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Abstract. We consider a general class of integro-differential evolution equa-

tions which includes the governing equation of the generalized grey Brownian
motion and the time- and space-fractional heat equation. We present a general

relation between the parameters of the equation and the distribution of the

underlying stochastic processes, as well as discuss different classes of processes
providing stochastic solutions of these equations. For a subclass of evolution

equations, containing Saigo-Maeda generalized time-fractional operators, we

determine the parameters of the corresponding processes explicitly. Moreover,
we explain how self-similar stochastic solutions with stationary increments can

be obtained via linear fractional Lévy motion for suitable pseudo-differential

operators in space.

Keywords: time-fractional evolution equations, fractional calculus, randomly
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1. Introduction

Einstein’s explanation of Brownian motion has provided the cornerstone which
underlies deep connections between stochastic processes and evolution equations.

Namely, the function pt(x) := (2πt)−d/2 exp
(
− |x|

2

2t

)
, which is the probabil-

ity density function (PDF) of a (d-dimensional) Brownian motion (Bt)t>0, is also

the fundamental solution of the heat equation ∂u
∂t (t, x) = 1

2∆u(t, x) with the
Laplace operator ∆. In other words, the heat equation is the governing equation for
Brownian motion. And the solution of the Cauchy problem for the heat equation
with initial data u0 has the stochastic representation

u(t, x) = E[u0(x+Bt)].

Itô calculus for Brownian motion allows to extend the above relation to a wider
class of evolution equations. Using Itô calculus (together with martingale theory or
with theory of Markov processes and operator semigroups), one can prove (under
suitable assumptions), e.g., the Feynman–Kac formula [25, 42]

u(t, x) := E
[
u0(x+Bt) e

∫ t
0
b(x+Bs)·dBs− 1

2

∫ t
0
|b(x+Bs)|2ds+

∫ t
0
c(x+Bs)ds

]
,

for the standard diffusion equation with drift b and a “potential”/killing term c

(1)
∂u

∂t
(t, x) =

1

2
∆u(t, x) + b(x) · ∇u(t, x) + c(x)u(t, x)

as well as (quite analogous) Feynman–Kac formulae for Schrödinger type counter-
parts of equation (1), see e.g. [1, 6, 12].
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Standard or Brownian diffusion is identified by the linear growth in time of
the variance and by a Gaussian shape of the displacement distribution. How-
ever, many natural phenomena show a diffusive behaviour that exibit a non-linear
growth in time of the variance and/or non-Gaussian shape of the displacement
distribution; such phenomena are generally labeled as anomalous (or, fractional)
diffusion. Anomalous diffusion is ubiquitously observed in many complex systems,
ranging from turbulence and plasma physics to soft matter (e.g., cell cytoplasm,
membrane and nucleus) and neuro-physiological systems (see, e.g, [28, 43] and ref-
erences therein). There are many different mathematical models describing anoma-
lous diffusion. And, usually, these models lead to evolution equations generalizing
equation (1) by substituting partial derivatives with respect to space and/or time by
some non-local integro-differential operators (in particular, operators corresponding
to fractional derivatives).

One of the earliest and most well-studied models of anomalous diffusion is based
on the Continuous Time Random Walk (CTRW) approach (see, e.g., [15, 22, 23,
27, 29, 38]). The trajectory of each diffusing particle is considered to be governed
by the PDF pt(x) (of finding the particle in position x at time t) which solves
the Montroll–Weiss equation [29]. Under some assumptions on jumps and waiting
times of a CTRW, one obtains in the proper scaling limit a symmetric γ-stable
Lévy process time-changed (or, subordinated) by an independent inverse β-stable
subordinator. And the Montroll–Weiss equation leads to the time- and space-
fractional heat equation

u(t, x) = u0(x) +
1

Γ(β)

∫ t

0

(t− s)β−1

(
1

2
∆

)γ/2
u(s, x)ds, β ∈ (0, 1], γ ∈ (0, 2],

(2)

as the governing equation for this process. Here
(

1
2∆
)γ/2

is the fractional Laplacian

(up to a constant), i.e. a pseudo-differential operator with symbol −2−γ/2|p|γ .

And the integral operator, which is applied to
(

1
2∆
)γ/2

u(·, x), is the Riemann-
Liouville fractional integral of order β. The equation (2) can be rewritten also in
the formalism of Caputo fractional derivatives in the following way

∂βt u(t, x) =

(
1

2
∆

)γ/2
u(t, x),

where ∂βt f(t) :=
∫ t

0
(t−s)−β
Γ(1−β)

df(s)
ds ds is the Caputo fractional derivative of order β.

Many authors have contributed to various generalizations of the above results,
showing that Markov processes, subordinated by independent inverse subordina-
tors, provide stochastic (representations of) solutions of some suitable time- (and,
possibly, space-) fractional evolution equations (see, e.g., [4, 23, 24] and references
therein).

A new direction in theoretical modelling of diffusion in complex media interpretes
the anomalous character of the diffusion as a consequence of a very heterogeneous
enviroment [7, 8, 13, 21, 43, 44]. One type of such models is based on randomly
scaled Gaussian processes (RSGP) and is sometimes refered to as Generalized Grey
Brownian Motion (GGBM), or GGBM-like models. This type of models originates
from Schneider’s grey Brownian motion [40, 41] whose PDF is the fundamental
solution of the time-fractional heat equation of order β (i.e., equation (2) with

γ := 2). The GGBM (Xα,β
t )t>0, α ∈ (0, 2), β ∈ (0, 1], was introduced in works of

Mainardi, Mura and their coauthors [30, 31, 32], and can be realized as

Xα,β
t :=

√
YβBα/2t ,(3)
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where B
α/2
t is a (1-dim.) fractional Brownian motion (FBM) with Hurst parameter

α/2 and Yβ is a particular nonnegative random variable1 which is independent from

(B
α/2
t )t>0. The GGBM includes Brownian motion (for α = β = 1), FBM (for α 6=

β = 1) and Schneider’s grey Brownian motion (for α = β 6= 1). These processes are
self-similar and with stationary increments, what makes the GGBM attractive for
modeling. Generally, GGBM-like models deal with processes of the form

√
AGt, or√

AtGt, whereGt is a Gaussian process and A (or At) is an independent nonnegative
random variable (or process) [33]. The PDF of GGBM is the fundamental solution
for the following evolution equation (cf., e.g., [18, 30]):

(4) u(t, x) = u0(x) +
α

βΓ(β)

∫ t

0

s
α
β−1

(
t
α
β − s

α
β

)β−1 1

2

∂2u(s, x)

∂x2
ds,

which is the time-stretched time-fractional heat equation. For α := β, equation (4)
reduces to the time-fractional heat equation of order β. Mathematical theory of
GGBM is actively developing nowadays [5, 9, 10, 11, 14, 18]. Moreover, another

GGBM-like process of the form
√
AGt is shown to have PDF which solves the

(1-dimensional) time- and space-fractional heat equation (2) (see [34]).
The fact that the time- and space-fractional heat equation (2) serves as the

governing equation for so different stochastic processes as a RSGP and a stable
Lévy process subordinated by an inverse stable subordinator motivetes the following
questions: What is in common between these two classes of processes? What other
classes of processes can be used to solve such type of evolution equations? How
general can be evolution equations allowing such types of stochastic solutions?

The present paper gives our answers to these questions. We consider a general
class of evolution equations of the form

u(t, x) = u0(x) +

∫ t

0

k(t, s)Lu(s, x)ds, t > 0, x ∈ Rd,(5)

lim
t↘0

u(t, x) = u0(x), x ∈ Rd,

where L is a pseudo-differential operator associated to a Lévy process and k(t, s),
0 < s < t < ∞, is a general kernel. This setting largely extends equations (2)
and (4). In Section 2, we present a general relation between the parameters of
the equation (5) and the distribution of any stochastic process, which provides a
stochastic solution of Feynman-Kac type. The proof of this relation is presented in
Section 3. More precisely, we derive a series representation in terms of the time ker-
nel k and the symbol −ψ of the pseudodifferential operator L for the characteristic
function of the one-dimensional marginals of any stochastic solution. We explain
how this series simplifies in the important case of homogeneous kernels which in-
cludes the kernel k(t, s) = (t − s)β−1/Γ(β) for time-fractional evolution equations
and, more generally, kernels corresponding to Saigo-Maeda fractional diffintegration
operators. The connection between Saigo-Maeda fractional diffintegration opera-
tors and positive random variables with Laplace transform given by Prabhakar’s
three parameter generalization of the Mittag-Leffler function is established in Sec-
tion 4. The results of Section 4 yield a stochastic representation for (5) with a
Saigo-Maeda kernel in terms of a randomly slowed down Lévy process (YAtβ )t>0,
where Y is a Lévy process with infinitesimal generator L, A is an independent ran-
dom variable with Laplace transform given by the three-parameter Mittag-Leffler
function, and β corresponds to the degree of homogeneity of the kernel. If Y has a

1The distribution of the random variable Yβ has Laplace transform Eβ(−·), where Eβ(z) :=∑∞
n=0

zn

Γ(βn+1)
is the the Mittag–Leffler function. For β ∈ (0, 1), the PDF of Yβ is given by the

Mainardi-Wright function Mβ(x) :=
∑∞
n=0

(−x)n

n!Γ(1−β−βn)
.
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stable distribution (e.g., in the case of a symmetric fractional Laplacian in space),
the randomly slowed down Lévy process can be replaced by a randomly scaled linear
fractional stable motion, providing a stochastic solution in terms of a self-similar
process with stationary increments, as demonstrated in Section 5.

2. Integro-differential evolution equations and stochastic processes
providing stochastic representations of their solutions

In this section, we state our main results on the existence of stochastic repre-
sentations for generalized evolution equations of the form (5), where L is a pseudo-
differential operator satisfying Assumption 2.1 below. We first consider general
time kernel functions k(t, s), 0 < s < t < ∞, and then specialize to the cases of
homogeneous kernels and convolution kernels, respectively.

2.1. General time kernels. We first fix some notation. Let

S(Rd) :=

{
ϕ ∈ C∞(Rd) : lim

|x|→∞
xα∂βϕ(x) = 0 ∀α, β ∈ Nd0

}
be the Schwartz space. We consider a continuous negative definite function2 (CNDF)
ψ : Rd → C and the pseudo-differential operator (L, S(Rd)) with symbol −ψ in the
Banach space C∞(Rd) of continuous functions vanishing at infinity with supremum-
norm ‖ϕ‖∞ := supx∈Rd |ϕ(x)| (cf. Example 4.1.16 of [20]), i.e. for each ϕ ∈ S(Rd)

Lϕ(x) :=
(
F−1 ◦ (−ψ) ◦ Fϕ

)
(x) ≡ −(2π)−d

∫
Rd

∫
Rd
eip·(x−q)ψ(p)ϕ(q)dqdp,(6)

where F is the Fourier transform such that Fϕ(p) = (2π)−d/2
∫
Rd e

−ipxϕ(x)dx.

Note that the operator (L, S(Rd)) is closable in the space C∞(Rd) and the closure
(L,Dom(L)), Dom(L) :=

{
ϕ ∈ C∞(Rd) : Lϕ ∈ C∞(Rd)

}
, generates a strongly

continuous semigroup on C∞(Rd). This semigroup (or the operator (L,Dom(L))
itself) corresponds to a Lévy process Y := (Yt)t>0 with charachteristic exponent ψ,
i.e. E [exp(ip · Yt)] = exp(−tψ(p)) (see, e.g. [3, 20]).

Assumption 2.1. We assume that the initial data u0 is an arbitrary function from
S(Rd) and that the symbol −ψ of the operator L satisfies ψ(0) = 0, i.e. there is no
killing term (i.e. c = 0) in the Lévy-Khintchine representation of ψ (and hence an
underlying Lévy process (Yt)t>0 has an infinite life time).

Concerning general kernels, we impose the following condition:

Assumption 2.2. We consider a Borel-measurable kernel k : (0,∞)×(0,∞)→ R
satisfying the following condition: ∃α ∈ [0, 1) and ∃ ε > 0 such that for each T > 0

KT := sup
0<t6T

tα−
1

1+ε ‖k(t, ·)‖L1+ε((0,t)) <∞.

Continuity of stochastic representations for (5) can be obtained under the fol-
lowing continuity assumption on the kernel:

2Each CNDF ψ : Rd → C is uniquely determined by its Lévy-Khintchine representation

ψ(p) = c− ip · b+
1

2
p ·Qp+

∫
Rd\{0}

(
1− eip·y +

ip · y
1 + |y|2

)
ν(dy),

where c > 0, b ∈ Rd, Q is a symmetric positive semidefinite d × d-matrix, ν is a measure on
Rd \ {0} such that

∫
Rd\{0}min(|y|2, 1)ν(dy) < ∞. Any such quadruple (c, b,Q, ν) defines a

CNDF. It follows that each CNDF ψ satisfies the estimate |ψ(p)| 6 Cψ(1 + |p|2) for all p ∈ Rd

and some Cψ > 0.
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Assumption 2.3. For a.e. s ∈ (0, 1) the mapping

(0,∞)→ R, t 7→ k(t, ts)

is continuous.

Let (Ω,F ,P) be a probability space and X := (Xt)t>0 be an Rd-valued stochastic
process on it such that X0 = 0 P-almost surely. We shall say that X provides a
stochastic solution to (5), if the function u defined by

u(t, x) = E [u0 (x+Xt)] , x ∈ Rd, t > 0,(7)

is a solution to (5) for every u0 ∈ S(Rd).
The following theorem characterizes, when such a stochastic solution exists.

Theorem 2.1. Let Assumptions 2.1, 2.2 hold. For each t > 0, the function Φ(t, ·) :
C→ C given by

Φ(t, λ) :=

∞∑
n=0

cn(t)λn,(8)

c0(t) := 1 ∀ t > 0 and

cn(t) :=

{ ∫ t
0
k(t, s)cn−1(s)ds, ∀ t > 0,

0 t = 0,
n ∈ N,(9)

is well-defined (i.e., the integrals in the recursion formula exist) and entire. More-
over:
(i) A stochastic solution to (5) exists, if and only if the function Φ(t,−ψ(·)) is
positive definite3 for all t > 0. In this case, (Xt)t>0 provides a stochastic solution
to (5), if and only if

E
[
eip·Xt

]
= Φ(t,−ψ(p)), p ∈ Rd, t > 0.

(ii) If the restriction of the function Φ(t,−·) on (0,∞) is completely monotone4 for
all t > 0, the process (YA(t))t>0 provides a stochastic solution to (5), where, for
each t > 0, A(t) is a non-negative random variable whose distribution PA(t) has

the Laplace transform given by Φ(t,−·), i.e.
∫∞

0
e−λaPA(t)(da) = Φ(t,−λ), and

(Yt)t>0 is a Lévy process with characteristic exponent ψ which is independent from
(A(t))t>0.

(iii) If, additionally, the characteristic exponent ψ is given by ψ := f ◦ ψ̃ for some

other CNDF ψ̃ and some Bernstein function5 (BF) f , then the process (ỸÃ(t))t>0

provides a stochastic solution to (5), where, for each t > 0, Ã(t) is a non-negative
random variable whose distribution PÃ(t) has the Laplace transform given by the

function Φ(t,−f(·)), and (Ỹt)t>0 is a Lévy process with charachteristic exponent ψ̃

which is independent from (Ã(t))t>0.

3By the Bochner theorem, a function f : Rd → C is the Fourier transform of a bounded
measure on Rd if and only if f is continuous and positive definite (see, e.g., [20]).

4A function f : (0,∞)→ [0,∞) is said to be a completely monotone function if (−1)nf (n)(x) >
0 for x > 0 and n ∈ N0. A function f is completely monotone if and only if it is the Laplace

transform of a measure on the half-line [0,∞) (Bernstein’s theorem).
5A continuous function f : (0,∞) → [0,∞) is said to be a Bernstein function (BF) if

(−1)nf (n)(x) 6 0 for x > 0 and n ∈ N. Note that a composition BF◦CNDF is again a CNDF,

applying the extension of Bernstein functions to the complex numbers with nonnegative real part
as decsribed in [39], Proposition 3.5.
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The proof of Theorem 2.1 as well as of the other results of this section will be
provided in Section 3.

The following remark briefly explains how to deal with time-stretched equations.

Remark 2.1. Consider the following class of time-stretchings (or “dressings”, cf.
Sec. 3.3 of [24]) G :=

{
g : [0,∞)→ [0,∞) such that g(τ) > 0 ∀ τ > 0, g(τ)↗∞ as

τ ↗∞, g(τ) =
∫ τ

0
ġ(θ)dθ for some ġ ∈ L1

loc([0,∞)) with ġ(τ) > 0 ∀ τ > 0
}

. Using
the change of variables t = g(τ), we obtain the analogue of Theorem 2.1 for the
whole class of time-stretched equations

v(τ, x) = u0(x) +

∫ τ

0

κg(τ, θ)Lv(θ, x)dθ, τ > 0, x ∈ Rd, g ∈ G,(10)

where the kernel κg is defined via

κg(τ, θ) := k(g(τ), g(θ))ġ(θ).(11)

Obviously, a function v solves evolution equation (10) if and only if v(τ, x) =
u(g(τ), x), where u solves the evolution equation (5) with the corresponding kernel
k. And v(τ, x) = E

[
u0

(
x+Xg(τ)

)]
solves (10), if (Xt)t>0 provides a stochastic

solution to (5).

We close this subsection by establishing a sufficient condition for continuity of
Φ and u in both variables.

Proposition 2.1. Suppose Assumptions 2.2 and 2.3 are in force. Then t 7→ cn(t)
is continuous on [0,∞) for every n ∈ N and Φ is continuous on [0,∞)×C. If, more-
over, Assumption 2.1 holds and if a process (Xt)t>0 provides a stochastic solution
to (5), then the solution u given by (7) is continuous.

2.2. Homogeneous kernels. We now explain how the general results simplify in
the case of a homogeneous kernel. Recall that a kernel function k is homogeneous
of degree β − 1, if

k(t, ts) = tβ−1k(1, s)

for every t ∈ (0,∞) and s ∈ (0, 1)

Theorem 2.2. Suppose k is homogeneous of degree β − 1 for some β ∈ (0, 1] and
k(1, ·) ∈ L1+ε((0, 1)) for some ε > 0. Then, Assumptions 2.2 and 2.3 are satisfied
and Φ takes the form

Φ(t, λ) = Φ̂(λtβ), t > 0, λ ∈ C,

where Φ̂(λ) =
∑∞
n=0 ĉnλ

n and

ĉn := ĉn−1

∫ 1

0

k(1, s)sβ(n−1)ds, n ∈ N, ĉ0 = 1.

Additionally, suppose that Assumption 2.1 holds and ψ = (ψ̃)γ for some γ ∈ (0, 1]

and a CNDF ψ̃, and denote by Ỹ a Lévy process with charachteristic exponent ψ̃.
If x 7→ Φ̂(−x) is completely monotone on (0,∞), then there is a nonnegative ran-

dom variable Ã independent of Ỹ with Laplace transform Φ̂(−(·)γ) and (ỸÃtβ/γ )t>0

provides a stochastic solution to (5).

We again postpone the proof to Section 3, but explain how to obtain conditionally
Gaussian representations for the fractional heat equation in time and space from
this result.

Example 2.1. The fractional time kernel

k(t, s) =
1

Γ(β)
(t− s)β−1,
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where Γ denotes the gamma function, is homogeneous of degree β − 1. Since∫ 1

0

k(1, s)sβ(n−1)ds =
Γ((n− 1)β + 1)

Γ(nβ + 1)
,

we obtain

ĉn =
1

Γ(nβ + 1)

and, thus,

Φ̂(λ) = Eβ(λ) :=

∞∑
n=0

λn

Γ(nβ + 1)

is the Mittag-Leffler function. Eβ(−·) is known to be completely monotone for
β ∈ (0, 1] since the work by Pollard [35], and we denote by Yβ a nonnegative random
variable which has Eβ(−·) as Laplace tansform. Suppose B is a d-dimensional
standard Brownian motion independent of Yβ . By Theorem 2.2 with γ = 1 and

Remark 2.1 with the time stretching g(t) = tα/β (α > 0), the solution to the
time-stretched time-fractional heat equation

u(t, x) = u0(x) +
α

βΓ(β)

∫ t

0

s
α
β−1

(
t
α
β − s

α
β

)β−1 1

2
∆u(s, x)ds

has the stochastic representation

E[u0(x+BYβtα)].

Similarly, for β ∈ (0, 1] and γ ∈ (0, 1) denote by Y(γ)
β a random variable with

Laplace transform Eβ(−(·)γ) independent of B. Then, by Theorem 2.2,

E
[
u0

(
x+BY(γ)

β tβ/γ

)]
provides a stochastic representation for the time-space fractional heat equation
(with symbol ψ(p) = |p|2γ/2γ)

u(t, x) = u0(x) +
1

Γ(β)

∫ t

0

(t− s)β−1

(
1

2
∆

)γ
u(s, x)ds.

As the distribution of a Gaussian random vector is determined by its mean and
covariance function, we may replace BYβtα in the stochastic representation for the
time-strectched fractional heat equation with α ∈ (0, 2) by a multivariate extension
of generalized grey Brownian motion

Xα,β
t :=

√
YβBα/2t

where BH is a d-dimensional fractional Brownian motion with Hurst parameter
H ∈ (0, 1] and independent of Yβ , thus obtaining the time-stretched time-fractional
heat equation as the governing equation for generalized grey Brownian motion also
in the multivariate case. We recall here that, for d = 1, a 1-dimensional fractional
Brownian motion is a centred Gaussian process with covariance structure

E
[
BHt B

H
s

]
=

1

2

(
t2H + s2H − |t− s|2H

)
, t, s ∈ [0,∞),

and that for d > 1 the components of BH are independent 1-dimensional fractional
Brownian motions with Hurst parameter H.

While this representation is appealing from a modeling point of view, because
fractional Brownian motion (and, thus, generalized grey Brownian motion) is self-
similar with stationary increments, simple representations in terms of a Brownian
motion such as BYβtα or

√
YβBtα are mathematically convenient as they allow to

adopt tools from martingale theory and from the theory of Markov processes.
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Analogously, for representing the solution to the time-space fractional heat equa-

tion, we may replace BY(γ)
β tβ/γ

by
√
Y(γ)
β B

β/(2γ)
t (for β 6 2γ), extending the sto-

chastic representation with stationary increments of [34] beyond the univariate case,

or by
√
Y(γ)
β Btβ/γ (without any additional restrictions on the relation between β

and γ).

Remark 2.2. The results of the previous example will be generalized in various
directions in Sections 4 and 5 below. In Section 4, we consider kernels corresponding
to Saigo-Maeda fractional diffintegration operators and demonstrate how Φ relates
to Prabhakar’s three parameter generalization of the Mittag-Leffler function in
this case. In Section 5 we discuss how to obtain stochastic representations with
stationary increments beyond the Gaussian case in terms of fractional stable motion.

2.3. Convolution kernels. For convolution kernels, we can derive the following
result from Theorem 2.1.

Theorem 2.3. Suppose k(t, s) = K(t− s), where K : (0,∞)→ R is continuous and
satisfies

|K(t)| 6Mtβ−1eγt, t > 0,

for some constants M,γ > 0 and β ∈ (0, 1]. Let (LK)(·) be the Laplace transform
of K. If (A(t))t>0 is a nonnegative stochastic process with a.s. RCLL paths such
that ∫ ∞

0

e−σtE
[
e−λA(t)

]
dt =

1

σ

1

1 + λ(LK)(σ)

for every λ > 0 and sufficiently large σ > σ0(λ), then Φ(t,−·) is CM for every
t > 0. If, moreover, Assumption 2.1 is in force, then (YA(t))t>0 provides a stochastic
solution to (5), where (Yt)t>0 is a Lévy process with charachteristic exponent ψ
independent of (A(t))t>0.

Example 2.2. (i) Suppose k(t, s) = K(t − s) is as in the previous theorem and
the Laplace transform of K equals 1/h for some BF h. Then, h is the Laplace
exponent of some Lévy subordinator (ηht )t>0. The corresponding inverse subordi-
nator (Eht )t>0 is defined via Eht := inf

{
s > 0 : ηhs > t

}
. It has been shown in [26]

(formula (3.14)) that (in the case when the Lévy measure ν of (ηht )t>0 satisfies
ν(0,∞) = ∞) the double Laplace transform of the distribution PEht (da) with re-
spect to both time and space variables is equal to∫ ∞

0

e−σtE
[
e−λE

h(t)
]
dt =

h(σ)

σ(h(σ) + λ)
=

1

σ

1

1 + λ(LK)(σ)
.

Hence, the previous theorem recovers the well-known result that E[u0(x+ YEh(t))]
solves (5), where Y is a Levy process with characteristic exponent ψ, see e.g. [23].

(ii) Let K(s) = sβ−1/Γ(β) for some β ∈ (0, 1). We, hence, again consider the
time-fractional evolution equation. Then,

(LK)(σ) =
1

σβ
, σ > 0,

where h(σ) := σβ is the Laplace exponent of the β-stable subordinator, recovering
the representation for the solution of time-fractional evolution equations in terms
of a Lévy process time-changed by an inverse stable subordinator, see e.g. [4]. We
have seen in Example 2.1 that in this situation the time change can alternatively
be done by A(t) = Yβtβ . This can also be verified by Theorem 2.3, because for
σ > 0 and λ > 0,∫ ∞

0

e−σtE[e−λYβt
β

]dt =

∫ ∞
0

e−σtEβ(−λtβ)dt =
σβ−1

σβ + λ
=

1

σ

1

1 + λ(LK)(σ)
,



STOCHASTIC SOLUTIONS OF GENERALIZED TIME-FRACTIONAL EQUATIONS 9

e.g. by Eq. (7.1) in [19].

Remark 2.3. Inverse subordinators are actively used to produce stochastic repre-
sentations for solutions of evolution equations of the form (5) with convolution ker-
nels also in the case when the generator of a Lévy process (L,Dom(L)) is substituted
by an arbitrary generator of a strongly continuous semigroup (see, e.g. [4, 23, 24]
as well as works of other authors). The statement (iii) of Theorem 2.1 also can be
generalized to this case applying different tools. This topic will be presented in our
next paper.

3. Proofs for Section 2

3.1. Proof of Theorem 2.1. The proof of Theorem 2.1 requires several auxiliary
results. We first connect the characteristic function of the 1-dimensional marginals
of any process X, which provides a stochastic solution to (5), to a family of Volterra
equations of second kind.

Proposition 3.1 (General Relation). Let Assumptions 2.1, 2.2 hold. Then (Xt)t>0

provides a stochastic solution to the evolution equation (5) if and only if

1− ϕXt(p) = ψ(p)

∫ t

0

k(t, s)ϕXs(p)ds, ∀ p ∈ Rd, ∀ t > 0,(12)

where ϕXt(p) := E
[
eip·Xt

]
is the characteristic function of Xt, t > 0.

Remark 3.1. The General Relation (12) provides an interrelation between the
parameters of the equation ψ, k and the stochastic process X.

Remark 3.2. If relation (12) holds for each p ∈ Rd then it holds in particular for
p = 0. Since ϕXt(0) = 1 for each t > 0, the right hand side of (12) must be zero at
p = 0 for each t > 0. It is possible only if ψ(0) = 0, i.e. there is no killing term in
the Lévy-Khintchine representation of ψ (and an underlying Lévy process has an
infinite life time).

Proof of Proposition 3.1. Let u(t, x) be given by (7). Then ‖u(t, ·)‖∞ 6 ‖u0‖∞ for
each t > 0. Moreover,

E
[∫

Rd
|u0(x+Xt)|dx

]
= E

[∫
Rd
|u0(y)|dy

]
= ‖u0‖L1(Rd) <∞

since u0 ∈ S(Rd) ⊂ L1(Rd). Therefore, we have by the Fubini theorem∫
Rd
|u(t, x)|dx 6

∫
Rd
E [|u0(x+Xt)|] dx = E

[∫
Rd
|u0(x+Xt)|dx

]
= ‖u0‖L1(Rd) <∞,

i.e. u(t, ·) ∈ L1(Rd) for all t > 0 and ‖u(t, ·)‖L1(Rd) 6 ‖u0‖L1(Rd). Hence we can
apply Fourier transform to u(t, ·) with respect to the space variable. And we have
by the Fubini theorem:

F [u(t, ·)] (p) = (2π)−d/2
∫
Rd
e−ix·pE [u0(x+Xt)] dx

= E
[
(2π)−d/2

∫
Rd
e−i(y−Xt)·pu0(y)dy

]
= F[u0](p)ϕXt(p).(13)

Note that since u(t, ·) ∈ L1(Rd), we have F [u(t, ·)] ∈ C∞(Rd) for all t > 0. Since
|ϕXt(p)| 6 1 for all p ∈ Rd, t > 0, we have

|F[u(t, ·)](p)| 6 |F[u0](p)| ∀ p ∈ Rd, t > 0.(14)

Since u0 ∈ S(Rd) then also F[u0] ∈ S(Rd). Hence F[u(t, ·)] is a bounded func-
tion which decays as fast as F[u0] when |p| → ∞ by (14). Therefore, u(t, ·) is
a smooth function for each t > 0 by the properties of the Fourier transform.



10 CHRISTIAN BENDER AND YANA A. BUTKO

Moreover lim|x|→∞ u(t, x) = 0 for all t > 0 by the Lebesgue theorem on dom-

inated convergence. Hence u(t, ·) ∈ C∞(Rd). Further, again by (14), we have
−ψF[u(t, ·)] ∈ L1(Rd) and is a bounded function too, since a symbols grows at
most quadratically. Hence F−1 ◦ψ ◦F[u(t, ·)] ∈ C∞(Rd) by properties of the Fourier
transform. So, u(t, ·) ∈ Dom(L) for all t > 0.

The integral
∫ t

0
k(t, s)ϕXt(p)ds is finite for all t > 0 due to Assumption 2.2 since

|ϕXt(p)| 6 1 for all p ∈ Rd and t > 0. Analogously, the integrals
∫ t

0
k(t, s)Lu(s, x)ds

and
∫ t

0
k(t, s)ψ(p)F[u(s, ·)](p) ds are well-defined and finite for all t > 0 by Assump-

tion 2.2, equality (13) and estimate (14) since −ψF[u0] ∈ L1(Rd) and is a bounded
function. Therefore, both sides of equation (5) make sense for u given by (7). Fur-
ther, it holds by Fubini theorem (since |ψF[u(t, ·)]| is bounded and decays fast at
infinity) and by (13)∫ t

0

k(t, s)Lu(s, x)ds =

∫ t

0

k(t, s)F−1 [(−ψ)F[u(s, ·)]] (x)ds

= F−1

[∫ t

0

k(t, s)(−ψ)F[u(s, ·)]ds
]

(x) = F−1

[
(−ψ)F[u0]

∫ t

0

k(t, s)ϕXsds

]
(x).

Assume now that X is such that u given by (7) solves equation (5). Applying
Fourier tranform to both sides of equation (5) we obtain by (13) for p ∈ Rd, t > 0

F[u0](p)ϕXt(p) = F[u0](p)− ψ(p)F[u0](p)

∫ t

0

k(t, s)ϕXs(p)ds.(15)

Since u0 can be arbitrary function from S(Rd), the above equality (15) is equivalent
to (12). Vice versa, if X is such that ϕXt solves equation (12), then equation (15)
holds for any u0 ∈ S(Rd). And hence u given by (7) solves equation (5). �

We now discuss the family of Volterra equations in the General Relation on the
space Bb([0, T ],C) of bounded Borel-measurable complex-valued functions defined
on the segment [0, T ], T > 0. It is a Banach space with the supremum-norm ‖ · ‖∞.

Lemma 3.1. Let Assumption 2.2 hold. Then for any λ ∈ C and any T > 0 there
exists nT ∈ N such that the nT -th power of the operator Rλ : Bb([0, T ],C) →
Bb([0, T ],C),

(Rλg) (t) :=

{
1− λ

∫ t
0
k(t, s)g(s)ds, t ∈ (0, T ],

1, t = 0,
g ∈ Bb([0, T ],C).(16)

is a strict contraction.

Proof. Let us fix λ ∈ C and T > 0. Due to Assumption 2.2, it holds for any
g ∈ Bb([0, T ],C), n ∈ N, and any t ∈ (0, T ]

t(α−1)n

∣∣∣∣∫ t

0

k(t, s)g(s)ds

∣∣∣∣
6

(
sup

0<s6T
|s(α−1)(n−1)g(s)|

)
t(α−1)n

∫ t

0

|k(t, s)|s(1−α)(n−1)ds

6

(
sup

0<s6T
|s(α−1)(n−1)g(s)|

) ‖k(t, ·)‖L1+ε([0,t])t
α−1tε/(1+ε)

((1− α)(n− 1)(1 + 1/ε) + 1)ε/(1+ε)

6
KT

((1− α)(n− 1)(1 + 1/ε) + 1)ε/(1+ε)

(
sup

0<s6T
|s(α−1)(n−1)g(s)|

)
.(17)

Choosing n = 1, we have ‖Rλg‖∞ 6 1 + KT |λ|T 1−α‖g‖∞ < ∞, i.e. the operator
Rλ maps Bb([0, T ],C) into itself. Since for all f , g ∈ Bb([0, T ],C) and all t ∈ [0, T ]

|Rλg(t)−Rλf(t)| 6 |λ|KTT
1−α‖g − f‖∞,
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Rλ is a continuous operator on Bb([0, T ],C). Further, for each n ∈ N and t ∈ (0, T ],
we obtain due to (17)

t(α−1)(n+1)
∣∣Rn+1

λ g(t)−Rn+1
λ f(t)

∣∣
=t(α−1)(n+1)|λ|

∣∣∣∣∫ t

0

k(t, s)(Rnλg(s)−Rnλf(s))ds

∣∣∣∣
6

KT |λ|
((1− α)n(1 + 1/ε) + 1)ε/(1+ε)

sup
0<s6T

|s(α−1)n(Rnλg(s)−Rnλf(s))|.

Proceeding inductively, we arrive at

sup
06t6T

∣∣Rn+1
λ g(t)−Rn+1

λ f(t)
∣∣

6(|λ|KTT
1−α)n+1

n∏
l=1

(
l(1− α)(1 + 1/ε) + 1

) −ε
1+ε ‖g − f‖∞ .(18)

Since the factor in front of ‖g − f‖∞ tends to 0 as n → ∞, there exists nT ∈ N
such that RnTλ is a strict contraction on Bb([0, T ],C). �

Corollary 3.1. Let Assumption 2.2 hold. Then, for each λ ∈ C, there exists a
unique solution Φ(·,−λ) ∈ Bb([0, T ],C), ∀ T > 0, of the following Volterra equation
of the second kind

Φ(t,−λ) = 1− λ
∫ t

0

k(t, s)Φ(s,−λ)ds, t > 0.(19)

Moreover, limt↘0 Φ(t,−λ) = 1 locally uniformly with respect to λ ∈ C, Φ(t, ·) is an
entire function for all t > 0 and equalities (8) and (9) hold.

Proof. Fix any T > 0. By the Banach fix-point theorem, there exists exactly one
fixed point Φ(·,−λ) ∈ Bb([0, T ],C) of the strict contraction RnTλ due to Lemma 3.1.
Hence Φ(·,−λ) is also the unique fixed point of the operator Rλ, i.e. the equa-
tion (19) has the unique solution Φ(·,−λ) ∈ Bb([0, T ],C) which can be obtained by
the Picard iterations

Φ(t,−λ) = lim
n→∞

Φn(t,−λ), t ∈ [0, T ],

where

Φ0(t,−λ) := 1, t ∈ [0, T ],

Φn(t,−λ) := (RλΦn−1(·,−λ)) (t) =

=

{
1− λ

∫ t
0
k(t, s)Φn−1(s,−λ)ds, t ∈ (0, T ],

1, t = 0,
n ∈ N.

Using auxilliary functions φ0(t, λ) := 1 and φn(t, λ) := Φn(t,−λ)−Φn−1(t,−λ) for

n ∈ N (i.e. φn(t, λ) = −λ
∫ t

0
k(t, s)φn−1(s, λ)ds for t ∈ (0, T ]), we get

Φ(t,−λ) =

∞∑
n=0

φn(t, λ) =

∞∑
n=0

cn(t)(−λ)n,

where the coefficients cn(t), n ∈ N, t ∈ [0, T ], are given by (9). Therefore, for
each λ ∈ C and each T > 0, the function Φ, given by (8), belongs to Bb([0, T ],C).
Therefore, for all t > 0, the series

∑∞
n=0 cn(t)λn converges in C, i.e. the function

Φ(t, ·) is an entire function for all t > 0. Moreover, we have for each n ∈ N and
each t ∈ [0, T ], by iterating (17) analogously to the derivation of (18),

|cn(t)| 6 Kn
TT

n(1−α)
n−1∏
l=1

[(
l(1− α)(1 + 1/ε) + 1

) −ε
1+ε

]
→ 0, T → 0,
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and for any R > 0 and any λ ∈ {z ∈ C : |z| 6 R}

|Φ(t,−λ)| 6
∞∑
n=0

Rn|cn(t)|

6
∞∑
n=0

RnKn
TT

n(1−α)
n−1∏
k=1

[(
k(1− α)(1 + 1/ε) + 1

) −ε
1+ε

]
<∞.

Hence, we have lim
t↘0
|Φ(t,−λ)| = 1 and lim

t↘0
Φ(t,−λ) = 1 locally uniformly w.r.t.

λ ∈ C. �

We are now ready to present the proof of Theorem 2.1.

Proof of Theorem 2.1. (i) By Corollary 3.1, the family of Volterra equations for
the General Relation (12) has Φ(t,−ψ(p)) as its unique locally bounded solution,
where Φ is given by (8), (9). Thus, by Proposition 3.1, (Xt)t>0 provides a stochastic
solution to the evolution equation (5), if and only if ϕXt(·) = Φ(t,−ψ(·)) holds for
every t > 0. Now, if a stochastic solution exists, then Φ(t,−ψ(·)) is positive definite
for every t > 0, since every characteristic function has this property. On the other
hand, if Φ(t,−ψ(·)) is a positive definite function, then, for each t > 0, there exists

a random variable X̃t such that Φ(t,−ψ(·)) = ϕX̃t (recalling that Φ(t, 0) = 1).

We may now choose any stochastic process (Xt)t>0 such that Xt has the same

distribution as X̃t for every t > 0. E.g. one can construct an independent family
(Xt)t>0 with these one-dimensional marginal distributions on an infinite product
space. Then, ϕXt(·) = Φ(t,−ψ(·)) for every t > 0, and, hence, a stochastic solution
exists.

(ii) Let the restriction of Φ(t,−·) on (0,∞) be a completely monotone function for
each t > 0. Hence, for each t > 0, there exists a non-negative random variable A(t)
whose distribution PA(t) has Laplace transform Φ(t,−·) by the Bernstein theorem.
Let (Yt)t>0 be a d-dimensional Lévy process with characteristic exponent ψ which
is independent from (A(t))t>0. Then we have

Φ(t,−ψ(p)) =

∫ ∞
0

e−aψ(p)PA(t)(da) =

∫ ∞
0

E
[
eip·Ya

]
PA(t)(da)

= E
[
eip·YA(t)

]
= ϕYA(t)

(p).

Therefore, the function Φ(t,−ψ(·)) is positive definite and (YA(t))t>0 provides a
stochastic solution to (5) by statement (i) of Theorem 2.1.

(iii) Let now, additionally, the symbol ψ be given by ψ := f ◦ ψ̃ for some other

CNDF ψ̃ and some Bernstein function f . Then the function Φ(t,−f(·)) is com-
pletely monotone as a composition CMF◦BF. Hence, for each t > 0, there exists

a non-negative random variable Ã(t) whose distribution PÃ(t) has Laplace trans-

form Φ(t,−f(·)). Taking a d-dimensional Lévy process (Ỹt)t>0 with characteristic

exponent ψ̃ which is independent from (Ã(t))t>0, we obtain

Φ(t,−ψ(p)) = Φ(t,−f(ψ̃(p))) =

∫ ∞
0

e−aψ̃(p)PÃ(t)(da)

=

∫ ∞
0

E
[
eip·Ỹa

]
PÃ(t)(da) = E

[
eip·ỸÃ(t)

]
= ϕỸÃ(t)

(p),

and we may conclude as in (ii). �

Remark 3.3. Let Φ and f be as in Theorem 2.1 (iii). Then the completely mono-
tone function Φ(t,−f(·)) extends to an analytical function in Π+ := {z ∈ C :
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Re z > 0}. This function does not have to be analytical in the whole complex

plane. It follows from Corollary 3.1 (with λ = f(z)) that Φ̃(t, ·) := Φ(t,−f(·))
solves the following version of Volterra equation (19):

Φ̃(t, z) = 1− f(z)

∫ t

0

k(t, s)Φ̃(s, z)ds, t > 0, z ∈ Π+.

Remark 3.4. Suppose that Assumptions 2.1, 2.2 are in force. If (Xt)t>0 provides
a stochastic solution to (5), then by Theorem 2.1 and (13),

E [u0 (x+Xt)] = F−1
[
F[u0](·)Φ(t,−ψ(·))

]
(x).

The function on the right-hand side may be well-defined, even if no stochastic
solutions exists. Adapting the arguments in the proof of Proposition 3.1 in the
obvious way, one can e.g. show that

u(t, x) := F−1
[
F[u0](·)Φ(t,−ψ(·))

]
(x)

solves (5) for every initial condition u0 ∈ S(Rd), if Φ(t,−ψ(p)) satisfies a polynomial
growth condition in p which is locally uniform in t.

3.2. Proof of Proposition 2.1. Continuity of cn at t = 0 has already been shown
in the proof of Corollary 3.1. We next prove inductively that cn is continuous on
(0,∞). The claim is trivial for the constant function c0. We write

cn(t) = t

∫ 1

0

k(t, ts)cn−1(st)ds,

and show that cn is continuous on (1/T, T ) for every T > 0. In view of the induction
hypothesis and the continuity assumption on k, we only need to argue that we can
interchange limit (in the t-variable) and integration in this expression. To this end,
we apply the de la Valée-Poussin criterion for uniform integrability of the family
(k(t, ts)cn−1(st))t∈(1/T,T ) for arbitrary T > 0. Thanks to Assumption 2.1, with the
same choice of ε, α as there,

sup
1/T6t6T

∫ 1

0

|k(t, ts)cn−1(st)|1+εds

6 sup
06u6T

|cn−1(u)|1+ε sup
1/T6t6T

t−1tα(1+ε)

∫ t

0

|k(t, s)|1+εds Tα(1+ε)

6 Tα(1+ε) sup
06u6T

|cn−1(u)|1+εK1+ε
T <∞.

This argument finishes the proof of continuity of cn. Recall that

Φ(t, λ) =

∞∑
n=0

cn(t)λn.

We have shown that all the summands are continuous in (t, λ). Now, for every
T > 0, t ∈ [0, T ] and λ ∈ C with |λ| 6 T ,

|cn(t)λn| 6 Kn
TT

n(2−α)
n−1∏
l=1

[(
l(1− α)(1 + 1/ε) + 1

) −ε
1+ε

]
,

by the proof of Corollary 3.1, and the right-hand side is summable. We may thus
interchange limits in the (t, λ)-variables and summation, yielding the continuity of
Φ. For the continuity of the function u, recall that by (13)

u(t, x) = F−1[F[u0](·)ϕXt(·)](x),
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and thus continuity is inherited from Φ as a consequence of the dominated conver-
gence theorem with integrable majorant |F[u0]|, since characteristic functions are
bounded by 1.

3.3. Proof of Theorem 2.2. Suppose that k is homogeneous of degree β − 1 for
some β ∈ (0, 1]. Since k(t, ts) = tβ−1k(1, s), Assumption 2.3 is obviously satisfied.
We next check Assumption 2.2. To this end note that

t−1/(1+ε)‖k(t, ·)‖L1+ε((0,t)) = t−1/(1+ε)

(
t

∫ 1

0

|k(t, ts)|1+εds

)1/(1+ε)

= tβ−1‖k(1, ·)‖L1+ε((0,1)).

Hence, Assumption 2.2 is satisfied with the choice α = 1− β ∈ [0, 1).
We next observe, inductively, that cn(t) = cn(1)tnβ , because

cn(t) =

∫ t

0

k(t, s)cn−1(s)ds = tβ
∫ 1

0

k(1, s)cn−1(ts)ds

= tnβ
∫ 1

0

k(1, s)cn−1(s)ds = tnβcn(1).

Let ĉn = cn(1). Then, by the previous considerations, ĉn satsifies the recursion

ĉn = ĉn−1

∫ 1

0

k(1, s)sβ(n−1)ds, ĉ0 = 1

and

Φ(t, λ) =

∞∑
n=0

ĉn(tβλ)n = Φ̂(tβλ).

Assume now that the restriction of the function Φ̂(−·) on (0,∞) is completely

monotone. Then, for γ ∈ (0, 1], x 7→ Φ̂(−xγ) is completely monotone on (0,∞),
because (·)γ is a Bernstein function. Thus, there is a nonnegative random variable

Ã with Laplace transform given by Φ̂(−(·)γ). Then, for every t > 0, the Laplace

transform of Ãtβ/γ is given by

E
[
e−λÃt

β/γ
]

= Φ̂(−λγtβ) = Φ(t,−λγ), λ > 0.

Now, Theorem 2.1, (iii), applies.

3.4. Proof of Theorem 2.3. We first note that Assumption 2.2 is satisfied with
α = 1− β ∈ [0, 1) for any sufficiently small ε > 0, because

sup
0<t6T

tα−
1

1+ε ‖k(t, ·)‖L1+ε((0,t))

6 MeγT sup
0<t6T

(
tα−

1
1+ε

(∫ t

0

(t− s)−α(1+ε)ds

)1/(1+ε)
)

=
MeγT

(1− α(1 + ε))1/(1+ε)
.

We next prove inductively that

e−γt|cn(t)| 6 (MΓ(β)tβ)n
1

Γ(nβ + 1)
.
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This is obvious for n = 0 and the induction step follows by

e−γt|cn(t)| 6
∫ t

0

M(t− s)β−1e−γs|cn−1(s)|ds

6 MnΓ(β)n−1 1

Γ((n− 1)β + 1)

∫ t

0

(t− s)β−1sβ(n−1)ds

= MnΓ(β)n−1tβn
1

Γ((n− 1)β + 1)

∫ 1

0

(1− s)β−1sβ(n−1)ds

= (MΓ(β)tβ)n
1

Γ(nβ + 1)
.

Then, for every λ ∈ C, t > 0,

∞∑
n=0

|cn(t)||λ|n 6 eγtEβ(MΓ(β)|λ|tβ) 6 const. e(γ+(MΓ(β)|λ|)1/β)t

using the asymptotics for the Mittag-Leffler function, which can be found e.g. in
[19], Eq. (6.4). We conclude that for every λ > 0 and σ > γ + (MΓ(β)|λ|)1/β , the
Laplace transform of Φ(·,−λ) exists and can be interchanged with the summation
(by Fubini’s theorem with Lebesgue measure and counting measure), i.e.,

(LΦ(·,−λ))(σ) =

∞∑
n=0

(Lcn)(σ)(−λ)n.

By the convolution theorem for the Laplace transform and induction

(Lcn)(σ) = (LK)(σ)(Lcn−1)(σ) =
1

σ
[(LK)(σ)]n

for σ > γ, since (L1)(σ) = σ−1. Thus, for σ > γ + (MΓ(β)|λ|)1/β ,

(LΦ(·,−λ))(σ) =
1

σ

1

1 + λ(LK)(σ)
.

Since Φ inherits continuity from K by Proposition 2.1 and t 7→ E
[
e−λA(t)

]
is RCLL

by dominated convergence, Lerch’s uniqueness theorem implies that

Φ(t,−λ) = E
[
e−λA(t)

]
for every λ > 0 and t > 0. Hence, Φ(t,−·) is CM for every t > 0 and part (ii) of
Theorem 2.1 applies for the assertion concerning the stochastic solution.

4. Stochastic solutions for generalized time-fractional evolution
equations with Saigo-Maeda operators

In this section, we consider generalized time-fractional evolution equations of
the form (5), where the kernel k is the kernel of some Saigo-Maeda operator of
generalized fractional calculus. Saigo-Maeda operators provide extensions of the
well-known operators of fractional calculus and include the Riemann-Liouville, Weil,
Erdélyi-Kober and Saigo operators as special cases. We construct the function Φ
correspondig to such kernel k and discuss stochastic solutions in terms of randomly
slowed-down Lévy processes of the considered evolution equations.

Let us first recall that Appell’s third generalization F3 of the Gauss hypergeo-
metric function is defined in the following way:

F3 (α, α′, β, β′, γ, x, y) =
∑
m,n>0

(α)m(β)m(α′)n(β′)n
(γ)m+nn!m!

xmyn,(20)
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where α, α′, β, β′, γ ∈ C, γ /∈ −N, and the general Pochhammer symbol (λ)ν is
defined as follows: (0)0 := 1 and

(λ)ν :=

{
1, ν = 0, λ ∈ C \ {0}
λ(λ− 1) · . . . · (λ+ n− 1), ν = n ∈ N, λ ∈ C.

The series in (20) converges for |y|, |x| < 1 and can be analytically extended to
reals x, y < 1.

Theorem 4.1. Let b ∈ (0, 1], a > 0, µ > −1, and ν > max{−b,−aµ}. Consider
the kernel

k(t, s) :=
a

Γ(b/a)
(ta − sa)

b
a−1ta−νsν−1F3

(
ν

a
− 1,

b

a
, 1, µ,

b

a
, 1−

(s
t

)a
, 1−

(
t

s

)a)
,

(21)

where 0 < s < t. Then the kernel k is homogeneous of degree b − 1 and satisfies
k(1, ·) ∈ L1+ε((0, 1)) for some ε > 0. The corresponding function Φ̂ in Theorem 2.2
has the following form:

Φ̂(z) = Γ(λ2)Eλ3

λ1,λ2
(z),(22)

where

λ1 =
b

a
, λ2 =

ν

a
+ µ, λ3 = 1 +

ν − a
b

,(23)

and Eλ3

λ1,λ2
is the three parameter Mittag-Leffler (or Prabhakar) function6

Eλ3

λ1,λ2
(z) :=

∞∑
n=0

(λ3)n
Γ (λ1n+ λ2)n!

zn.

Proof. First note that

k(t, ts) =
a

Γ(b/a)
tb−1(1− sa)b/a−1sν−1F3(ν/a− 1, b/a, 1, µ, b/a, 1− sa, 1− 1/sa),

and, thus, k is homogeneous of degree b− 1. Let

κ(s) :=
1

Γ(b/a)
(1−s)b/a−1s(ν−1)/aF3(ν/a−1, b/a, 1, µ, b/a, 1−s, 1−1/s), 0 < s < 1.

Then, k(t, ts) = tb−1k(1, s) = tb−1aκ(sa). In particular,

‖k(1, ·)‖1+ε
L1+ε((0,1)) =

∫ 1

0

(aκ(sa))1+εds = αε
∫ 1

0

κ(s)1+εs1/a−1ds

Inserting the definition of κ, the integral converges, if and only if the integral∫ 1

0

(1−s)(b/a−1)(1+ε)s(1+ε)(ν−1)/a+1/a−1F3(ν/a−1, b/a, 1, µ, b/a, 1−s, 1−1/s)1+εds

does. Recall the asymptotic behavior (see, e.g., Lemma 3.1.2 in [37])

F3(ν/a− 1, b/a, 1, µ, b/a, 1− s, 1− 1/s) = O
(

(1− s)min{0,1− ba}
)
, s→ 1,

which shows convergence at s = 1 for small ε > 0, and

F3(ν/a− 1, b/a, 1, µ, b/a, 1− s, 1− 1/s) = O
(
smin{ ba ,µ,

b−ν
a }
)
, s→ 0,

which implies convergence at s = 0 for small ε due to our conditions on the param-
eters a, b, µ, ν.

6The function Eλ3
λ1,λ2

is well-defined on the whole C for Reλ1 > 0 and is an entire function.
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Let us now determine the corresponding function Φ. The recursion formula for
the coefficients ĉn’s (initialized with ĉ0 = 1) reads

ĉn = ĉn−1

∫ 1

0

k(1, s)s(n−1)bds = ĉn−1a

∫ 1

0

κ(sa)(sa)(n−1)b/ads

= ĉn−1

∫ 1

0

κ(θ)θ(n−1)b/a+1/a−1dθ.

Then,

ĉn
ĉn−1

=
1

Γ(b/a)

∫ 1

0

θ
nb+ν
a −1(1− θ) ba−1θ−

b
aF3

(
ν

a
− 1,

b

a
, 1, µ,

b

a
, 1− θ, 1− 1

θ

)
dθ.

Recall that the Saigo-Maeda operator Iα,α
′,β,β′,γ

0+ is defined in the following way
(see, e.g., Def. 3.2.1. in [37]):(

Iα,α
′,β,β′,γ

0+ f
)

(x) :=

=
x−α

Γ(γ)

∫ x

0

(x− θ)γ−1θ−α
′
F3

(
α, α′, β, β′, γ, 1− θ

x
, 1− x

θ

)
f(θ)dθ.

Hence we have with f(θ) := θ
nb+ν
a −1

ĉn
ĉn−1

=
(
I
ν
a−1, ba ,1,µ,

b
a

0+ f
)

(1).

Note that the integral Iα,α
′,β,β′,γ

0+ f converges for f(θ) := θρ−1 and it holds(
Iα,α

′,β,β′,γ
0+ f

)
(x) =

Γ(ρ)Γ(ρ+ γ − α− α′ − β)Γ(ρ− α′ + β′)

Γ(ρ+ β′)Γ(ρ+ γ − α− α′)Γ(ρ+ γ − α′ − β)

in the case when γ > 0 and ρ > max{0, α+α′+β−γ, α′−β′} (cf., e.g., Example 3.2.1
in [37]). Our choice of parameters

α =
ν

a
− 1, α′ = γ =

b

a
, β = 1, β′ = µ, ρ =

nb+ ν

a
, n ∈ N,

leads, therefore, to the conditions

(24) a, b > 0, b > −ν, ν > −aµ,

which we have postulated in the statement of Theorem 4.1. Assuming (24), we,
thus, obtain, on the one hand,

ĉn
ĉn−1

=
Γ(nb+νa )Γ(nba )Γ( (n−1)b+ν

a + µ)

Γ(nb+νa + µ)Γ(nba + 1)Γ(nb+νa − 1)
=

Γ( (n−1)b+ν
a + µ)

Γ(nb+νa + µ)
·
nb+ν
a − 1
nb
a

=
Γ( (n−1)b+ν

a + µ)

Γ(nb+νa + µ)
·

(n− 1) + 1 + ν−a
b

n
.

On the other hand, it holds for the coefficients of the three parameter Mittag-Leffler
function Eλ3

λ1,λ2
:(

(λ3)n
Γ(λ1n+ λ2)n!

)
/

(
(λ3)n−1

Γ(λ1(n− 1) + λ2)(n− 1)!

)
=

Γ(λ1(n− 1) + λ2)

Γ(λ1n+ λ2)
· (n− 1) + λ3

n
.

Since Eλ3

λ1,λ2
(0) = 1

Γ(λ2) , we obtain with λ1, λ2, λ3 as in (23)

Φ̂(z) = Γ(λ2)Eλ3

λ1,λ2
(z), z ∈ C.

�



18 CHRISTIAN BENDER AND YANA A. BUTKO

Remark 4.1. Note that sufficient conditions for the complete monotonicity of the
function z 7→ Γ(λ2)Eλ3

λ1,λ2
(−z) are given (see, e.g., [17] or the Appendix in [2]) by

0 < λ1 6 1, 0 < λ3 6
λ2

λ1
.

This implies additional assumptions on parameters a, b, µ, ν:

b 6 a, ν > a− b, µ >
b

a
− 1.

Hence the following statement is a direct consequence of Theorem 2.1, Theo-
rem 4.1, Remark 2.1 and Remark 4.1.

Corollary 4.1. Let b ∈ (0, 1], a > b, µ > b
a − 1, ν > max {a− b,−aµ}. Let the

kernel k be given by (21), g ∈ G from Remark 2.1 and the corresponding kernel
κg be given by (11). Let Assumption 2.1 hold. Let A denote a non-negative ran-

dom variable, whose distribution has Laplace transform z 7→ Γ(λ2)Eλ3

λ1,λ2
(−z) with

parameters λ1, λ2, λ3 as in (23). Let (Yt)t>0 be a Rd-valued Lévy process with
generator (L,Dom(L)) which is independent of A. Then

v(τ, x) := E
[
u0

(
x+ YAgb(τ)

)]
(25)

solves the corresponding generalized time-fractional evolution equation (10).

Example 4.1. (i) Let us consider the case λ3 = 1, i.e. ν = a. Then Eλ3

λ1,λ2
reduces

to the two parameter Mittag-Leffler function Eλ1,λ2
and we have

Φ(t, z) = Γ(µ+ 1)E b
a ,µ+1(ztb).

Further,

F3(0, b/a, 1, µ, b/a, 1− (s/t)a, 1− (t/s)a) =

∞∑
n=0

(µ)n
n!

(1− (t/s)a)
n

= (s/t)µa.

And the corresponding kernel k simplifies to

k(t, s) =
a

Γ(b/a)
(ta − sa)b/a−1t−aµsa(µ+1)−1.

(ii) Let us consider the case λ2 = λ3 = 1, i.e. ν = a and µ = 0. Then Eλ3

λ1,λ2

reduces to the classical Mittag-Leffler function Eλ1
and we have

Φ(t, z) = E b
a

(ztb).

The corresponding kernel k simplifies to

k(t, s) =
a

Γ(b/a)
(ta − sa)b/a−1sa−1.

Let now β ∈ (0, 1], α ∈ (0, 2). Choosing b := α and a := α
β we obtain the kernel

of the governing equation (4) of the GGBM and Φ(t, z) = Eβ(ztα). If additionally
α = β, we get k(t, s) = 1

Γ(β) (t− s)β−1 and Φ(t, z) = Eβ(ztβ), cp. Example 2.1.

Remark 4.2. It follows immediately from Theorem 2.1, Theorem 4.1 and Corol-

lary 3.1, that the three parameter Mittag-Leffler function E
1+ ν−a

b
b
a ,

ν
a+µ

with b ∈ (0, 1],

a > 0, µ > −1, and ν > max{−b,−aµ} satisfies the following relation (which is
nothing else but the Volterra equation (19)):

Γ

(
b

a

)
E

1+ ν−a
b

b
a ,

ν
a+µ

(
tbz
)

= 1 + az

t∫
0

(ta − sa)
b
a−1ta−νsν−1×

× F3

(
ν

a
− 1,

b

a
, 1, µ,

b

a
, 1−

(s
t

)a
, 1−

(
t

s

)a)
E

1+ ν−a
b

b
a ,

ν
a+µ

(
sbz
)
ds, t > 0, z ∈ C.
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The special case of this relation for the classical Mittag-Leffler function is well-
known and can be found, e.g. in Lemma 3.24 of [16].

5. Stochastic solutions with stationary increments

Some of the stochastic solutions, that we derived, (e.g., the ones in Theorem
2.2) were provided by randomly slowed-down Lévy processes (YAtβ )t>0, where the
positive random variable A is independent of the Lévy process Y . These processes
may lack nice statistical properties which are appealing from a modeling point of
view such as stationarity of the increments (which only holds for β = 1) or self-
similarity. Extending results of [34] beyond the Gaussian case by the techniques
explained in Example 2.1 above, we derive in this section stochastic solutions in
terms of linear fractional stable motion. For the sake of exposition we restrict
ourselves to one space dimension.

We first need to fix some notation. For the index of stability δ ∈ (0, 2] and for
the skewness parameter ρ ∈ [−1, 1] (with the restriction to the ‘symmetric case’
ρ = 0 for δ = 1), we consider the symbol −ψδ,ρ, where

ψδ,ρ(p) = |p|δ(1− iρsign(p) tan(πδ/2)), p ∈ R,

covering the fractional Laplacian in space. The corresponding stable random mea-
sure Mδ,ρ is a σ-additive mapping from the Borel field B on R to the space of
real-valued random variables which is randomly scattered in the sense that

(Mδ,ρ(A1), . . . ,Mδ,ρ(An))

are independent, whenever A1, . . . , An are pairwise disjoint, and such that Mδ,ρ(A)
follows a stable law; precisely,

E[eipMδ,ρ(A)] = e−Leb(A)ψδ,ρ(A)(p), p ∈ R, A ∈ B.

Here Leb denotes the Lebesgue measure on the real line. More details on stable
random measures and integration with respect to them can be found in Chapter 3
of [36]. The stable Lévy motion corresponding to the characteristic exponent ψδ,ρ
can be realized as

Y
(δ,ρ)
t = Mδ,ρ([0, t]), t > 0.

Note that, in the Gaussian case δ = 2, the normalization is chosen such that

( 1√
2
Y

(2,ρ)
t )t>0 is a standard Brownian motion for any choice of ρ ∈ [−1, 1].

We may now consider a linear fractional Lévy motion of the form

Y
(δ,ρ,H)
t =

1

Kδ,H

∫
R

(
(t− x)

H−1/δ
+ − (−x)

H−1/δ
+

)
Mδ,ρ(dx), t > 0

for H ∈ (0, 1) \ {1/δ}, which contains the Mandelbrot-Van Ness representation for

fractional Brownian motion as special case for δ = 2 (up to the factor 1/
√

2 as
explained above). Here, the normalizing constant is

Kδ,H =

(∫ ∞
0

∣∣∣(1 + x)H−1/δ − xH−1/δ
∣∣∣δ dx+

1

δH

)1/δ

.

By Proposition 7.4.2 in [36], linear fractional stable motion (Y
(δ,ρ,H)
t )t>0 has sta-

tionary increments and is H-self-similar. Moreover, the characteristic function of
its one-dimensional marginals is given by

(26) ϕ
Y

(δ,ρ,H)
t

(p) = E
[
eipY

(δ,ρ,H)
t

]
= e−t

δHψδ,ρ0 (p), t > 0, p ∈ R,
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for

(27) ρ0 =

 ρ, H > 1/δ

ρ
1
Hδ−

∫∞
0 (xH−1/δ−(1+x)H−1/δ)

δ
dx

1
Hδ+

∫∞
0 (xH−1/δ−(1+x)H−1/δ)

δ
dx
, H < 1/δ

,

which can be obtained from Proposition 3.4.1 in [36] by elementary computations.
Let us denote by Lδ,ρ the pseudo-differential operator associated to the symbol

−ψδ,ρ via (6). In the case ρ = 0 of the symmetric fractional Laplacian, we also

write ∆δ/2 := Lδ,0

Theorem 5.1. Suppose that k is homogeneous of degree β − 1 for some β ∈ (0, 1]

and k(1, ·) ∈ L1+ε((0, 1)) for some ε > 0, and that x 7→ Φ̂(−x) is completely mono-

tone on (0,∞), where Φ̂ is defined in Theorem 2.2. Then:

(i) Let β < γ < 2 and δ ∈ (γ, 2] \ {γ/β}. If Aγ/δ is a nonnegative random vari-

able with Laplace transform Φ̂(−(·)γ/δ) and
(
Y

(δ,0,β/γ)
t

)
t>0

is a symmetric linear

fractional stable motion independent of Aγ/δ, then,
(
A

1/δ
γ/δY

(δ,0,β/γ)
t

)
t>0

provides a

stochastic solution to

u(t, x) = u0(x) +

∫ t

0

k(t, s)∆γ/2u(s, x)ds, t > 0, x ∈ R,

lim
t↘0

u(t, x) = u0(x), x ∈ R.

(ii) If β 6= 1, δ ∈ (β, 2]\{1}, and ρ ∈ [−1, 1], let A be a nonnegative random variable

with Laplace transform Φ̂(−(·)) and
(
Y

(δ,ρ,β/δ)
t

)
t>0

a linear fractional stable motion

independent of A. Then,
(
A1/δY

(δ,ρ,β/δ)
t

)
t>0

provides a stochastic solution to

u(t, x) = u0(x) +

∫ t

0

k(t, s)Lδ,ρ0u(s, x)ds, t > 0, x ∈ R,

lim
t↘0

u(t, x) = u0(x), x ∈ R,

for

ρ0 = ρ

1
β −

∫∞
0

(
x(β−1)/δ − (1 + x)(β−1)/δ

)δ
dx

1
β +

∫∞
0

(
x(β−1)/δ − (1 + x)(β−1)/δ

)δ
dx
.

Proof. (i) Let H = β/γ. In view of (26)–(27) and the independence assumption,
we obtain

E
[
e
ipA

1/δ

γ/δ
Y

(δ,0,H)
t

]
= E

[
e
−tδH |pA1/δ

γ/δ
|δ
]

= E
[
e−t

δHAγ/δ|p|δ
]

= Φ̂(−(|p|δtδH)γ/δ)

= Φ̂(−|p|γtβ) = Φ(t,−ψγ,0(p)), p ∈ R, t > 0,

applying Theorem 2.2 for the last identity. The latter theorem also implies that all
assumptions of Theorem 2.1 are satisfied. Thus, Theorem 2.1, (i), concludes the
proof.

(ii) The proof is analogous to the one of part (i), noting that H := β/δ < 1/δ and
making use of the computation

E
[
eipA

1/δY
(δ,ρ,H)
t

]
= E

[
e−t

δHψδ,ρ0 (pA1/δ)
]

= E
[
e−t

βAψδ,ρ0 (p)
]

= Φ̂(−tβψδ,ρ0(p))

= Φ(t,−ψδ,ρ0(p)), p ∈ R, t > 0.

�
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Remark 5.1. (i) If δ = γ/β in the setting of Theorem 5.1, (i), then a stochastic

solution is provided by the process (A
1/δ
β Y

(δ,0)
t )t>0, where the symmetric stable

Lévy motion Y (δ,0) (with characteristic exponent ψδ,0) is independent of the posi-

tive random variable Aβ with Laplace transform Φ̂(−(·)β). The proof remains valid
without any changes.

(ii) The name ‘linear fractional Lévy motion’ usually refers to a larger family of pro-
cesses which have stationary increments, feature H-self-similarity and have stable
laws, see Definition 7.4.1 in [36]. We here chose the parametrization correspond-
ing to the Mandelbrot-Van Ness representation of fractional Brownian motion. We
note that other parameter choices work equally well, but – except in the Gaussian
case – may lead to different processes which only have identical one-dimensional
marginal distributions.

We conclude the paper by a summarizing example, combining some of the results
of Sections 4 and 5.

Example 5.1. Suppose k is a Saigo-Maeda kernel

k(t, s) :=
a

Γ(b/a)
(ta − sa)

b
a−1ta−νsν−1F3

(
ν

a
− 1,

b

a
, 1, µ,

b

a
, 1−

(s
t

)a
, 1−

(
t

s

)a)
for parameters b ∈ (0, 1], a > b, µ > b

a−1, ν > max {a− b,−aµ}. For γ ∈ (b, 2) and
δ ∈ (γ, 2] \ {γ/b} denote by Aγ/δ,a,b,µ,ν a random variable with Laplace transform
given in terms of the three-parameter Mittag-Leffler function by

[0,∞)→ R, x 7→ Γ
(ν
a

+ µ
)
E

1+ ν−a
b

b
a ,
ν
a+µ

(−xγ/δ),

which is a completely monotone function by Remark 4.1. Let (Y
(δ,0,b/γ)
t )t>0 be

a symmetric linear fractional stable motion independent of Aγ/δ,a,b,µ,ν . Then, for

every initial condition u0 ∈ S(Rd), the function

u(t, x) = E
[
u0

(
x+A

1/δ
γ/δ,a,b,µ,νY

(δ,0,b/γ)
t

)]
, t >, x ∈ R

is a solution to

u(t, x) = u0(x) +

∫ t

0

k(t, s)∆γ/2u(s, x)ds, t > 0, x ∈ R,

lim
t↘0

u(t, x) = u0(x), x ∈ R.

As δ is not a parameter of the equation, we, thus, obtain a whole family of stochastic
representations in terms of b/γ-self-similar processes with stationary increments
parametrized by the index of stability δ ∈ (γ, 2]. Here, γ is the order of the space
derivative and b − 1 the degree of homogeneity of the Saigo-Maeda kernel. This
example extends the results of [34] beyond the Gaussian case (δ = 2) and the
time-fractional case of order b (a = ν = 1, µ = 0), cp. Example 4.1, (ii).
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parameter Mittag-Leffler function. Applicable Analysis and Discrete Mathematics, 2021.

[18] M. Grothaus and F. Jahnert. Mittag-Leffler analysis II: Application to the fractional heat

equation. J. Funct. Anal., 270(7):2732–2768, 2016.
[19] H. J. Haubold, A. M. Mathai, and R. K. Saxena. Mittag-Leffler functions and their applica-

tions. J. Appl. Math., 298628, 2011.

[20] N. Jacob. Pseudo differential operators and Markov processes. Vol. I. Imperial College Press,
London, 2001. Fourier analysis and semigroups.

[21] R. Jain and K. L. Sebastian. Diffusing diffusivity: a new derivation and comparison with
simulations. Journal of Chemical Sciences, 129(7):929–937, Jul 2017.

[22] J. Klafter, A. Blumen, and M. F. Shlesinger. Stochastic pathway to anomalous diffusion.

Phys. Rev. A (3), 35(7):3081–3085, 1987.
[23] V. N. Kolokoltsov. Generalized continuous-time random walks, subordination by hitting

times, and fractional dynamics. Teor. Veroyatn. Primen., 53(4):684–703, 2008.

[24] V. N. Kolokoltsov. The probabilistic point of view on the generalized fractional partial dif-
ferential equations. Fract. Calc. Appl. Anal., 22(3):543–600, 2019.
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