. Liu Chem. Eur. J. 2022, 28, e202202102; e) A. Hinz, M. P. Müller Chem. Commun. 2021, 57, 12532.

