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This online complement contains the proofs of Theorems 4.1 and 4.2.

1 Proof of Theorem 4.2

We first show that
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under the standing assumptions. Since
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this follows directly from Theorem 4.1 if we can prove the bounds
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and RY < c¢A?. We start with the bound for RY and use Holder’s inequality to get
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Then, due to the Lipschitz continuity (respectively Holder continuity in t) of f, it holds
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and we consider the terms in the integrand separately for an arbitrary s € [ti11,tivo):

By choice of the time grid, it obviously holds that |s — ;11| < A and, under the assumptions on
b and o, it follows that E;[(Xs — Xy,,,)%] < (s —tit1) < cA (see e.g. Kloeden and Platen, 1992).
Then, by the definition of QZJ»YH and a zero addition, we get:
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To estimate the difference Z; — z | (X, ,,), we define for each i € {0,..., N — 1} the random
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which can be used to express the quadratic difference as
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Here, the second equality follows by the Ito-isometry and the measurablility of Yy, ,, the following
inequality due to the boundedness of f and Hoélder’s inequality. Plugging in the obtained bounds
we have
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Then, using the the L2-regularity of BSDEs (see Zhang, 2001), which states
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what proves the bound for RY. Note that the inequalities (2) and (1) together with the L2
regularity of BSDEs (see Zhang, 2001) in particular also imply that
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The final step of the proof of Theorem 4.2 is to obtain the modified representation of the
regression error. To this end note that
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hold true for each i € {0,..., N — 1}, whenever z is Lipschitz continuous in = and %—Hélder
continuous in t. For the bound regarding y, we directly get by the definition of q{V and the
boundedness assumption on f that
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For the bound concerning z, we get by inequality (2)
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where we used Holder’s inequality in the first step, the continuity assumptions on z along with
Fubini’s theorem in the second inequality and denote the Lipschitz constant of Z with L,.

2 Proof of Theorem 4.3

Similarly to the proof of Theorem 4.2, we have
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and RN < ¢A3 for the first statement of Theorem 4.3. We focus on the bound on RY and derive
the bounds in (3) along the way. It suffices to show that
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In order to prove (4), we set for arbitrary but fixed ¢; € w and s € [t;, t;41]
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Then, a Taylor expansion of f yields
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where V f denotes the gradient and Hess; the Hessian matrix of f. Using that f has bounded
derivatives and a is F;-measurable we obtain
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and it suffices to show that it holds |E;[(a) —a®)P]| < cA forl € {1,...,2D+2} and p € {1,2}.
This is trivial for [ = 1,...,D + 1, since W is a Brownian motion and the step width of the
time grid is A. For the remaining values of [, we either have a() — a) = g(s, W) — gV (W,,)
or a) —al = z (s, W,) - Zﬁv’(d)(Wti) for a d € {1,...,D}. We first consider the terms
y(s, Ws) - aiV(Wt)
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By the definition of g, we get for p € {1,2} with Holder’s inequality that
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where we used that f is uniformly bounded by Cy in the last step. Note that for s = ¢;, this
shows in particular that
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which is the first part of the bound in (3). We now set a, := (s, Ws(l), e S(D))T and a, =
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Here we used that the derivatives of 3 are bounded by a constant C, and that it holds for the
entries of a, — ay
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since W is a Brownian motion. In the case p = 1, we have to continue the Taylor expansion an
additional step and get similarly:
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Now V7(ay) is F;-measurable and E;[(a, —a,)] = (s—1;,0,...,0)T, since W; — W, is independent
of F;, and has expectation 0. Additionally, using that ¥ has bounded derivatives, we conclude

1+® 1

1 1
B (5(s, W)~ 3t Wi))] < G+ 3 3 OB [I(a® — a2 B [I(af) — af)P?]
dl 1
< cA.
It remains to show that FE;[(z @) (s, Wy) — 2N (W, )(d))p} is bounded by a multiple of A for p €

{0,1}. For this, we first rewrite the d — th Component of Z z by a Taylor expansion on y as

AW
A 2 y(tl-‘rl: Wti+1)

Ei\[’(d) = F;

1 9? (e) Oy le= & (e)
+5 0 2@ a0 It W) (AW ) (AWL) + 5 > GVt Wi ) (AW ) A

+ 57t WA + o / (1-0) <%y(ti +OA, Wy, + OAW; 1) A3
0

o° _ (©) 0 (k)
aw(e)ﬁx(l)ax(k) y(ti + GAv Wti + @AVVi+1)(AWz—i-l)(AWz-i-l)(AVVz—H)

®
T~

o

-

D
0’ (e) 6
+ (;1 o Ut O Wi+ OAW: 1) (AW (AW )A

D
»* (€) \ A2
+ Zl my(tl +OA, Wy, + OAW; 1) (AW, 1)A >d@)

Since the derivatives of ¥ are F;-measurable when evaluated in (¢;, Wy,) and the components of

Wi, — Wy, are independent with mean 0 each, most terms in the right hand side of the equality
above vanish and we get
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It is straightforward to check that |Rp| < c¢A. Then, since Z(s, W) = V,7(s, Ws), where V,7
denotes the vector of first degree partial derivatives of § with respect to (), ..., z(P) it follows
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The term Ei[%y(s,Ws) - %@(ti, W,))P] is for p € {1,2} bounded by cA for a constant ¢
not depending on A, which follows by the same calculations used for the term E;[(y(s, W) —
y(ti, We,))P] where we have to replace 7 by its first partial derivative ﬁ@. Note that the Taylor
expansion than uses the derivatives of ¥ up to degree 3, which still all exist are bounded by
assumption. This finishes the proof of (4) and hence the bound on R¥. Also, note that (5) for
s = t; shows in particular that

E; [(z(d) (ti, Wy,) — ng,(@)ﬂ < eA

which completes the proof of the bound in (3).

It remains to show that, whenever § bounded and s+ 1 times differentiable with bounded deriva-
tives, the functions @N and ZIN are bounded as well and are respectively s + 1 and s times
differentiable with bounded derivatives. For this, we can simply use that the components of
AW, are independent and Gaussian-distributed with mean 0 and variance A each. Hence we
have
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Then, since 7 is differentiable in x with bounded derivative, we can partial differentiate under the
integral and get
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foreach d € {1,..., D}, which shows that GZN is continuous differentiable with bounded derivative.

The same argumentation can be applied for the higher order derivatives.
Next, we consider the first coordinate of Z)V as the derivatives of the others follow analogously.
By the definition of EZN and Fubini’s theorem, we have
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Since 7 is bounded by assumption, integration by parts leads to

N _GE9) 1 G g
o= - / v v L L
d=2
_ _ =N
=& [833( yUltien, @ +2) W, _x] = ,m 1 (@)

Hence the statement for z follows by the one for qZ
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