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Abstract

We introduce and analyze a family of linear least-squares Monte Carlo schemes for back-
ward SDEs, which interpolate between the one-step dynamic programming scheme of Lemor,
Warin, and Gobet (Bernoulli, 2006) and the multi-step dynamic programming scheme of
Gobet and Turkedjiev (Mathematics of Computation, 2016). Our algorithm approximates
conditional expectations over segments of the time grid. We discuss the optimal choice of
the segment length depending on the ‘smoothness’ of the problem and show that, in typical
situations, the complexity can be reduced compared to the state-of-the-art multi-step dynamic
programming scheme.
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1 Introduction

In this paper, we propose a family of regression-based algorithms for decoupled forward backward
stochastic differential equations (FBSDEs) of the form

dXt = b(t,Xt)dt+ σ(t,Xt)dWt, X0 = x0,

−dYt = f(t,Xt, Yt, Zt)dt− ZtdWt, YT = ξ(XT ) (1)

driven by a (multidimensional) Brownian motionW . Recall that the solution is a triplet (X,Y, Z)
of adapted processes, wherein X and Y describe the dynamics of the forward and backward SDE
(BSDE), respectively, and Z steers the backward SDE into the terminal condition without making
use of future information. Among the numerous applications of BSDEs we mention (nonlinear)
derivative pricing problems, drift control problems, and stochastic representation formulas of
Feynman-Kac type for semilinear parabolic partial differential equations, see, e.g., Guyon and
Henry-Labordère (2014); El Karoui et al. (1997); Pardoux and Peng (1992). Loosely speaking, in
these applications, the Y -part of the solution corresponds to the price process of the option, the
value of the control problem, or the solution of the PDE, respectively, while the Z-part is required
to represent the hedging portfolio, an optimal control, or the derivative of the PDE solution.
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Motivated by these and other applications, the literature on numerical schemes for BSDEs
has tremendously increased over the last two decades, and we refer to Chessari et al. (2023) for a
comprehensive survey. Let us emphasize that the practical choice of a numerical scheme for the
FBSDE (1) crucially depends on the dimension D of the state space of the diffusion process X.
If X takes values in a low dimensional space, the connection to PDEs via the four-step scheme
(Ma et al., 1994) can be exploited and the application of fast PDE solvers leads to highly efficient
schemes for the FBSDE, see, e.g., Douglas et al. (1996); Milstein and Tretyakov (2006); Ma et al.
(2008). For moderate dimensions (up to about D = 10), simulation based regression methods are
among the most popular methods (Gobet et al., 2005; Lemor et al., 2006; Gobet and Turkedjiev,
2016), while the recent multilevel Picard approach can tackle very high-dimensional problems (E
et al., 2021; Hutzenthaler et al., 2023).

In the present paper, we contribute to the theory of simulation-based regression schemes.
More precisely, we design a family of schemes which interpolate between the one-step-dynamic
programming approach (ODP) of Lemor et al. (2006) and the multi-step dynamic programming
approach (MDP) of Gobet and Turkedjiev (2016). Both dynamic programming schemes rely on
a backward recursion for the time discretization with nested conditional expectations which are
approximated by empirical least-squares regression. The key difference is that the ODP computes
the numerical solution of the BSDE at a time grid point ti by regressing a nonlinear function
of the numerical solution at the previous time grid point ti+1 only, while the MDP applies the
numerical solutions at all grid points ti+1, ti+2, . . . up to terminal time T . As argued in Gobet
and Turkedjiev (2016) (see also Bender and Denk, 2007, for related considerations), the error
propagation over time for the approximation of the Y -part of the solution can be significantly
reduced in the MDP making it superior to the ODP in typical situations. A closer look at both
schemes reveals, however, that the approximation of the Y -part is the dominating cost in the
ODP, while the cost for approximating the Z-part dominates the complexity of the MDP. In
order to balance the cost for approximating Y -part and Z-part, we suggest a family of schemes,
which iterates between a single ODP step and an MDP step on time segments containing ⌈Nα⌉
grid points – here N is the total number of grid points and α ∈ [0, 1]. We call this approach
‘segmentwise dynamic programming’ (SDP) and analyze it in detail in this paper. In particular,
we discuss how to optimize the choice of the segment length parameter α in dependence on the
state space dimension D and on the smoothness of the PDE representation to the BSDE. It turns
out that, in generic situations, the optimal choice of α is in the open interval (0, 1), demonstrating
that neither the ODP (α = 0) nor the MDP (α = 1) are optimal. For the theoretical analysis,
we assume that the forward diffusion X can be perfectly simulated on the discrete time grids.
One can, however, apply a higher order scheme for X on the coarser grid to implement the SDP
scheme, when this assumption is not satisfied.

The paper is structured as follows: In Section 2 we introduce the setting and motivate the SDP
algorithm, which is spelled out in detail in Section 3. The theoretical main results on convergence
of the SDP scheme are presented in Section 4 along with a complexity analysis. The convergence
behavior of the SDP scheme is illustrated and compared to the MDP scheme by a numerical
experiment in Section 5. Finally, the detailed error analysis (combining ideas from Gobet and
Turkedjiev, 2016, Lemor et al., 2006, and Bender and Denk, 2007) is carried out in Section 6.
Some proofs, which follow standard arguments, are provided in the online supplement.
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2 Setup and motivation

Let (Ω,F,F, P ) be a filtered probability where the filtration is the augmentation of the one
generated by a D-dimensional Brownian motion W . We consider a decoupled forward backward
stochastic differential equation of the form

dXt = b(t,Xt)dt+ σ(t,Xt)dWt, X0 = x0,

−dYt = f(t,Xt, Yt, Zt)dt− ZtdWt, YT = ξ(XT )

with deterministic initial value x0 ∈ RD and the terminal time T > 0 under the following standing
assumptions.

Assumptions 2.1.

(Aξ) The function ξ : RD → R is bounded by some constant Cξ.

(AL) The functions b : [0, T ]×RD → RD, σ : [0, T ]×RD → RD×D and f : [0, T ]×RD×R×RD → R
are measurable, 1

2 -Hölder-continuous in the first variable and Lipschitz-continuous in the
other variables, i.e., there exist constants LX and Lf such that

|b(t, x)− b(t′, x′)|+ |σ(t, x)− σ(t′, x′)| ≤ LX

(
|t− t′|

1
2 + |x− x′|

)
|f(t, x, y, z)− f(t′, x′, y′, z′)| ≤ Lf

(
|t− t′|

1
2 + |x− x′|+ |y − y′|+ |z − z′|

)
for all x, x′ ∈ RD, t, t′ ∈ [0, T ], y, y′ ∈ R, z, z′ ∈ RD.

(Af ) The function f is uniformly bounded by a constant Cf , i.e.,

f(t, x, y, z) ≤ Cf

for all t ∈ [0, T ], x ∈ RD, y ∈ R, z ∈ RD.

Assumption (AL) is standard for FBSDEs and yields important characteristics of the processes
X, Y and Z. For once, the assumption on b and σ ensures the existence of a unique strong
solution X of the SDE and that this solution satisfies E[supt∈[0,T ] |Xt|2] < ∞ (see e.g. Karatzas
and Shreve, 2012). Then, paired with the assumptions on f and ξ the solution of the BSDE
can be expressed by deterministic functions of the SDE solution X, i.e., there exist deterministic
functions y : [0, T ]×RD → R and z : [0, T ]×RD → RD such that y(t,Xt) = Yt and z(t,Xt) = Zt
(see e.g. El Karoui et al., 1997). The boundedness conditions on f and ξ are posed for convenience
only and could be relaxed with minor changes in the error analysis.
We now define the equidistant time grid

π := {ti = i∆; i = 0, . . . , N}

with step width ∆ = T/N for a fixed N ∈ N. We denote the increments of the Brownian motion
W on this time grid with ∆Wi, i.e., ∆Wi :=Wti −Wti−1 , and define the functions

qNi (x) := E
[
Yti+1 |Xti = x

]
,

zNi (x) := E

[
∆Wi+1

∆
Yti+1

∣∣∣∣Xti = x

]
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for all i ∈ {0, . . . , N − 1}. Then, under the standing assumptions, it holds that

lim
N→∞

(
max

i=0,...,N−1
E
[
|qNi (Xti)− Yti |2

]
+

N−1∑
i=0

E

[∫ ti+1

ti

|zNi (Xti)− Zs|2ds
])

= 0,

where the rate of convergence depends on the regularity of Z, see e.g. Zhang (2004). The functions
qNi and zNi can, therefore, be interpreted as time-discretized versions of the BSDE solution (Y,Z).
To obtain an implementable approximation scheme for qNi and zNi , fix any function

τ : {0, . . . , N − 2} → {1, . . . , N − 1}

satisfying τ(i) ≥ i + 1 for all i ∈ {0, . . . , N − 2}. Then the tower property of the conditional
expectation and the Markov property of X yield for any i ∈ {0, . . . , N − 2}

qNi (x) = E[Yti+1 |Xti = x]

= E

[
Ytτ(i)+1

+

∫ tτ(i)+1

ti+1

f(t,Xt, Yt, Zt)dt−
∫ tτ(i)+1

ti+1

ZtdWt

∣∣∣∣∣Xti = x

]

= E

qNτ(i)(Xτ(i)) +

τ(i)∑
j=i+1

∫ tj+1

tj

f(t,Xt, Yt, Zt)dt

∣∣∣∣∣∣Xti = x


≈ E

qNτ(i)(Xτ(i)) +

τ(i)∑
j=i+1

f
(
tj , Xtj , q

N
j (Xtj ), z

N
j (Xtj )

)
∆

∣∣∣∣∣∣Xti = x


and similarly

zNi (x) = E

[
∆Wi+1

∆
Yti+1

∣∣∣∣Xti = x

]
= E

[
∆Wi+1

∆

(
Ytτ(i)+1

+

∫ tτ(i)+1

ti+1

f(t,Xt, Yt, Zt)dt−
∫ tτ(i)+1

ti+1

ZtdWt

)∣∣∣∣∣Xti = x

]

= E

∆Wi+1

∆

qNτ(i)(Xτ(i)) +

τ(i)∑
j=i+1

∫ tj+1

tj

f(t,Xt, Yt, Zt)dt

∣∣∣∣∣∣Xti = x


≈ E

∆Wi+1

∆

qNτ(i)(Xτ(i)) +

τ(i)∑
j=i+1

f
(
tj , Xtj , q

N
j (Xtj ), z

N
j (Xtj )

)
∆

∣∣∣∣∣∣Xti = x

 .
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This motivates the time discretization scheme

QNN−1 := E
[
ξ(XtN )

∣∣FtN−1

]
ZNN−1 := E

[
∆WN

∆
ξ(XtN )

∣∣∣∣FtN−1

]

QNi := E

QNτ(i) + τ(i)∑
j=i+1

f
(
tj , Xtj , Q

N
j , Z

N
j

)
∆

∣∣∣∣∣∣Fti
 , i = N − 2, . . . , 0

ZNi := E

∆Wi+1

∆

QNτ(i) + τ(i)∑
j=i+1

f
(
tj , Xtj , Q

N
j , Z

N
j

)
∆

∣∣∣∣∣∣Fti
 , i = N − 2, . . . , 0.

(2)

By the tower property of the conditional expectation, this definition of QNi and ZNi does not
depend on the choice of τ and is nothing but a reformulation of the backward Euler scheme by
Zhang (2004); Bouchard and Touzi (2004). However, the conditional expectations cannot be cal-
culated in closed form in general. Hence, when attempting to solve the BSDE, one has to replace
the conditional expectations with some approximation operator resulting in different schemes de-
pending on the choice of τ . As our results will show, the choice of τ then influences both, the
computational costs as well as the convergence properties.
The most natural choices for τ would be for once setting τ(i) = i + 1 or τ(i) = N − 1 for all
i ∈ {0, . . . , N − 2}. The first results in the classical one-step scheme of Lemor et al. (2006) (to
which we further refer to as ODP), the latter in the multi-step forward scheme (MDP for short) by
Gobet and Turkedjiev (2016). To understand the idea of the segment-wise dynamic programming
algorithm that will be introduced in the next section, it is worth reviewing these two schemes
and comparing the resulting algorithms.
Both algorithms work recursively backward in time by constructing estimates of the functions qNi
and zNi through approximating the conditional expectations in the corresponding time discretiza-
tion scheme via empirical (i.e., simulation-based) orthogonal projections on finite-dimensional
function spaces, where the components QNj , Z

N
j with j > i on the right-hand side of the discretiza-

tion scheme are replaced by the approximations found in the previous steps of the recursion. As
a result of the different schemes, the approximation of the ODP algorithm depends at each time
point ti only on the approximations at the time ti+1 while in the MDP scheme, the approximation
at each step ti depends on all the previously constructed ones, i.e., those at the time points from
ti+1 up to tN−1. Since the approximations of qNi and zNi have to be evaluated, one has to simulate
in each step of the MDP algorithm segments of the form (Xti , Xti+1 , . . . , XtN ) while it suffices in
the ODP algorithm to simulate values of X at just the current and the following time point. This
obviously leads to higher simulation costs in the MDP scheme. However, since the algorithms
recursively reuse the obtained approximations of qNi and zNi an error propagation between the
time steps occurs. The error analysis in Gobet and Turkedjiev (2016) reveals that, from this
perspective, the MDP scheme features improved convergence properties compared to the ODP.
The idea of the segment-wise approach, which will be introduced in the next chapter, is to in-
terpolate between the two cases of the ODP and the MDP scheme in order to balance these two
aspects, the computational costs and convergence properties.
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3 Segment-wise dynamic programming algorithm

In this section, we present the segment-wise dynamic programming algorithm (SDP, for short)
in detail. We first specify a family of functions τα to obtain the time discretization scheme that
interpolates between the ones from the ODP scheme and the MDP scheme via (2). Then the
algorithm is described in detail based on this discretization scheme.
For any α ∈ [0, 1], consider the time grid

πα := {(∆n⌈Nα⌉) ∧ (T −∆);n ∈ N}

with step width ⌈Nα⌉ (up to a possibly smaller size in the last step), that consists of ⌈N1−α⌉
time points at most. Based on these time grids define the functions

τα : {0, 1, . . . , N − 2} → {1, . . . , N − 1}

as

τα(i) := min{j > i : j∆ ∈ πα}.

For a fixed α, the choice τ = τα in (2) then defines a discretization scheme where the time grid
π is separated in segments consisting of ⌈Nα⌉ points by the coarser time grid πα. The resulting
discretization scheme corresponds to an MDP scheme on each of these segments paired with a
single step of an ODP scheme between consecutive segments connecting them. Moreover choosing
α = 0 or α = 1 results in the classical ODP or MDP scheme respectively.
Now for a fixed α ∈ [0, 1] the SDP algorithm works as follows.

Algorithm 3.1.

� Choose basis functions

pkq,i : RD → R, k = 1, . . . ,Kq,i

pkz,i : RD → RD, k = 1, . . . ,Kz,i

for each i ∈ {0, . . . , N − 1} such that

N−1∑
i=0

Kq,i∑
k=1

E
[
|pkq,i(Xti)|2

]
+
N−1∑
i=0

Kz,i∑
k=1

E
[
|pkz,i(Xti)|2

]
<∞.

Here the number of basis functions Kq,i, Kz,i ∈ N may depend on the time point ti. We
denote the function spaces spanned by these basis functions with Kq,i and Kz,i respectively,
i.e.,

Kq,i := span
(
p1q,i, . . . , p

Kq,i

q,i

)
Kz,i := span

(
p1z,i, . . . , p

Kz,i

z,i

)
.

The algorithm will approximate qNi by empirical orthogonal projections on the subspaces
Kq,i and z

N
i by projections on Kz,i.
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� Initialize the algorithm by setting

ΞN,MN−1(xN ) := ξ(xN )

for all xN ∈ RD. Then, assuming ΞN,Mi is already constructed, perform the following
backward recursion for i = N − 1, N − 2, . . . , 0:

1*) If i = N − 1: Choose MN−1 ∈ N, then simulate MN−1 independent copies(
X

[N−1,m,N ]
tN−1

, X
[N−1,m,N ]
tN

,∆W
[N−1,m,N ]
N

)
m=1,...,MN−1

of the segment (XtN−1 , XtN ,∆WN ) and set

X [N−1,m,N ] := X
[N−1,m,N ]
tN

.

1) If i < N − 1: Choose a Mi ∈ N, then simulate Mi independent copies(
X

[i,m,N ]
ti

, . . . , X
[i,m,N ]
tτα(i)

,∆W
[i,m,N ]
i+1

)
m=1,...,Mi

of the segment (Xti , . . . , Xτα(i),∆Wi+1) and set

X [i,m,N ] :=
(
X

[i,m,N ]
ti+1

, . . . , X
[i,m,N ]
tτα(i)

)
.

2) Find solutions to the linear least-squares regression problems

φq
N,M

i = argmin
ψ∈Kq,i

(
1

M

Mi∑
m=1

∣∣∣ψ (X [i,m,N ]
ti

)
− ΞN,Mi

(
X [i,m,N ]

)∣∣∣2)

and

φz
N,M

i = argmin
ψ∈Kz,i

 1

M

Mi∑
m=1

∣∣∣∣∣ψ (X [i,m,N ]
ti

)
−

∆W
[i,m,N ]
i+1

∆
ΞN,Mi

(
X [i,m,N ]

)∣∣∣∣∣
2
 .

3) Define approximations qN,Mi and zN,Mi of the functions qNi and zNi via

qN,Mi := TCq,i ◦ φ
qN,M

i , zN,Mi := TCz,i ◦ φz
N,M

i

where Cq,i := Cξ + (T − ti+1)Cf and Cz,i :=
Cq,i

∆ are positive constants and Tc is the
truncation function defined as

Tc(x) := sign(x)min{|x|, c}

for any constant c > 0 (acting componentwise on φz
N,M

).
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4) If i ≥ 1, set

ΞN,Mi−1 (xi, . . . , xτα(i−1)) := qN,Mτα(i−1)(xτα(i−1)) +

τα(i−1)∑
j=i

∆f
(
tj , xj , q

N,M
j (xj), z

N,M
j (xj)

)
as preparation for the next iteration.

The solutions to the empirical least squares problems can be computed numerically using a
singular value decomposition. Hence, the algorithm is fully implementable as long as the segments
(Xti , . . . , Xtτα(i)

) can be simulated. Then, in the typical situation, for example X = W , the
average costs for the simulation of one segment (Xti , . . . , Xtτα(i)

) are of order O(Nα). For α < 1
this leads to smaller computation costs through simulations as the MDP scheme, where the
average costs for simulating one set (Xti , . . . , XtN ) are of order O(N). When X can not be
sampled perfectly, it would, in principle, be possible to replace X with some approximation
scheme with minor changes in the error analysis. The problem is, however, to approximate X in
a way that sustains the gain in computation costs compared to the MDP scheme, which would not
be the case in the simplest approach when approximating X with a naive Euler scheme starting
at the time 0. In theory, one could approximate Xti with some high-order approximation scheme
(Kloeden and Platen, 1992) and use an Euler scheme inside the segment (Xti , . . . , Xtτα(i)

) and
preserve at least some gain in computation costs. However, we restrict the theoretical analysis to
the assumption that the values of X can be sampled directly on the time grid π.

4 Convergence rates and analysis of the complexity

In this section, we state error bounds for the quadratic error of the SDP algorithm We then
analyze how to optimally calibrate the parameters of the algorithm to the smoothness of the
problem. The results show that the optimal choice of the segment length parameter α is always
in the open interval (0, 1), and hence the SDP algorithm presented in Section 3 is advantageous
when compared to the MDP and ODP schemes.

Our first bound for the mean-squared error of the SDP scheme is given in the following
theorem:

Theorem 4.1. Under the standing assumptions,

max
0≤i≤N−1

E
[
|qN,Mi (Xti)− qNi (Xti)|2

]
+
N−1∑
i=0

∆E
[
|zN,Mi (Xti)− zNi (Xti)|2

]
≤ cmax

i∈I

(
N1−α inf

ψ∈Kq,i

E
[
|ψ(Xti)− qNi (Xti)|2

]
+N2−2αKq,i

Mi
+N2−2αKq,i log(Mi)

Mi

)
+ c max

0≤i≤N−1

(
inf

ψ∈Kq,i

E
[
|ψ(Xti)− qNi (Xti)|2

]
+ inf
ψ∈Kz,i

E
[
|ψ(Xti)− zNi (Xti)|2

]
+
Kq,i

Mi
+N

Kz,i

Mi
+
Kq,i log(Mi)

Mi
+N

Kz,i log(Mi)

Mi

)
+ cNRN
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where I := {i : ti ∈ πα}, c is a positive constant not depending on N and

RN :=

N−1∑
i=1

E

[(∫ ti+1

ti

E
[
f (s,Xs, Ys, Zs)− f

(
ti, Xti , q

N
i (Xti), z

N
i (Xti)

)∣∣Xti−1

]
ds

)2
]
.

As usual, we can think of this bound as a composition of terms due to three different error
sources. The first source of error is due to the projection on the finite-dimensional subspaces.
This projection error can be controlled by the choice of basis functions. The term RN only depends
on the continuous-time BSDE solution and the finer time grid (through the discretized functions
qNi and zNi ), but not on the approximation obtained by the algorithm. It can be interpreted as
part of the time discretization error. The remaining terms are statistical error terms depending on
the sample size. Those can be controlled by increasing the number of simulations in dependence
of the number of basis functions.

The bound shows the influence of the parameter α, as the projection and statistical error
terms regarding qN appear once at all time steps and once on the time steps of the coarser time
grid π with different factors that are decreasing in α. Although larger values for α appear to be
favorable from this perspective, increasing the parameter α also results in higher computational
costs as paths then have to be simulated on larger segments. Hence, when optimizing α a trade-off
between convergence properties and computational costs has to be taken into account.

For α = 1 the terms in the first bracket are dominated by the remaining terms, and we
essentially reproduce the error analysis of the MDP scheme in Gobet and Turkedjiev (2016) with
some minor differences: In particular, the projection error in Theorem 4.1 is formulated in terms
of the true continuous time solution (Y,Z) of the BSDE via the functions qNi and zNi while it is
stated in terms of the backward Euler discretization scheme for BSDEs in Gobet and Turkedjiev
(2016). When choosing α = 0, one ends up with an error analysis for the ODP scheme with
independent re-simulation at every time point. This differs from the error analysis in Lemor
et al. (2006), as they only apply one cloud of simulations, which is re-used at any time point,
resulting in an additional (and dominating) interdependency error. Hence, the bound obtained
with Theorem 4.1 for α = 0 also allows for a comparison of the ODP and MDP algorithms in a
unified setting.

Typical bounds for the term RN in dependence of N are of order N−2 or N−3, depending on
regularity assumptions as illustrated by the following theorems. These theorems can be derived
from Theorem 4.1 by applying standard techniques to bound the expected quadratic difference
between the functions qN and zN and their continuous time counterparts y and z depending on
the regularity of the BSDE, see Zhang (2004); Gobet and Labart (2007). Detailed proofs are
provided in an online supplement1.

Theorem 4.2. Under the standing assumptions, suppose that z is 1
2 -Hölder continuous in t and

Lipschitz continuous in x. Then,

max
0≤i≤N−1

E
[
|qN,Mi (Xti)− y(ti, Xti)|2

]
+
N−1∑
i=0

E

[∫ ti+1

ti

|zN,Mi (Xti)− z(s,Xs)|2ds
]

≤ cmax
i∈I

(
N1−α inf

ψ∈Kq,i

E
[
|ψ(Xti)− y(ti, Xti)|2

]
+N2−2αKq,i

Mi
+N2−2αKq,i log(Mi)

Mi

)
1available at: https://www.uni-saarland.de/fakultaet-mi/stochastik/prof-dr-christian-bender/publications.html
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+ c max
0≤i≤N−1

(
inf

ψ∈Kq,i

E
[
|ψ(Xti)− y(ti, Xti)|2

]
+ inf
ψ∈Kz,i

E
[
|ψ(Xti)− z(ti, Xti)|2

]
+
Kq,i

Mi
+N

Kz,i

Mi
+
Kq,i log(Mi)

Mi
+N

Kz,i log(Mi)

Mi

)
+ cN−1,

where I := {i : ti ∈ πα} and c is a positive constant not depending on N .

Theorem 4.2 provides, in the context of Theorem 4.1, the standard error bound of order N−1/2

for the time discretization within the backward Euler scheme (Zhang, 2004; Bouchard and Touzi,
2004). Note that the projection errors are measured with respect to the continuous time PDE
representation of the BSDE (1). Hence the choice of the basis functions can be adapted to known
regularity results for the corresponding semilinear parabolic Cauchy problem, see, e.g., Crisan
and Delarue (2012).

Under additional regularity assumptions, it is known from Gobet and Labart (2007) that a
time discretization error of order N−1 can be achieved. In the context of the SDP, the following
result can be derived in this respect.

Theorem 4.3. Additionally to the standing assumptions, suppose that X = W , and that f and y
are twice, resp. s+ 1 times continuously differentiable (s ≥ 2) with bounded derivatives. Then,

max
0≤i≤N−1

E
[
|qN,Mi (Wti)− y(ti,Wti)|2

]
+
N−1∑
i=0

∆E
[
|zN,Mi (Wti)− z(ti,Wti)|2

]
≤ cmax

i∈I

(
N1−α inf

ψ∈Kq,i

E
[
|ψ(Wti)− qNi (Wti)|2

]
+N2−2αKq,i

Mi
+N2−2αKq,i log(Mi)

Mi

)
+ c max

0≤i≤N−1

(
inf

ψ∈Kq,i

E
[
|ψ(Wti)− qNi (Wti)|2

]
+ inf
ψ∈Kz,i

E
[
|ψ(Wti)− zNi (Wti)|2

]
+
Kq,i

Mi
+N

Kz,i

Mi
+
Kq,i log(Mi)

Mi
+N

Kz,i log(Mi)

Mi

)
+ cN−2

where I := {i : ti ∈ πα} and c is a positive constant not depending on N . Furthermore, qN and
zN are bounded and s + 1 times, respectively, s times continuously differentiable with bounded
derivatives.

Before we prove the theorems presented above in Section 6, we analyze how to optimally
choose α and derive the resulting complexity of the algorithm. To this end, we first calibrate the
algorithm in dependence of α to achieve a squared error of the order N−2θ with θ ∈ {1/2, 1} with
local polynomials as basis functions, cp. Lemor et al. (2006); Gobet and Turkedjiev (2016).

For simplicity we use the same approximation space Kz for the approximation of zN in each
time step. Due to the additional projection error on the coarser time grid πα we distinguish
between the time points inside and outside πα for the approximation of qN . We assume that
the same approximation space Kq is used for all time points ti ∈ πα while we use a possibly
different approximation space Kq at the other time points. Analogously we assume that we use
Mi =M simulations at each time point ti outside the coarser time grid π andMi =M simulations
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otherwise. As already mentioned, we assume that one segment (Xi, . . . , Xτα(i)) of a path of X
can be simulated at the cost of Nα. Under these assumptions, assuming we can evaluate the
driver and the basis functions at cost 1, the performed simulations and evaluations during the
algorithm lead to costs of order

NNαM +N1−αNαM.

As basis functions we take local polynomials on cubes which we choose disjoint such that their
union contains the set {x ∈ RD : |x| < Cb} for a constant Cb > 0. We suppose that the edge
length of the cubes is δq for the approximation of qN on the time grid πα, δq for the approximation
of qN at all other time points and δz for the approximation of zN . Assuming that y and z are
s+ 1 times, respectively, s times continuously differentiable with bounded derivatives we set the
degree of the polynomials as s for the approximation of qN and s− 1 for zN . We denote the set
of polynomials of degree less than or equal to l by Pl. Then, the projection error in the context
of Theorem 4.2 can be estimated by a Taylor expansion on each cube:

inf
ψ∈Kq

E
[
|ψ(Xti)− y(ti, Xti)|2

]
≤ E

[
|y(ti, Xti)|21|Xti |>Cb

]
+
∑
H∈Hq

inf
ψ∈Ps

E
[
|ψ(Xti)− y(ti, Xti)|21Xti∈H

]
≤ ∥y(ti, .)∥2∞P (|Xti | > Cb) + c∥y(ti, .)(s+1)∥2∞(δs+1

q )2, (3)

where Hq denotes the collection of cubes applied for the approximation of qN at all time points
outside π. Under the assumption that sup0≤i≤N E[eϖ|Xti |] <∞ for some ϖ > 0, it follows by the
Markov inequality that the choice Cb = 2θϖ−1 log(N + 1) ensures that the first term in (3) is of
order N−2θ. The same bound holds for the second term when choosing the edge length of the

hypercubes as δq = cN− θ
s+1 . Therefore it suffices to choose Kq of the order ND θ

s+1 logD(N + 1)
to ensure that

inf
ψ∈Kq

E[|ψ(Xi)− y(ti, Xti)|2] ∈ O(N−2θ).

Following the same argumentation, we set

Kq = cND
θ+1−α

2
s+1 logD(N + 1), Kz = cND θ

s logD(N + 1)

for a positive constant c to ensure

N1−α inf
ψ∈Kq

E
[
|ψ(Xi)− y(ti, Xti)|2

]
∈ O(N−2θ), inf

ψ∈Kz

E
[
|ψ(Xi)− z(ti, Xti)|2

]
∈ O(N−2θ)

where the change from s + 1 to s in the number of basis functions in the approximation of zN

occurs due to the lower smoothness of zN and Kq and Kz denote the number of basis functions
of the space Kq and Kz respectively. The same argument applies in the context of Theorem 4.3,
replacing y and z by their discrete counterparts qN and zN .
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Given the size of the approximation spaces we hence have to choose M of the order

N2θmax{Kq, NKz} = N1+2θKz

and M of the order

N2θmax{N2−2αKq, NKz}

in order to bound the statistical error terms asymptotically by a multiple of N−2θ (assuming that
the driver f is not independent of Z and ignoring log-factors from now on). Then, in dependence
of α, the computation costs of the algorithm grows as

C = max{N1+αM,NM} =: max{Cπ,Cπ}.

Here Cπ is increasing in α and Cπ is decreasing in α. The optimal choice of α is, thus, obtained
by equating both terms, leading to

αopt =
1
2 − θ

s +
s+1
D

1
2 + 3(s+1)

D

.

It always lies in the open interval (0, 1), provided ϑ = 1
2 , s ≥ 1 or ϑ = 1, s ≥ 2. The resulting

computational costs are of the order

C = NNαoptM = N
2+2θ+D θ

s
+

1
2− θ

s+ s+1
D

1
2+

3(s+1)
D = N

3+2θ+D θ
s
−

θ
s+

2(s+1)
D

1
2+

3(s+1)
D .

In comparison, choosing α = 1 (the MDP case), the computational costs are of the order

C = cN3+2θ+D θ
s ,

as already shown in Gobet and Turkedjiev (2016). Hence, the suggested SDP algorithm with the
optimal choice of the segment length reduces the complexity by a factor of the order

N1−αopt = N
θ/s+2(s+1)/D
1/2+3(s+1)/D

depending on the smoothness s of the problems and the dimension D of the state space of X.

5 Numerical example

In this section, we compare the SDP and MDP approach in a numerical test case in order to
illustrate our theoretical results.
For this purpose, we define for each x ∈ RD and all t ∈ [0, 0.2] the function

φ(t, x) := exp

(
−

D∑
d=1

|x(d) − t|0.3
)

D∑
d=1

(
x(d) − t

)2
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and for d = 1, . . . , D

ϕd(t, x) := exp

(
−

D∑
d=1

|x(d) − T |0.3
)(

x(d) − t
)(

2− 0.3|x(d) − t|0.3
) D∑
e=1,e ̸=d

(
x(d) − t

)2
.

We then consider the BSDE driven by a Brownian motion X = W with terminal time T = 0.2,
the terminal condition

ξ(WT ) = φ(T,WT )

and driver

f(t, x, y, z) := min{|z|, c} − |∇φ(t, x)| − (∂t +
1

2
△)φ(t, x).

for c := sup(t,x)∈[0,T ]×RD |∇φ(t, x)|, noting that φ is bounded and twice continuously differentiable
with bounded derivatives. It can be easily checked by Itô’s formula that the analytic solution to
this BSDE is given by

Yt = φ(t,Wt)

Z
(d)
t =

∂

∂x(d)
φ(t,Wt) = ϕd(t,Wt) d = 1, . . . , D,

and that the standing assumptions are satisfied.
For a comparison between the MDP algorithm and the SDP algorithm, we calibrate the func-

tion basis and the number of sample paths as functions of the number of time steps N in line
with the complexity analysis of the previous section with ϑ = 1/2 and s = 1. We increase the
number of time steps N and re-run each algorithm 40 times in dimension D = 2. Below we report
the mean-squared errors and the average run times of both algorithms across the 40 repetitions.
More precisely, we proceed in the following way:

Calibration:
We use piecewise linear functions for the approximation of qNi and piecewise constant functions
for the one of zNi in both algorithms. At each time, we set the outer bound of the hypercubes as a
multiple of the standard deviation of the Brownian motion at that time. More precisely, we choose
Cb,i := (2 log(N) + 2)

√
ti at the time ti. As edge length of the cubes we choose δz =

√
T/N

1
2

and δq =
√
T/N

1
4 for the MDP algorithm leading to Kz,i ∈ O(⌈Ri/δz⌉D) = O(N log2(N)) and

Kq,i ∈ O(⌈Ri/δq⌉D) = O(N1/2 log2(N)) at time ti. We re-simulate the sample paths for the
approximation of each conditional expectation and use Mq,i = 10NKq,i ∈ O(N3/2 log2(N)) simu-
lations for Q at time ti and Mz,i = 5N2Kz,i ∈ O(N3 log2(N)) simulations for Z.
We may choose δz, Kz,i and Mz,i for the SDP algorithm in the same way as in the MDP al-
gorithm as well as δq and Kq,i and Mq,i, if ti ̸∈ π. The optimal value of the segment length

parameter is αopt = 2
7 . For the time points in π we choose δq = 1.5

√
T/N− 1

2
+α

4 leading to

Kq,i ∈ O(N1−1/7 log2(N)). As number of simulations for the approximation of Q at these time
points we choose M q,i = N3−2αKq,i ∈ O(N3+2/7 log2(N)).

Measuring the errors:
We measure the mean-squared error (MSE) of both algorithms for the approximation of qNi and
zNi separately and consider the average error over all the time steps. Additionally, we report the

13



approximation error of Y at time zero, which is a relevant quantity in many applications such as
nonlinear option pricing. Precisely, we consider the average over the 40 repetitions of the three
indicators

Cy,av :=
1

N

N−1∑
i=1

∑
H∈Hq,i

∣∣qM,N
i (ΘH)− y(ti,ΘH)

∣∣2P (Xti ∈ H
)

Cy,0 :=
∣∣qM,N

0 (0)− y(0, 0)
∣∣2

Cz,av :=
1

N

N−1∑
i=0

∑
H∈Hz,i

∣∣zM,N
i (ΘH)− z(ti,ΘH)

∣∣2P (Xti ∈ H
)

where ΘH is the center of the cube H, and Hq,i and Hz,i are the sets of cubes used at time ti for
the approximation of qNi and zNi , respectively. We refer to the arithmetic mean of Cy,av and Cz,av
over the 40 repetitions as average mean-squared error in time and analogously to the arithmetic
mean of Cy,0 over the 40 repetitions as mean-squared error at time 0.

(a) average mean-squared error in time for Y . (b) average mean-squared error in time for Z.

(c) mean-squared error for Y at 0. (d) average run time.

Figure 1: Numerical results in dimension D = 2.

Numerical results:
Figure 1 depicts log10-log10-plots of the mean-squared errors (as introduced above) and the average
run times of both algorithms as the number N of time discretization points increases from N = 6
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to N = 30. In view of the results in Theorem 4.2 and the calibration of the algorithms we expect
that the mean-squared errors decrease at the order N−1. The numerical values of the three error
indicators in Figures 1a–1c (blue circles) for the MDP scheme are largely in accordance with this
expected convergence behavior. The numerical results for the SDP scheme (red circles) feature a
convergence rate of N−1 for the average mean-squared error of the Z-component (Figure 1b) but a
faster convergence rate of aboutN−2 for the mean-squared errors of the Y -components (Figures 1a
and 1c). A possible explanation of this excellent empirical convergence rate are potential variance
benefits when running empirical regressions on shorter time segments. Figures 1a and 1c also
illustrate a higher variance of the Y -approximations of the MDP scheme across the repetitions
compared to the SDP scheme. Finally, the average run time over the repetitions are plotted
against the number of time discretization points in Figure 1d. As before, the blue circles and red
circles mark the numerical results for the MDP algorithm and the SDP algorithm, respectively.
The solid lines correspond to the expected run time behavior of N5 for the MDP scheme and
N4+2/7 for the SDP scheme derived from the complexity analysis at the end of Section 4. Taking
into account that log-factors, which have been neglected throughout the complexity analysis,
play a role for small values of N in both algorithms, Figure 1d confirms the theoretical run time
benefits of the SDP scheme in the practical implementation.

Note that this example is only supposed to serve as a proof of concept of the improved
complexity of the SDP scheme compared to the MDP scheme. Parallelization and variance re-
duction techniques can be incorporated analogously to the MDP case and are of prime importance
when implementing regression on local polynomials for higher dimensional problems (of around
D = 10), see, e.g., Gobet et al. (2016).

6 Error analysis

In this section, we present a complete and detailed error analysis of the SDP algorithm. In the
first subsection, we introduce additional notation used in the proofs and present some key tools
for the error analysis. The following subsections are then dedicated to the derivation of error
bounds for the approximation of qN and zN respectively. We will establish a sort of recursion
formula for both parts, allowing us to bound the quadratic error at the time ti by the one at time
ti+1 plus an additional driver-dependent term. This illustrates the error propagation between the
time steps. We will then derive global bounds for the quadratic error for both approximations
before we analyze the driver-dependent terms appearing in both recursions further in Subsection
6.5. Finally, in the last subsection, we combine the obtained bounds to derive the result presented
in Theorem 4.1.

6.1 Preliminaries and key tools

In this section, we discuss some ramifications for the error analysis by introducing additional
objects and presenting key tools for the analysis.
First, recall the definition of the functions qNi and zNi . By setting

ΞNN−1(xN−1) := ξ(xN )

ΞNi (xi) := qNτα(i)(xτα(i)) +

∫ tτα(i)+1

ti+1

f(s, xs, y(s, xs), z(s, xs))ds i ∈ {0, . . . , N − 2}
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for any xi := (xs)ti≤s≤T ∈ (RD)[ti,T ], it holds

qNi (x) = E
[
ΞNi ((Xs)ti≤s≤T )

∣∣Xti = x
]

and

zNi (x) = E

[
∆Wi+1

∆
ΞNi ((Xs)ti≤s≤T )

∣∣∣∣Xti = x

]
.

Note that ΞNi differs from ΞN,Mi in two ways: in the functions ΞN,Mi , the true solution (Y,Z) of
the BSDE is replaced by approximations of the algorithm and the integral is discretized. In order
to make use of properties of the least squares projection, we need the analogs of the least squares
solutions φq

N,M
and φz

N,M
based on the functions ΞN . Since those depend on the whole path of

X rather than just the values on the time grid π additional fictitious simulations are required for
the theoretical error analysis which motivates the following definition:

Definition 6.1. For i ∈ {0, . . . , N − 1}, let Si := {∆W [i,m]
i+1 , X [i,m] : m = 1, . . . ,M} be a cloud of

independent random variables defined on the probability space (ΩM ,FM , PM ) with X [i,m] =

(X
[i,m]
s )ti≤s≤T such that X [i,m] is distributed like a segment of the SDE solution X. Fur-

thermore, we assume that these simulations match the ones used in the SDP algorithm on

the time grid π, i.e., ∆W
[i,m]
i+1 = ∆W

[i,m,N ]
i+1 and X

[i,m]
tj

= X
[i,m,N ]
tj

for all i ∈ {0, . . . , N −
1}, j ≥ i and m ∈ {1, . . . ,Mi}. Then, for every ω ∈ ΩM , let νMi (ω, .) be the measure on(
(RD)[ti,T ] × RD,B

(
(RD)[ti,T ] × RD

))
defined by

νMi (ω,B) :=
1

Mi

Mi∑
m=1

δ(
∆W

[i,m]
i+1 (ω),X[i,m](ω)

)(B)

where δc(.) is the Dirac-measure on c.

The following calculations are done on the probability space (ΩM ,FM , PM ), where we suppose
that there exists a D-dimensional Brownian motion W on (ΩM ,FM , PM ), which is independent
of all simulations and hence also a copy X of the SDE solution independent of the simulations.

Given these additional random variables, we denote with φq
N

i and φz
N

i the solutions of the least-
squares problems

φq
N

i := argmin
ψ∈Kq,i

(
1

M

M∑
m=1

∣∣∣ψ (X [i,m]
ti

)
− ΞNi

(
X [i,m]

)∣∣∣2)

and

φz
N

i := argmin
ψ∈Kz,i

 1

M

Mi∑
m=1

∣∣∣∣∣ψ (X [i,m]
ti

)
−

∆W
[i,m]
i+1

∆
ΞNi

(
X [i,m]

)∣∣∣∣∣
2
 .

Remark 6.2. Recall the functions φq
N,M

i and φz
N,M

i from the SDP algorithm. Since it holds by
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definition of the ghost sample that X
[i,m]
π := (X

[i,m]
tj

)ti<tj∈π = X [i,m,N ], we have

φq
N,M

i = argmin
ψ∈Kq,i

(
1

M

M∑
m=1

∣∣∣ψ (X [i,m]
ti

)
− ΞN,Mi

(
X [i,m]
π

)∣∣∣2)

and

φz
N,M

i = argmin
ψ∈Kz,i

 1

M

Mi∑
m=1

∣∣∣∣∣ψ (X [i,m]
ti

)
−

∆W
[i,m]
i+1

∆
ΞN,Mi

(
X [i,m]
π

)∣∣∣∣∣
2
 ,

i.e., for any fixed outcomes of the simulations X [i,m], both pairs of functions φq
N,M

i and φz
N,M

i ,

and φq
N

i and φz
N

i solve a least squares problem with respect to the same measure νMi (ω, .).

This allows us to utilize the following lemma, which is a key tool in the error analysis. It matches
essentially Proposition 4.12 in Gobet and Turkedjiev (2016) where the domain of the function Ξ
is generalized in order to cover our setting. The proof presented in Gobet and Turkedjiev (2016)
still holds for this setting.

Lemma 6.3. For each ω ∈ ΩM , let (A,A, ν(ω, .)) be a measurable space with

ν(ω, .) =
1

M

M∑
m=1

δχ[m](ω)

for i.i.d random variables χ[1] . . . , χ[M ] : ΩM → A. Furthermore, let K be a linear function space
spanned by Rl-valued basis functions {pk(.), 1 ≤ k ≤ K} with

∑K
k=1E

[
|pk(χ[m])|2

]
< ∞ for all

m. For any FM ⊗ A-measurable, Rl-valued random variable Ξ with Ξ(ω, .) ∈ L2 (A, ν(ω, .)) for
PM -a.e. ω, set

φ(ω, .) := arginf
ψ∈K

1

M

M∑
m=1

∣∣∣ψ (χ[m](ω)
)
− Ξ

(
ω, χ[m](ω)

)∣∣∣2 .
Then:

(i) The mapping Ξ 7→ φ is linear.

(ii) It holds

∥φ∥L2(A,ν(ω,.)) ≤ ∥Ξ∥L2(A,ν(ω,.))

where we denote with ∥.∥L2((A,ν(ω,.)) the L
2-norm with respect to the measure ν(ω, .).

(iii) Suppose G is a sub-σ-field of FM such that
(
pk(χ[1]), . . . , pk(χ[M ])

)
is G-measurable for each

k = 1, . . . ,K. Then

E [φ|G] (ω, .) = argmin
ψ∈K

1

M

M∑
i=1

∣∣∣ψ (χ[m](ω)
)
− ΞG

(
χ[m](ω)

)∣∣∣2
where ΞG(x) := E [Ξ(x)|G].
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(iv) In the situation of (iii), suppose that G is given by σ(g(χ[m])m=1,...,M ) for a A-measurable
function

g : A→ Rl
′
.

Furthermore, assume that there is a sub-σ-field H independent of σ((χ[m])m=1...,M ) such
that Ξ is H ⊗A-measurable and that the conditional variance

E

[∣∣∣Ξ(χ[m]
)
− E

[
Ξ
(
χ[m]

)∣∣∣G ∨H
]∣∣∣2∣∣∣∣G ∨H

]
is PM -almost surely uniformly bounded by some constant σ2 for all m ∈ {1, . . . ,M}. Then

E
[
∥φ− E [φ|G ∨H] ∥2L2(A,ν(ω,.))

∣∣∣G ∨H
]
≤ σ2

K

M
.

While Lemma 6.3 and the objects defined so far help us to utilize projection properties, we still
need tools to handle the dependency on the different sets of simulations used in the algorithm.
For this purpose, we first consider the following norms allowing us to distinguish between the
dependence on simulations or the actual law of the true SDE solution X more clearly:

Definition 6.4. Let φ : ΩM × RD → Rl be FM × B(RD)-measurable. For each i = 0, . . . , N − 1,
define the random norms ∥.∥i,∞ and ∥.∥i,M via

∥φ∥2i,∞ :=

∫
RD

|φ(x)|2PXti
(dx), ∥φ∥2i,M :=

1

M

M∑
m=1

∣∣∣φ(X [i,m]
ti

)∣∣∣2
where PXti

denotes the distribution of Xti .

Note that we are interested in the error with respect to the law of the SDE solution X, i.e., in the
difference between the approximations qN,Mi and zN,Mi , and the functions qNi and zNi respectively
in the ∥.∥i,∞-norm. The following lemma allows us to lead this difference back to the one in
the ∥.∥i,M -norm that appears naturally in the error analysis due to the use of simulations. It
is a straightforward adaptation of Proposition 4.10 in Gobet and Turkedjiev (2016) where the
analogous result is shown for ϵ = 1 instead of ϵ ∈ (0, 1].

Lemma 6.5. It holds for all i = 0, . . . , N − 1 and any ϵ ∈ (0, 1] that

E
[
∥qN,Mi − qNi ∥2i,∞

]
≤ (1 + ϵ)E

[
∥qN,Mi − qNi ∥2i,M

]
+
C1Kq,i log(C2Mi)

Miϵ

E
[
∥zN,Mi − zNi ∥2i,∞

]
≤ (1 + ϵ)E

[
∥zN,Mi − zNi ∥2i,M

]
+

DC1Kz,i log(C2Mi)

∆Miϵ

for positive constants C1, C2 independent of ϵ, ∆, and Mi.

Finally, the following lemma allows us to reduce the dependency on a sampled path of X to only
the value of the sample at one time point ti. A proof can be found in Chapter 5 of Kallenberg
(1997).

Lemma 6.6. Let G and H be independent sub-σ-fields of FM . For l ≥ 1 let F : ΩM × RD → Rl
be bounded and G×B(RD)-measurable and U : ΩM → RD be H-measurable. Then E[F (U)|H] =
j(U) where j(x) = E[F (x)] for all x ∈ RD.
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To see how we can utilize this lemma, note that each sample X [i,m] satisfies

X
[i,m]
ti+s

= X
[i,m]
ti

+

∫ ti+s

ti

b(l,Xl)dl +

∫ ti+s

ti

σ(l,Xl)dW
[i,m]
l

for a Brownian motion W [i,m]. Substituting the time variable and setting W̃u = W
[i,m]
u+ti

−W
[i,m]
ti

leads to

X
[i,m]
ti+s

= X
[i,m]
ti

+

∫ s

0
b(u+ ti, Xu+ti)du+

∫ t−s

0
σ(u+ ti, Xu+ti)dW̃u

which shows that the sample X [i,m] is the solution to a forward SDE starting in ti with ini-

tial value X
[i,m]
ti

with respect to the Brownian motion W̃u. Hence, we can express the path

X [i,m] as a deterministic function h of X
[i,m]
ti

and (W̃u)ti≤u≤T only, i.e., we can write X
[i,m]
s =

h(s,X
[i,m]
ti

, (W̃u)0≤u≤s−ti) for any s ≥ ti. Since the Brownian motion W̃ is independent of

σ(X
[i,m]
ti

), we can then use Lemma 6.6 on the function

F (xti) =

∫ tτ(i)+1

ti+1

f
(
s, h(s, xti , (W̃u)0≤u≤s−ti), Ys, Zs

)
ds

−∆

τ(i)∑
j=i+1

f
(
tj , h(tj , xti , (W̃u)0≤u≤tj−ti), q

N,M
j

(
h(tj , xti , (W̃u)0≤u≤tj−ti)

)
,

zN,Mj

(
h(tj , xti , (W̃u)0≤u≤tj−ti))

))
and get

E
[
ΞNi

(
X [i,m]

)
− ΞN,Mi

(
X [i,m]

)∣∣∣σ(Sj : j > i) ∨ σ
(
X

[i,m]
ti

)]
= E

[
ΞNi
(
Xti

)
− ΞN,Mi

(
Xti

)∣∣∣σ(Sj : j > i), Xti = X
[i,m]
ti

]
(4)

where we set Xti = (Xs)s∈[ti,T ]. Completely analogously, it holds

E

[
∆W

[i,m]
i+1

∆

(
ΞNi (X

[i,m])− ΞN,Mi (X [i,m])
)∣∣∣∣∣σ(Sj : j > i) ∨ σ

(
X

[i,m]
ti

)]

= E

[
∆W

[i,m]
i+1

∆

(
ΞNi (Xti)− ΞN,Mi (Xti)

)∣∣∣∣∣σ(Sj : j > i), Xti = X
[i,m]
ti

]
. (5)

Hence, Lemma 6.6 allows us to reduce the dependency on a sample path to a conditional expec-
tation according to the actual law of X given the value of the sample path at the current time.
We close this section with some abbreviations for the notation: Throughout the rest of this chap-

ter, we denote with FMi := σ(Sk : k > i) ∨ σ(X [i,m]
ti

: m = 1, . . . ,Mi) the σ-field generated by
the simulations used up to the time k (backwards starting from N) for a fixed N ∈ N. With
Fi := σ((Ws)0≤s≤ti) we denote the σ-field generated by the Brownian motion which is indepen-
dent of the simulations. The conditional expectations given those σ-fields we denote with EMi [.] =
E[.|FMi ] and Ei[.] := E[.|Fi]. Additionally, we shorten the notation of the driver f by drop-
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ping clearly indicated function arguments through the notation f(t, x, g, g′) := f(t, x, g(x), g′(x))
for any functions g, g′ : RD → Rl and f(t, x, gt, g

′
t) := f(t, x, (g(t, x), g′(t, x)) for any functions

g, g′ : [0, T ]× RD → Rl.
After these considerations we are ready for the derivation of the error bounds.

6.2 Error of the Q approximation

In this section, we analyze the expected quadratic error of the approximation of qN in the form
of the terms

E
[
∥qN,Mi − qNi ∥2i,M

]
.

We first establish a bound on the error propagation between the time steps, allowing us to express
the expected difference of this term by the one in the next time step. Afterwards, we derive a
local error bound for the term as well as a bound for the global error by bounding the maximum
of the quadratic error terms over all time points ti ∈ π. The first part of the proof, in which we
establish the error propagation, is inspired by the error analysis of the MDP scheme in Gobet
and Turkedjiev (2016).
Error propagation: First, note that

EMi

[
ΞNi

(
X [i,m]

)]
= EMi

[
qNτα(i)

(
X

[i,m]
tτα(i)

)
+

∫ tτα(i)+1

ti+1

f
(
s,X [i,m]

s , ys, zs

)
ds

]

= E

[
qNτα(i)

(
Xtτα(i)

)
+

∫ tτα(i)+1

ti+1

f (s,Xs, Ys, Zs) ds

∣∣∣∣∣Xti = X
[i,m]
ti

]
= qNi

(
X

[i,m]
ti

)
.

Hence, it holds by Lemma 6.3 (iii) that EMi [φq
N

i ] is the least squares projection of qNi on the
subspace Kq,i with respect to the measure νMi , i.e., it holds

EMi

[
φq

N

i

]
= arginf

ψ∈Kq,i

(
1

M

M∑
i=1

∣∣∣ψ (X [i,m]
ti

)
− qNi

(
X

[i,m]
ti

)∣∣∣2) .
Therefore, by the properties of least square projections, qNi −EMi [φq

N

i ] is orthogonal on EMi [φq
N

i ]−
ψq

N,M

i with respect to νMi . Additionally, note that, since ξ and f are bounded due to the assump-
tions (Aξ) and (Af ), it follows by a simple backward recursion that

|qNi (x)| ≤ Cq,i = Cξ + (T − ti+1)Cf ≤ Cq := Cξ + TCf

for all x ∈ RD. We conclude that TCq,i(q
N
i (x)) = qNi (x) and obtain:

E
[
∥qNi (.)− qN,Mi (.)∥2i,M

]
= E

[∥∥∥TCq,i

(
qNi (.)

)
− TCq,i

(
φq

N,M

i (.)
)∥∥∥2

i,M

]
≤ E

[∥∥∥qNi (.)− EMi

[
φq

N

i (.)
]
+ EMi

[
φq

N

i (.)
]
− φq

N,M

i (.)
∥∥∥2
i,M

]
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= E

[∥∥∥qNi (.)− EMi

[
φq

N

i (.)
]∥∥∥2

i,M

]
+ E

[∥∥∥EMi [φqNi (.)
]
− φq

N,M

i (.)
∥∥∥2
i,M

]
≤ E

[∥∥∥qNi (.)− EMi

[
φq

N

i (.)
]∥∥∥2

i,M

]
+ (1 + κ)E

[∥∥∥EMi [φqN,M

i (.)− φq
N

i (.)
]∥∥∥2

i,M

]
+ (1 + κ−1)E

[∥∥∥EMi [φqN,M

i (.)
]
− φq

N,M

i (.)
∥∥∥2
i,M

]
where κ is an arbitrary positive constant. We handle the terms separately:
As argued before, it holds

EMi

[
φq

N

i (.)
]
= arginf

ψ∈Kq,i

∥qNi (.)− ψ(.)∥2i,M .

Hence,

E

[∥∥∥qNi (.)− EMi

[
φq

N

i (.)
]∥∥∥2

i,M

]
= E

[
inf

ψ∈Kq,i

∥∥qNi (.)− ψ(.)
∥∥2
i,M

]
≤ inf

ψ∈Kq,i

1

M

M∑
i=1

E
[∣∣qNi (X [i,m]

ti

)
− ψ

(
X

[i,m]
ti

) ∣∣2]
= inf

ψ∈Kq,i

E
[∣∣qNi (Xti)− ψ(Xti)

∣∣2] .
This term describes the best approximation error due to the projection on the subspace Kq,i and
is part of the final error representation.
For the next term, note that ΞN,Mi is bounded by Cq,i under assumptions (Aξ) and (Af ), since

the approximations qN,Mi are (due to the truncation in the algorithm). Additionally, for each i,

the function ΞN,Mi is built using only the simulations in the sets Sk for k > i. Hence, it follows

directly by Lemma 6.3 (iv) with H = σ(Sk, k > i) and g(X [i,m]) = X
[i,m]
ti

that

E

[∥∥∥EMi [φqN,M

i (.)
]
− φq

N,M

i (.)
∥∥∥2
i,M

]
≤ C2

q,i

Kq,i

Mi
.

Since, as argued before, the functions qNi are bounded by Cq,i as well, we can apply a similar
argument to the functions ΞNi . Those are again built using only the simulations in Sk for k > i.

Setting ξqi (x) := E[ΞN,Mi (Xti)− ΞNi (Xti)|Xti = x,FM0 ], we have by (4) that

EMi

[
ΞN,Mi (X [i,m])− ΞNi (X

[i,m])
]
= ξqi (X

[i,m]
i ).

Then Lemma 6.3 (i) and (iii) imply that

EMi

[
φq

N,M

i (.)− φq
N

i (.)
]
= arginf

ψ∈Kq,i

(
1

M

M∑
i=1

∣∣∣ψ (X [i,m]
ti

)
− ξqi

(
X

[i,m]
ti

) ∣∣∣2) .
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Hence, by Lemma 6.3 (ii) it holds

E
[∥∥EMi [φqN,M

i (.)− φq
N

i (.)
] ∥∥2

i,M

]
≤ E

[∥∥ξqi (.)∥∥2i,M] = E
[
ξqi (Xti)

2
]
.

Plugging in the estimates derived so far we have:

E
[∥∥qNi (.)− qN,Mi (.)

∥∥2
i,M

]
≤ inf

ψ∈Kq,i

E
[(
qNi (Xti)− ψ(Xti)

)2]
+ (1 + κ−1)C2

q,i

Kq,i

Mi
+ (1 + κ)E

[
ξqi (Xti)

2
]
.

(6)

To further estimate E[ξqi (Xti)
2], we have to distinguish between the time points. If the time points

ti and ti+1 are in the same segment defined by πα, i.e., at time points ti such that ti+1 ̸∈ πα, it
holds τα(i) = τα(i+ 1) by our choice of τα and hence:

ΞN,Mi

(
Xti

)
= qN,Mτα(i)

(
Xtτα(i)

)
+

τα(i)∑
j=i+1

∆f
(
tj , Xtj , q

N,M
j , zN,Mj

)
= ΞN,Mi+1

(
Xti+1

)
+∆f

(
ti+1, Xti+1 , q

N,M
i+1 , z

N,M
i+1

)
and

ΞNi
(
Xti

)
= qNτα(i)

(
Xtτα(i)

)
+

∫ tτα(i)+1

ti+1

f (t,Xt, Yt, Zt) dt

= ΞNi+1

(
Xti+1

)
+

∫ ti+2

ti+1

f (t,Xt, Yt, Zt) dt.

This allows us to estimate E[ξqi (Xti)
2] as:

E
[
ξqi (Xti)

2
]

= E

[
E
[
qNτα(i)

(
Xtτα(i)

)
− qN,Mτα(i)

(
Xtτα(i)

)
+

τα(i)∑
j=i+1

∫ tj+1

tj

f (s,Xs, Ys, Zs)− f
(
tj , Xtj , q

N,M
j , zN,Mj

)
ds
∣∣∣FM0 , Xti

]2]

≤ (1 + Γ∆)E

[
E
[
E
[
ΞNi+1(Xti+1

)− ΞN,Mi+1 (Xti+1
)
∣∣∣FM0 , Xti , Xti+1

]∣∣∣FM0 , Xti

]2]
+ (1 +

1

Γ∆
)E

[
E
[ ∫ ti+2

ti+1

f (s,Xs, Ys, Zs)− f
(
ti+1, Xti+1 , q

N,M
i+1 , z

N,M
i+1

)
ds
∣∣∣FM0 , Xti

]2]
≤ (1 + Γ∆)E

[(
ξqi+1(Xti+1)

)2]
+ (1 +

1

Γ∆
)E

[
E
[ ∫ ti+2

ti+1

f (s,Xs, Ys, Zs)− f
(
ti+1, Xti+1 , q

N,M
i+1 , z

N,M
i+1

)
ds
∣∣∣FM0 , Xti

]2]
.

Here we first used Young’s inequality with some constant Γ > 0 that will be specified later and
the tower property of the conditional expectation in the first inequality. Then in the second step,
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we used Jensen’s inequality, the Markov property of X and once more the tower property of
the conditional expectation. The calculation shows that the expected error term E[ξqi (Xi)

2] is
bounded by the one in the next time step and a driver-dependent term.
At time points at the end of a segment, i.e., for time points ti such that ti+1 ∈ πα, the function
ΞN,Mi and ΞN,Mi+1 are defined on different segments and hence the first inequality in the calculations
above does not hold true in this case. However, to get a similar bound, we can once more use
Young’s inequality and a zero addition to get

E
[
(ξqi (Xti))

2
]

= E

[
E
[
qNτα(i)

(
Xtτα(i)

)
− qN,Mτα(i)

(
Xtτα(i)

)
+

∫ ti+2

ti+1

f (s,Xs, Ys, Zs)− f
(
ti+1, Xti+1 , q

N,M
i+1 , z

N,M
i+1

)
ds
∣∣∣FM0 , Xti

]2]
≤ (1 + Γ∆)E

[∥∥qNi+1 − qN,Mi+1

∥∥2
i+1,∞

]
+ (1 +

1

Γ∆
)E

[
E
[ ∫ ti+2

ti+1

f (s,Xs, Ys, Zs)− f
(
ti+1, Xti+1 , q

N,M
i+1 , z

N,M
i+1

)
ds
∣∣∣FM0 , Xti

]2]
≤ (1 + Γ∆)(1 + κ)(1 + ϵ)E

[(
ξqi+1(Xti+1)

)2]
+ (1 +

1

Γ∆
)E

[
E
[ ∫ ti+2

ti+1

f (s,Xs, Ys, Zs)− f
(
ti+1, Xti+1 , q

N,M
i+1 , z

N,M
i+1

)
ds
∣∣∣FM0 , Xti

]2]
+ (1 + Γ∆)

(
E
[∥∥qNi+1 − qN,Mi+1

∥∥2
i+1,∞

]
− (1 + κ)(1 + ϵ)E

[(
ξqi+1(Xti+1)

)2])
+

with positive constants κ and ϵ, which we will specify later. Again we have bounded the error
term E[ξqi (Xti)

2] by the one at the next time point and a driver-dependent term, but now with
an additional error term that depends on the approximation of qN at the time point ti+1. This
additional error term could be expected since the SDP algorithm works on the segment con-
taining ti like the MDP scheme where the correct terminal condition of the BSDE restricted to
the corresponding time segment has been replaced by the approximation qNτα(i) at the time point

τα(i) = ti+1.
Local and global bounds:
Iterating this step leads to the following local and global bounds for the quadratic error of the ap-
proximation of qN , that are stated in terms of the expectations E[ξqi (Xi)

2] for later use. To obtain

a corresponding bound for the terms E[∥qNi − qN,Mi ∥2i,M ], one can simply follow the arguments
that lead to (6) and apply the lemma afterwards.

Lemma 6.7. For a positive constant Γ, set λi := (1 + Γ∆)i(1 + Nα−1)2|{j≤i:tj∈πα}| for i ∈
{0, . . . , N}. It then holds under the standing assumptions that

E
[
(ξqi (Xti))

2
]

≤ λiE
[
(ξqi (Xti))

2
]

≤ (1 +
1

∆Γ
)
N−2∑
j=i

λjE

E [∫ tj+2

tj+1

f (s,Xs, Ys, Zs)− f
(
tj+1, Xtj+1 , q

N,M
j+1 , z

N,M
j+1

)
ds

∣∣∣∣∣FM0 , Xtj

]2
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+ ⌈N1−α⌉λN sup
j∈I

(
E
[∥∥qNj − qN,Mj

∥∥2
j,∞

]
− (1 +Nα−1)2E

[(
ξqj (Xtj )

)2])
+

for all i ∈ {0, . . . , N − 2} and

max
0≤i≤N−1

E
[
(ξqi (Xti))

2
]

≤
N−2∑
j=0

(1 +
1

∆Γ
)λjE

E [∫ tj+2

tj+1

f (s,Xs, Ys, Zs)− f
(
tj+1, Xtj+1 , q

N,M
j+1 , z

N,M
j+1

)
ds

∣∣∣∣∣FM0 , Xtj

]2
+ ⌈N1−α⌉λN max

j∈I

(
(1 +Nα−1)

(
inf

ψ∈Kq,j

E
[∣∣qNj (Xtj )− ψ(Xtj )

∣∣2]+ (1 +N1−α)
C2
q,jKq,j

Mj

)

+
N1−αC1Kq,j log(C2Mj)

Mj

)
.

where I := {i : ti ∈ πα}.

Proof. Iterating the previous calculations where we choose κ = ϵ = Nα−1 yields

E
[
(ξqi (Xti))

2
]
≤ λiE

[
(ξqi (Xti))

2
]

≤ λi+1E
[(
ξqi+1(Xti+1)

)2]
+ λi(1 +

1

∆Γ
)E

E [∫ ti+2

ti+1

f (s,Xs, Ys, Zs)− f
(
ti+1, Xti+1 , q

N,M
i+1 , z

N,M
i+1

)
ds

∣∣∣∣∣FM0 , Xti

]2
+ λi+1

(
E
[∥∥qNi+1 − qN,Mi+1

∥∥2
i+1,∞

]
− (1 +Nα−1)2E

[(
ξqi+1(Xti+1)

)2])
+
1I(i+ 1)

≤ λN−1E
[(
ξqN−1(XtN−1)

)2]
+ (1 +

1

∆Γ
)
N−2∑
j=i

λjE

E [∫ tj+2

tj+1

f (s,Xs, Ys, Zs)− f
(
tj+1, Xtj+1 , q

N,M
j+1 , z

N,M
j+1

)
ds

∣∣∣∣∣FM0 , Xtj

]2
+ ⌈N1−α⌉λN max

j∈I

(
E
[∥∥qNj − qN,Mj

∥∥2
j,∞

]
− (1 +Nα−1)2E

[(
ξqj (Xtj )

)2])
+

.

Then we have by definition E[ξqN−1(XtN−1)
2] = 0 since ΞN,MN−1 = ΞNN−1 and the recursion termi-

nates. This already proves the first statement of Lemma 6.7. Additionally, using Lemma 6.5 with
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ϵ = Nα−1 and the inequality (6) for κ = Nα−1 we have for any j:(
E
[∥∥qNj − qN,Mj

∥∥2
j,∞

]
− (1 +Nα−1)2E

[(
ξqj (Xtj )

)2])
+

≤

(
(1 +Nα−1)E

[∥∥qNj − qN,Mj

∥∥2
j,M

]
+
N1−αC1Kq,j log(C2Mj)

Mj

− (1 +Nα−1)2E

[(
ξqj (Xtj )

)2])
+

≤

(
(1 +Nα−1)

(
inf

ψ∈Kq,j

E
[∣∣qNj (Xtj )− ψ(Xtj )

∣∣2]+ (1 +N1−α)
C2
q,jKq,j

Mj

+(1 +Nα−1)E

[(
ξqj (Xtj )

)2])
+
N1−αC1Kq,j log(C2Mj)

ϵMj
− (1 +Nα−1)2E

[(
ξqj (Xtj )

)2])
+

≤ (1 +Nα−1)

(
inf

ψ∈Kq,j

E
[∣∣qNj (Xtj )− ψ(Xtj )

∣∣2]+ (1 +N1−α)
C2
q,jKq,j

Mj

)
+
N1−αC1Kq,j log(C2Mj)

Mj
.

(7)

The second statement of Lemma 6.7 then follows by plugging in the estimate above in the first
statement and taking the maximum over all time points.

6.3 Error of the Z approximation

Analogously to the previous section, we now analyze the quadratic error of the approximation of
zN via the terms E[∥zNi − zN,Mi ∥2i,M ]. Again, we first establish a bound on the error propagation
between the time steps before deriving global bounds.
Error propagation: While the later steps require changes, we can get an analog of the inequality
(6) by applying the same arguments as before. It holds that

EMi

[
∆W

[i,m]
i+1

∆
ΞNi

(
X [i,m]

)]
= zNi

(
X

[i,m]
ti

)
and therefore, we have by by Lemma 6.3 (iii)

EMi

[
φz

N

i

]
= arginf

ψ∈Kz,i

(
1

M

M∑
i=1

∣∣∣ψ (X [i,m]
ti

)
−

∆W
[i,m]
i+1

∆
zNi

(
X

[i,m]
ti

) ∣∣∣2) . (8)

We conclude that zNi − EMi [φz
N

i ] is orthogonal on EMi [φz
N

i ] − φz
N,M

i with respect to ∥.∥i,M .
Additionally, since |ΞNi | ≤ Cq,i due to assumptions (Aξ) and (Af ), it holds∣∣zN,(d)i (x)

∣∣ ≤ Cz,i =
Cq,i
∆

for each component z
N,(d)
i , d = 1, . . . ,D of zNi , x ∈ RD and i ∈ {0, . . . , N − 1}. With that, we

obtain for an arbitrary κ > 0 that

∆E
[∥∥zNi − zN,Mi

∥∥2
i,M

]
= ∆E

[∥∥TCz,i

(
zNi (.)

)
− TCz,i

(
φz

N,M

i (.)
)∥∥2

i,M

]
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≤ ∆E
[∥∥zNi (.)− EMi

[
φz

N

i (.)
]
+ EMi

[
φz

N

i (.)
]
− φz

N,M

i (.)
∥∥2
i,M

]
= ∆

(
E
[∥∥zNi (.)− EMi

[
φz

N

i (.)
] ∥∥2

i,M

]
+ E

[∥∥EMi [φzNi (.)
]
− φz

N,M

i (.)
∥∥2
i,M

])
≤ ∆

(
E
[∥∥zNi (.)− EMi

[
φz

N

i (.)
] ∥∥2

i,M

]
+ (1 + κ−1) + E

[∥∥EMi [φzN,M

i (.)
]
− φz

N,M

i (.)
∥∥2
i,M

]
+(1 + κ)E

[∥∥EMi [φzN,M

i (.)− φz
N

i (.)
] ∥∥2

i,M

])
.

Once more we handle the appearing terms separately:
First, analogously to the corresponding term in the previous section, it follows due to equation
(8) that

E[∥zNi (.)− EMi [φz
N

i (.)]∥2i,M ] ≤ inf
ψ∈Kz,i

E[|ψ(Xti)− zNi (Xti)|2],

which describes the best approximation error of zN using the basis functions and is part of the
final error representation.
For the next term, note again that ΞN,Mi is bounded by Cq,i for all i ∈ {0, . . . , N − 1}. We
conclude that

EMi

∣∣∣∣∣∆W
[i,m]
i+1

∆
ΞN,Mi (X [i,m])− EMi

[
∆W

[i,m]
i+1

∆
ΞN,Mi (X [i,m])

] ∣∣∣∣∣
2
 ≤ EMi

[∣∣∣∆W [i,m]
i+1

∆
ΞN,Mi (X [i,m])

∣∣∣2]

≤
DC2

q,i

∆
.

Then, since ΞN,Mi is built using only simulations of the clouds Sk for k > i, it follows by Lemma

6.3 (iv) that E[∥EMi [φz
N,M

i ]− φz
N,M

i ∥2i,M ] is bounded by C2
q,i

DKz,i

∆Mi
.

For the last term, we have by (5) that

EMi

[
∆W

[i,m]
i+1

∆

(
ΞN,Mi (X [i,m])− ΞNi (X

[i,m])
)]

= ξzi (X
[i,m]
ti

)

with

ξzi (x) = E

[
∆Wi+1

∆

(
ΞNi (Xti)− ΞN,Mi (Xti)

)∣∣∣∣Xti = x,FM0

]
.

Then, by Lemma 6.3 (i) and (iii), it follows that

EMi

[
φz

N,M

i (.)− φz
N

i (.)
]
= arginf

ψ∈Kz,i

(
1

M

M∑
i=1

∣∣∣ψ (X [i,m]
ti

)
− ξzi

(
X

[i,m]
ti

) ∣∣∣2) .
Hence, by Lemma 6.3 (ii) we have

E
[∥∥EMi [ψzN,M

i − ψz
N

i

] ∥∥2
i,M

]
≤ E

[∥∥ξzi ∥∥2i,M] = E
[
(ξzi (Xti))

2
]
.
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Plugging in the estimates obtained so far we have

∆E
[∥∥zNi − zN,Mi

∥∥2
i,M

]
≤ ∆

(
inf

ψ∈Kz,i

E
[∣∣ψ (Xti)− zNi (Xti)

∣∣2]
+(1 + κ−1)C2

q,i

DKz,i

∆Mi
+ (1 + κ)E

[
(ξzi (Xti))

2
])

.

(9)

Now using the tower property and a zero addition, we get

∆E
[
(ξzi (Xti))

2
]
= ∆E

[
E

[
∆Wi+1

∆

(
ΞN,Mi (Xti)− ΞNi (Xti)

)∣∣∣∣FM0 , Xti

]2]

= ∆E

[
E

[
∆Wi+1

∆
E
[
ΞN,Mi (Xti)− ΞNi (Xti)

∣∣∣FM0 ,Fti+1

]∣∣∣∣FM0 , Xti

]2]

= ∆E

[
E

[
∆Wi+1

∆

(
E
[
ΞN,Mi (Xti)− ΞNi (Xti)

∣∣∣FM0 ,Fti+1

]
−E

[
ΞN,Mi (Xti)− ΞNi (Xti)

∣∣∣FM0 , Xti

])∣∣∣FM0 , Xti

]2]
≤ DE

[
E
[(
E
[
ΞN,Mi (Xti)− ΞNi (Xti)

∣∣∣FM0 ,Fti+1

]
−E

[
ΞN,Mi (Xti)− ΞNi (Xti)

∣∣∣FM0 , Xti

])2∣∣∣∣FM0 , Xti

]]
≤ DE

[
E

[
E
[
ΞN,Mi (Xti)− ΞNi (Xti)

∣∣∣FM0 ,Fti+1

]2∣∣∣∣FM0 , Xti

]
− DE

[
ΞN,Mi (Xti)− ΞNi (Xti)

∣∣∣FM0 , Xti

]2]
.

For the next step we have to distinguish between the time points again. If ti and ti+1 are in the
same segment, i.e., at all time points ti such that ti+1 ̸∈ πα, it holds τα(i) = τα(i+1) and we get
for a Γ > 0 which will be specified later that

∆E
[
(ξzi (Xti))

2
]

≤ DE

E
qτα(i)(Xtτα(i)

)− qN,Mτα(i)
(Xtτα(i)

) +

τα(i)∑
j=i+1

∫ tj+1

tj

f(s,Xs, Ys, Zs)

−f
(
tj , Xtj , q

N,M
j , zN,Mj

)
ds
∣∣∣FM0 ,Fti+1

]2]
−DE

[
E
[
ΞN,Mi (Xi)− ΞNi (Xi)

∣∣∣FM0 , Xti

]2]
≤ (1 + Γ∆)DE

[(
ξqi+1(Xti+1)

)2]
+D(1 +

1

∆Γ
)E

E [∫ ti+2

ti+1

f(s,Xs, Ys, Zs)− f(ti+1, Xti+1 , q
N,M
i+1 , z

N,M
i+1 )ds

∣∣∣∣∣FM0 , Xti

]2
−DE

[
(ξqi (Xti))

2
]
.
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Like in the derivation of the error of the approximation of qN , the last inequality in the calculations
above does not hold true when considering E[ξzi (Xti)

2] at time points ti at the end of a segment,
i.e., ti such that ti+1 ∈ πα. However, by adding and subtracting a multiple of E[(ξqi+1(Xti+1))

2],
we again get the similar bound

∆E
[
(ξzi (Xti))

2
]

≤ D(1 + Γ∆)(1 + κ)(1 + ϵ)E
[(
ξqi+1(Xti+1)

)2]
+D(1 +

1

∆Γ
)E

E [∫ ti+2

ti+1

f(s,Xs, Ys, Zs)− f(ti+1, Xti+1 , q
N,M
i+1 , z

N,M
i+1 )ds

∣∣∣∣∣FM0 , Xti

]2
−DE

[
(ξqi (Xti))

2
]

+D(1 + Γ∆)
(
E
[∥∥qNi+1 − qN,Mi+1

∥∥2
i+1,∞

]
− (1 + κ)(1 + ϵ)E

[(
ξqi+1(Xti+1)

)2])
+

for these time points, with an additional error term that depends on the approximation of qN at
the next time point ti+1. As argued in the analysis of the approximation of qN , this term results
from the single use of an ODP step in the discretization scheme that is used to connect two time
segments.
Next we want to derive a global error bound for the approximation of zN . Since zN appears in
the discretization scheme only as argument of the driver, we state this term as an averaged sum
over the time steps rather than the maximum.

Lemma 6.8. Let Γ be a positive constants and set λi := (1 + Γ∆)i((1 + Nα−1)2|{j≤i:tj∈πα}| for
i ∈ {0, . . . , N − 1}. Then

N−1∑
i=0

∆λiE
[
(ξzi (Xti))

2
]

≤ D

N−2∑
i=0

λi(1 +
1

∆Γ
)E

E [∫ ti+2

ti+1

f(s,Xs, Ys, Zs)− f(ti+1, Xti+1 , q
N,M
i+1 , z

N,M
i+1 )ds

∣∣∣∣∣FM0 , Xti

]2
+ λND⌈N1−α⌉max

j∈I

(
(1 +Nα−1)

(
inf

ψ∈Kq,j

E
[∣∣ψ(Xtj − qNi (Xtj )

∣∣2]+ (1 +N1−α)
C2
q,jKq,j

Mj

)

+
N1−αC1Kq,j log(C2Mj)

Mj

)
.

Proof. First, note that E[(ξzN−1(XtN−1))
2] = 0 by definition since ΞN,MN−1 = ΞNN−1. Then, by

plugging in the estimate for ∆E[(ξzi (Xti))
2] from the analysis of the error propagation where we

choose ϵ = κ = Nα−1 for all i and summing up we get

N−2∑
i=0

∆λiE
[
(ξzi (Xti))

2
]

≤ D

N−2∑
i=0

(
λi+1E

[(
ξqi+1(Xti+1)

)2]
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+ λi(1 +
1

∆Γ
)E

E [∫ ti+2

ti+1

f(s,Xs, Ys, Zs)− f(ti+1, Xti+1 , q
N,M
i+1 , z

N,M
i+1 )ds

∣∣∣∣∣FM0 , Xti

]2
− λiE

[
(ξqi (Xti))

2
]

+ λi(1 + Γ∆)
(
E
[∥∥qNi+1 − qN,Mi+1

∥∥2
i+1,∞

]
− (1 +Nα−1)2E

[(
ξqi+1(Xti+1)

)2])
+
1I(i+ 1)

)

≤ D

N−2∑
i=0

λi(1 +
1

∆Γ
)E

E [∫ ti+2

ti+1

f(s,Xs, Ys, Zs)− f(ti+1, Xti+1 , q
N,M
i+1 , z

N,M
i+1 )ds

∣∣∣∣∣FM0 , Xti

]2
+DλN⌈N1−α⌉ sup

j∈I

(
inf

ψ∈Kq,j

E
[∣∣ψ(Xtj − qNj (Xtj )

∣∣2]− (1 +Nα−1)2E

[(
ξqj (Xtj )

)2])
+

.

Plugging in the estimate for E[∥qNi − qN,Mi ∥2i,∞] from (7) derived in the proof of Lemma 6.7
finishes the proof.

6.4 Bounds for the driver-dependent terms

In this section, we derive a bound for the sum of the terms

E

E [∫ ti+2

ti+1

f (s,Xs, Ys, Zs)− f
(
ti+1, Xti+1 , q

N,M
i+1 , z

N,M
i+1

)
ds

∣∣∣∣∣FM , Xti

]2
over the time steps that appears in the bounds of Lemma 6.7 and 6.8. For this purpose, note
that for any i ∈ {0, . . . , N − 1}, it holds by Fubini’s theorem

E

E [∫ ti+2

ti+1

f (s,Xs, Ys, Zs)− f
(
ti+1, Xti+1 , q

N,M
i+1 , z

N,M
i+1

)
ds

∣∣∣∣∣FM0 , Xti

]2
≤ E

[(∫ ti+2

ti+1

Ei
[
f (s,Xs, Ys, Zs)− f

(
ti+1, Xti+1 , q

N
i+1, z

N
i+1

)]
+ E

[
f
(
ti+1, Xti+1 , q

N
i+1, z

N
i+1

)
− f

(
ti+1, Xti+1 , q

N,M
i+1 , z

N,M
i+1

)∣∣∣FM0 , Xti

]
ds

)2
]

≤ 2E

(∫ ti+2

ti+1

Ei
[
f (s,Xs, Ys, Zs)− f

(
ti+1, Xti+1 , q

N
i+1, z

N
i+1

)]
ds

)2


+ 2∆2E

[
E
[
f
(
ti+1, Xti+1 , q

N
i+1, z

N
i+1

)
− f

(
ti+1, Xti+1 , q

N,M
i+1 , z

N,M
i+1

)∣∣∣FM0 , Xti

]2]
.

Then, by the Lipschitz assumption on f we get

E

[
E
[
f
(
ti+1, Xti+1 , q

N
i+1, z

N
i+1

)
− f

(
ti+1, Xti+1 , q

N,M
i+1 , z

N,M
i+1

)∣∣∣FM0 , Xti

]2]
≤ 2L2

fE

[
E
[∣∣qNi+1(Xti+1)− qN,Mi+1 (Xti+1)

∣∣∣∣∣FM0 , Xti

]2
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+E
[∣∣zNi+1(Xti+1)− zN,Mi+1 (Xti+1)

∣∣∣∣∣FM0 , Xti

]2]
≤ 2L2

f

(
E
[∥∥qNi+1 − qN,Mi+1

∥∥2
i+1,∞

]
+ E

[∥∥zNi+1 − zN,Mi+1

∥∥2
i+1,∞

])
.

Hence it holds

N−2∑
i=0

λiE

E [∫ ti+2

ti+1

f (s,Xs, Ys, Zs)− f
(
ti+1, Xti+1 , q

N,M
i+1 , z

N,M
i+1

)
ds

∣∣∣∣∣FM0 , Xti

]2
≤

N−2∑
i=0

λi2E

(∫ ti+2

ti+1

Ei
[
f (s,Xs, Ys, Zs)− f

(
ti+1, Xti+1 , q

N
i+1, z

N
i+1

)]
ds

)2


+
N−2∑
i=0

λi4∆
2L2

f

(
E
[∥∥qNi+1 − qN,Mi+1

∥∥2
i+1,∞

]
+ E

[∥∥zNi+1 − zN,Mi+1

∥∥2
i+1,∞

])

≤
N−2∑
i=0

λi2E

(∫ ti+2

ti+1

Ei
[
f (s,Xs, Ys, Zs)− f

(
ti+1, Xti+1 , q

N
i+1, z

N
i+1

)]
ds

)2


+ 4∆L2
fT max

0≤i≤N−1
λiE

[∥∥qNi+1 − qN,Mi+1

∥∥2
i+1,∞

]
+ 4∆L2

f

N−1∑
i=1

λi∆E
[∥∥zNi+1 − zN,Mi+1

∥∥2
i+1,∞

]
≤ 2λNR

N + 4∆L2
fT max

0≤i≤N−1
λiE

[∥∥qNi+1 − qN,Mi+1

∥∥2
i+1,∞

]
+ 4∆L2

f

N−1∑
i=1

λi∆E
[∥∥zNi+1 − zN,Mi+1

∥∥2
i+1,∞

]
with

RN :=

N−2∑
i=0

E

(∫ ti+2

ti+1

Ei
[
f (s,Xs, Ys, Zs)− f

(
ti+1, Xti+1 , q

N
i+1, z

N
i+1

)]
ds

)2


as defined in Theorem 4.1. The term RN does not depend on our approximation of the BSDE but
only on the real solution Y,Z, the semi-continuous versions qN , zN and the solution of the forward
SDE X. It can be bounded in different ways depending on the regularity of these functions, which
leads to the different bounds of the total quadratic error in Theorem 4.2 and 4.3.

6.5 Final error bounds

Using the bounds derived throughout this section, we are now ready to proof Theorem 4.1.

Proof. Proof of Theorem 4.1:
In the following calculations, c denotes a positive constant that does not depend on N and may
change from line to line. First, we can write the quadratic error as

max
0≤i≤N−1

E
[∣∣qNi (Xti)− qN,Mi (Xti)

∣∣2]+ N−1∑
i=0

∆E
[∣∣zN (Xti)− zN,Mi (Xti)

∣∣2]
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≤ max
0≤i≤N−1

λiE
[∣∣qNi (Xti)− qN,Mi (Xti)

∣∣2]+ N−2∑
i=0

∆λiE
[∣∣zN (Xti)− zN,Mi (Xti)

∣∣2]
= max

0≤i≤N−1
λiE

[∥∥qNi − qN,Mi

∥∥2
i,∞

]
+
N−1∑
i=0

∆λiE
[∥∥zNi − zN,Mi

∥∥2
i,∞

]
.

We can now estimate this term by Lemma 6.5 with ϵ = 1 as

max
0≤i≤N−1

λiE
[∥∥qNi − qN,Mi

∥∥2
i,∞

]
+
N−1∑
i=0

∆λiE
[∥∥zNi − zN,Mi

∥∥2
i,∞

]
≤ max

0≤i≤N−1

(
2λiE

[∥∥qNi − qN,Mi

∥∥2
i,M

]
+ λi

C1Kq,i log(C2Mi)

Mi

)
+
N−2∑
i=0

2∆λiE
[∥∥zNi − zN,Mi

∥∥2
i,M

]
+∆λi

C1Kz,i log(C2Mi)

∆Mi
.

By the inequalities (6) and (9) we then get with the choice κ = 1

max
0≤i≤N−1

λiE
[∥∥qNi − qN,Mi

∥∥2
i,∞

]
+
N−1∑
i=0

∆λiE
[∥∥zNi − zN,Mi

∥∥2
i,∞

]
≤ λN max

0≤i≤N−1

(
4
Cq,iKq,i

Mi
+ 2 inf

ψ∈Kq,i

E
[∣∣qNi (Xti)− ψ(Xti)

∣∣2]+ C1Kq,i log(C2Mi)

Mi

)
+

N−1∑
i=0

∆λi

(
4
C2
q,iKz,i

∆Mi
+ 2 inf

ψ∈Kz,i

E
[∣∣zNi (Xti)− ψ(Xti)

∣∣2]+ C1Kz,i log(C2Mi)

∆Mi

)

+ 4

(
max

0≤i≤N−1
λiE

[
(ξqi (Xti))

2
]
+
N−1∑
i=0

∆λiE
[
(ξzi (Xti))

2
])

.

Now the bounds in Lemma 6.7 and Lemma 6.8 yield

max
0≤i≤N−1

λiE
[
(ξqi (Xti))

2
]
+
N−1∑
i=0

∆λiE
[
(ξzi (Xti))

2
]

≤
N−2∑
i=0

(1 +
1

∆Γ
)λiE

E [∫ ti+2

ti+1

f (s,Xs, Ys, Zs)− f
(
ti+1, Xti+1 , q

N,M
i+1 , z

N,M
i+1

)
ds

∣∣∣∣∣FM0 , Xti

]2
+ ⌈N1−α⌉λN max

j∈I

(
(1 +Nα−1)

(
inf

ψ∈Kq,i

E
[∣∣qNi (Xti)− ψ(Xti)

∣∣2]+ (1 +N1−α)
C2
q,iKq,j

Mj

)

+
N1−αC1Kq,j log(C2Mj)

Mj

)

+D

N−2∑
i=0

λi(1 +
1

∆Γ
)E

E [∫ ti+2

ti+1

f (s,Xs, Ys, Zs)− f
(
ti+1, Xti+1 , q

N,M
i+1 , z

N,M
i+1

)
ds

∣∣∣∣∣FM0 , Xti

]2
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+ λND⌈N1−α⌉max
j∈I

(
(1 +Nα−1)

(
inf

ψ∈Kq,i

E
[∣∣qNi (Xti)− ψ(Xti)

∣∣2]+ (1 +N1−α)
C2
q,iKq,j

Mj

)

+
N1−αC1Kq,j log(C2Mj)

Mj

)

=

N−2∑
i=0

(1 +D)(1 +
1

∆Γ
)λiE

E [∫ ti+2

ti+1

f (s,Xs, Ys, Zs)− f
(
ti+1, Xti+1 , q

N,M
i+1 , z

N,M
i+1

)
ds

∣∣∣∣∣FM0 , Xti

]2
+ (1 +D)⌈N1−α⌉λN max

j∈I

(
(1 +Nα−1)

(
inf

ψ∈Kq,i

E
[∣∣qNi (Xti)− ψ(Xti)

∣∣2]+ (1 +N1−α)
C2
q,iKq,j

Mj

)

+
N1−αC1Kq,j log(C2Mj)

Mj

)
.

By plugging in the bounds derived in Section 6.4, we can estimate this term further as

max
0≤i≤N−1

λiE
[
(ξqi (Xti))

2
]
+
N−1∑
i=0

∆λiE
[
(ξzi (Xti))

2
]

≤
N−2∑
i=0

(1 +D)(1 +
1

∆Γ
)λiE

E [∫ ti+2

ti+1

f (s,Xs, Ys, Zs)− f
(
ti+1, Xti+1 , q

N,M
i+1 , z

N,M
i+1

)
ds

∣∣∣∣∣FM0 , Xti

]2
+ (1 +D)⌈N1−α⌉λN max

j∈I

(
(1 +Nα−1)

(
inf

ψ∈Kq,i

E
[∣∣qNi (Xti)− ψ(Xti)

∣∣2]+ (1 +N1−α)
C2
q,iKq,j

Mj

)

+
N1−αC1Kq,j log(C2Mj)

Mj

)

≤
[
(∆ +

1

Γ
)(1 +D)

]
4(T ∨ 1)L2

f

(
max

0≤i≤N−1
λiE

[∥∥qNi − qN,Mi

∥∥2
i,∞

]
+
N−2∑
i=0

∆λiE
[∥∥zNi − zN,Mi

∥∥2
i,∞

])

+

[
(∆ +

1

Γ
)(1 +D)

]
∆−1λNR

N

+ ⌈N1−α⌉λN (1 +D)max
j∈I

(
(1 +Nα−1)

(
inf

ψ∈Kq,i

E
[∣∣qNi (Xti)− ψ(Xti)

∣∣2]+ (1 +N1−α)
C2
q,jKq,j

Mj

)

+
N1−αC1Kq,j log(C2Mj)

Mj

)
.

Now, assuming that N and Γ are sufficiently large such that [(∆ + 1
Γ)(1 +D)]16L2(T ∨ 1) ≤ 1

2 ,
we have

max
0≤i≤N−1

E
[∥∥qNi − qN,Mi

∥∥2
i,∞

]
λi +

N−1∑
i=0

λiE
[∥∥zNi − zN,Mi

∥∥2
i,∞

]
∆
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≤ 1

2

(
max

0≤i≤N−1
E
[∥∥qNi − qN,Mi

∥∥2
i,∞

]
λi +

N−1∑
i=0

λiE
[∥∥zNi − zN,Mi

∥∥2
i,∞

]
∆

)

+ cλN⌈N1−α⌉max
j∈I

(
(1 +Nα−1)

(
inf

ψ∈Kq,i

E
[∣∣qNi (Xti)− ψ(Xti)

∣∣2]+ (1 +N1−α)
C2
q,jKq,j

Mj

)

+
N1−αC1Kq,j log(C2Mj)

Mj

)

+ cλN max
0≤i≤N−1

(
inf

ψ∈Kq,i

E
[∣∣qNi (Xti)− ψ(Xti)

∣∣2]+ Kq,i

Mi
+
Kq,i log(Mi)

Mi

+ inf
ψ∈Kz,i

E
[∣∣zNi (Xti)− ψ(Xti)

∣∣2]+ Kz,i

∆Mi
+
Kz,i log(Mi)

∆Mi

)
+ c∆−1λNR

N .

Considering that λN is bounded by a constant independent of N , since

λN =

(
1 +

TΓ

N

)N (
1 +Nα−1

)2⌈N1−α⌉

≤ eTΓN
−1Ne2⌈N

1−α⌉Nα−1
= eTΓ+4,

this implies

max
0≤i≤N−1

E
[∣∣qNi (Xti)− qN,Mi (Xti)

∣∣2]+ N−2∑
i=0

∆E
[∣∣zNi (Xti)− zN,Mi (Xti)

∣∣2]
≤ cmax

i∈I

(
N1−α inf

ψ∈Kq,i

E
[∣∣ψ(Xti)− qNi (Xti)

∣∣2]+N2−2αKq,i

Mi
+N2−2αKq,i log(C2Mi)

Mi

)
+ c max

0≤i≤N−1

(
inf

ψ∈Kq,i

E
[∣∣ψ(Xti)− qNi (Xti)

∣∣2]+ inf
ψ∈Kz,i

E
[∣∣ψ(Xti)− zNi (Xti)

∣∣2]
+
Kq,i

Mi
+N

Kz,i

Mi
+
Kq,i log(C2Mi)

Mi
+N

Kz,i log(C2Mi)

Mi

)
+ cNRN

and finishes the proof.
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