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Abstract

In this work we show how results from stochastic integration with respect to multi-
fractional Brownian motion (mBm) can be simply deduced from results of stochastic
integration with respect to fractional Brownian motion (fBm), by using a“Transfer
Principle”. To illustrate this fact, we prove an Itô formula for integral wrt mBm by
deriving it from Itô formula for integral wrt fBm, of any Hurst index H in (0, 1).

Keywords: Fractional and multifractional Brownian motions, White Noise theory, Wick-Itô
integral

1 Introduction
1.1 Fractional and multifractional Brownian motions
Fractional Brownian motion (fBm) is a centered Gaussian process with features that make it
a useful model in various applications such as financial and Internet traffic modeling, image
analysis and synthesis, physics, geophysics and more. These features include self-similarity,
long range dependence and the ability to match any prescribed constant local regularity. For
any H in (0, 1), the covariance function of a fBm of Hurst index H, denoted RH , reads:

RH(t, s) := γH

2 (|t|2H + |s|2H − |t − s|2H),

where γH is a positive constant1. The fact that most of the properties of fBm are governed by
the single real H restricts its application in some situations. In particular, its Hölder exponent
remains the same all along its trajectory. This does not seem to be adapted to describe ade-
quately phenomena that may have different regularity along the time. For instance, it seems
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better to model natural terrains with a 3-dimensional Gaussian process, the regularity of which
can vary along the time, instead of using a 3-dimensional fBm with a single constant parameter
H. In addition, long range dependence requires H > 1/2, and thus imposes paths smoother
than the ones of Brownian motion. Multifractional Brownian motion was introduced to over-
come these limitations. The basic idea is to replace the real H of (0, 1) by a deterministic
function t 7→ h(t) ranging in (0, 1). Several definitions of mBm exist (e.g. [16, 2, 17]) and the
reader interested in the evolution of these definitions may refer to [15]. Let first recall that a
fractional Brownian field is a Gaussian process B := (B(t, H))(t,H)∈R×(0,1) such that, for every
H in (0, 1), the process BH := (B(t, H))t∈R is a fractional Brownian motion. A multifractional
Brownian motion is simply a “path traced” on a fractional Brownian field. More precisely, it is
defined as follows. Let h : R → (0, 1) be a deterministic and continuous function. The mBm
of functional parameter h, noted Bh := (Bh

t )t∈R, is defined by setting: Bh
t := B(t, h(t)), for

every real t. A word on notation: BH
. or Bh(t)

. will always denote an fBm with Hurst index
H or h(t), while Bh

. will stand for an mBm. Hence it is clear that Bh
t = B

h(t)
t , for every real

t. The function h gives the regularity of the mBm at any point t. We will say that a mBm is
normalized when its covariance function, denoted Rh, is given by:

Rh(t, s) =
c2

ht,s

ch(t)ch(s)

[1
2
(
|t|2ht,s + |s|2ht,s − |t − s|2ht,s

)]
(1.1)

where ht,s := h(t)+h(s)
2 and where, for every x in (0, 1), cx :=

(2 cos(πx)Γ(2−2x)
x(1−2x)

) 1
2 . As one can

see, mBm does not point out one single Gaussian process but a class of Gaussian processes.
Through this paper, and in order to simplify computations, we will chose a particular mBm
(see (3.4)).

1.2 Approximation of mBm by piecewise fBms
Since an mBm is just a continuous path “traced” on a fractional Brownian field, it is a natural
question to enquire whether it may be approximated by patching adequately chosen fBms, and
in which sense. The answer to this question has been given in [15, Theorem 2.1]. Before giving
the precise result, we need to introduce some additional notations. Let T > 0. Let (qn)n∈N be
an increasing sequence of integers, which tends to +∞, such that q0 := 1. For n in N, define
x(n) := {x

(n)
k ; k ∈ J0, qnK} where x

(n)
k := kT

qn
(for integers p and q with p < q, Jp, qK denotes the set

{p, p + 1, · · · , q}). Define, for n in N, the partition An := {[x(n)
k , x

(n)
k+1); k ∈ J0, qn − 1]]} ∪ {x

(n)
qn }.

Thus A := (An)n∈N is a sequence of partitions of [0, T ] with mesh size that tends to 0 as n
tends to +∞. For t in [0, T ] and n in N there exists a unique integer p in J0, qn − 1K such that
x

(n)
p ≤ t < x

(n)
p+1. We will note x

(n)
t the real x

(n)
p in the sequel. The sequence (x(n)

t )n∈N converges
to t as n tends to +∞. Besides, define for n in N, the function hn : [0, T ] → (0, 1) by setting
hn(T ) = h(T ) and, for any t in [0, T ), hn(t) := h(x(n)

t ). The sequence of step functions (hn)n∈N
converges pointwise to h on [0, T ]. Define, for t in [0, T ] and n in N, the process

Bhn
t := B(t, hn(t)) =

qn−1∑
k=0

1[x(n)
k

,x
(n)
k+1)(t) B(t, h(x(n)

k )) + 1{T }(t) B(T, h(T )). (1.2)

Heuristically, we divide [0, T ) into “small” intervals [ti, ti+1), and replace on each of these Bh

by the fBm BHi where Hi := h(ti). Note that, despite the notation, the process Bhn is not an
mBm, as hn is not continuous. We believe however there is no risk of confusion in using this
notation. Bhn is almost surely càdlàg and discontinuous at times x

(n)
k , k in J0, qnK. Define the
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hypothesis H as follow.

∀[a, b] × [c, d] ⊂ R × (0, 1), ∃(Λ, δ) ∈ (R∗
+)2, s.t.Tobewritten!Tobewritten!Tobewritten!

Tobewritten!Tobewritten!E[(B(t, H) − B(s, H ′))2] ≤ Λ
(
|t − s|2c + |H − H ′|δ

)
, (H)

for all (t, s, H, H ′) ∈ [a, b]2 × [c, d]2.

The following approximation theorem, which is a corollary of [15, Theorem 2.1], shows that a
mBm naturally appears as a limit of sums of fBms.

Theorem 1.1 (Approximation theorem). Let B be a fractional Brownian field, h : R → (0, 1)
be a continuous deterministic function and Bh be the associated mBm. Let [a, b] be a compact
interval of R, A be a sequence of partitions as defined above, and consider the sequence of
processes defined in (1.2). Then:

1. If B is such that the map R : (t, H, s, H ′) 7→ E[B(t, H) B(s, H ′)] is continuous on
([a, b] × h([a, b]))2 then the sequence of processes (Bhn)n∈N converges in L2(Ω) to Bh,i.e.

∀t ∈ [a, b], lim
n→+∞

E
[(

Bhn
t − Bh

t

)2] = 0.

2. If B satisfies assumption (H) and if h is β-Hölder continuous for some positive real β,
then the sequence of processes (Bhn)n∈N converges

(i) in law to Bh, i.e. {Bhn
t ; t ∈ [a, b]} law−−−−−→

n→+∞
{Bh

t ; t ∈ [a, b]}.

(ii) almost surely to Bh, i.e. P
(
{∀t ∈ [a, b], lim

n→+∞
Bhn

t = Bh
t }
)

= 1.

1.3 Integral with respect to mBm as a sum of integrals with
respect to fBm

The results presented in Theorem 1.1 above suggest that one may define stochastic integrals
with respect to mBm as limits of integrals with respect to approximating fBms. This is actually
true and has been established in [15, Theorem 3.3], not only in the framework of Wick-Itô
integral but also in the Skorohod and pathwise ones.
From now one, and for the remaining part of this paper we assume that h : [0, T ] → (0, 1)
is a deterministic function of class C1. The integral of a process Y with respect to a fBm of
Hurst index H, using White Noise Theory is named fractional Wick-Itô integral and denoted∫

[0,T ] Yt d⋄BH
t or

∫ T
0 Yt d⋄BH

t in the sequel. The integral of a process Y with respect to a
mBm of functional parameter h, using White Noise Theory is named multifractional Wick-Itô
integral and denoted

∫
[0,T ] Yt d⋄Bh

t or
∫ T

0 Yt d⋄Bh
t in the sequel. The fractional Wick-Itô integral

was developed in [3, (26)] in the framework of Pettis integral and has been particularized
in the framework of Bochner integral in [11, Def.3.2.]. The multifractional Wick-Itô integral
has been developed in the framework of Pettis integral in [14] and has been particularized in
the framework of Bochner integral in [11] and in [15]. The exact definition and meaning of
these integrals will be given in Section 3.3. The way used in [15] to construct an integral wrt
mBm using approximating integrals wrt fBms, that will be denoted Ih

p0(T ) and named limiting
fractional Wick-Itô integral in the sequel, is the following. Keeping in mind the notations given
at the begining of Section 1.2, we denote

∫ T
0 Ys d⋄Bhn

s the integral with respect to lumped fBms
i.e. ∫ T

0
Ys d⋄Bhn

s :=
qn−1∑
k=0

∫ T

0
1[x(n)

k
,x

(n)
k+1)(s) Ys dB

⋄h(x(n)
k

)
s , n ∈ N. (1.3)
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In other words,
∫ T

0 Ys d⋄Bhn
s is just a sum of integrals with respect to fBm of different Hurst

indices. Then, assuming the following quantities exist, in a sense to be precised in Section 3.3,
we set

Ih
p0(T ) := lim

n→∞

∫ T

0
Ys d⋄Bhn

s +
∫ T

0
h′(s) Ys ⋄ ∂B

∂H (s, h(s)) ds,

where ⋄ denotes the Wick product and ∂B
∂H is the derivative of the field B, with respect to its

second variable. Besides, [15, Theorem 4.8] shows that the multifractional Wick-Itô integral of
any process Y , can be obtained as limits of fractional Wick-Itô integral. This means that one
has the following equality. ∫ T

0
Yt d⋄Bh

t = Ih
p0(T ).

Since the limiting fractional Wick-Itô integral does coincide with the multifractional Wick-
Itô integral built in [14], the motivation of the present work thus appears clearly and can be
summarized in the two following questions.

• If we can derive the existence of a multifractional Wick-Itô integral from limiting fractional
Wick-Itô integrals, can we derive some formulas involving stochastic integrals wrt mBm
from the same formulas, but involving stochastic integrals wrt fBm, by simply taking the
limit?

• If the answer is positive, do we just have to use the limiting argument used in [15] to do
so?

Outline of the paper
This paper is structured as follow. We will briefly present, in the next section, the Transfer
Principle, as well as, the Itô formula for integral with respect to mBm, which derives from
it. The proof of the transfer principle will be presented and proved in Section 4.The required
technical background on White Noise Theory, and on integral with respect to fBm and mBm is
presented Section in 3. The auxiliary results required on fractional fields are given in Section
5. Finally, an Itô formula for integral with respect to mBm, holding in L2(Ω) is established,
in Section 6, as a consequence of the transfer principle. A short appendix on Bochner integral
completes this work.

2 Itô’s formula for mBm via the transfer principle
We are now ready to present the main application of the transfer principle. Denote, for any q
in N, C1,q([0, T ] × R, R) the set of functions of two variables which belongs to, C1([0, T ], R)
as function of their first variable, and to Cq(R, R), as function of their second variable (such
that ∂i+jf

∂ti∂xj is continuous on [0, T ] × R). In all this section, let T > 0 be fixed and let f be in
C1,2([0, T ] × R, R). If there exists (C, λ) in (R∗

+)2, such that:

∀(t, x) ∈ [0, T ] × R, max
{∣∣f(t, x)

∣∣, ∣∣∂f
∂t (t, x)

∣∣, ∣∣∂f
∂x (t, x)

∣∣, ∣∣∂2f
∂x2 (t, x)

∣∣} ≤ Ceλx2
, (EC,λ)

we will write that f fulfills (EC,λ) or shortly that (EC,λ) is fulfilled. Starting from Itô formula
with respect to fBm, established in [4, Theorem 5.3], and which reads:

f(T, BH
T ) = f(0, 0) +

∫ T

0

∂f

∂t
(t, BH

t ) dt +
∫ T

0

∂f

∂x
(t, BH

t ) d⋄BH
t + H

∫ T

0

∂2f

∂x2 (t, BH
t ) t2H−1 dt,

(2.1)
our goal is to prove the following Itô formula for mBm.
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Theorem 2.1. Let h : [0, T ] → (0, 1) be a function of class C1. Assume moreover that there
exist C > 0 and λ in (0, (4 max

(t,H) ∈ Dh
T

t2H)−1) such that (EC,λ) holds. Then the following equality

holds in (L2):

f(T, Bh
T ) = f(0, 0) +

∫ T

0

∂f

∂t
(t, Bh

t ) dt +
∫ T

0

∂f

∂x
(t, Bh

t ) d⋄Bh
t + 1

2

∫ T

0

∂2f

∂x2 (t, Bh
t ) R′

h(t) dt,

(2.2)
where Rh denotes the variance function of the mBm Bh, R′

h its derivative and Dh
T := [0, T ] ×

h([0, T ]).

Let’s now briefly state the transfer principle which allows to prove the Itô formula for Multifrac-
tional Brownian Motion introduced above, from (2.1). B := (B(t, H))(t,H)∈Dh

T
still denote the

fractional Brownian field introduced at Section 1. Denote (S)∗ the set of Hida Distributions.
Let X, Y, Z : [0, T ] × (0, 1) → (S)∗ be three (S)∗-valued fields. Given a C1-function, denoted
h : [0, T ] → (0, 1), we denote Xh

t for X(t, h(t)) and we identify the constant function t 7→ H
with the real number H. We moreover assume that the following equation holds in (S)∗, for
every t ∈ [0, T ] and H in Im(h),

dXH
t = Y H

t d⋄BH
t + ZH

t dt.

In other words, one has:

XH
t = XH

0 +
∫ t

0
Y H

s ⋄ W H
s ds +

∫ t

0
ZH

s ds. (2.3)

Under suitable assumptions, one can go from the previous equality (where h ≡ H is a constant
function) to the following equality, which holds in (S)∗ and involved a non necessarily constant
function h.

Theorem 2.2. For every t ∈ [0, T ] and under two assumptions,

Xh
t = Xh

0 +
∫ t

0
Y h

s ⋄ W h
s ds +

∫ t

0
Zh

s ds +
∫ t

0
h′(s)

Å
∂X

∂H
(s, h(s)) − Y h

s ⋄ ∂B
∂H

(s, h(s))
ã

ds︸ ︷︷ ︸
=:“Multifractional Correction Term”

. (2.4)

Thus, the only thing we have to do, to go from the fractional Stochastic differential Equation
(2.3) to the multifractional differential Equation (2.4) is to:

- replace H by h in (2.3)

- Add a Multifractional Correction Term

The importance of both Theorem 2.1 and 2.2 lies in the fact that: starting with any method
that provides a stochastic integral wrt fBm (such as White Noise Theory, Skorohod integral,
pathwise integral ...), we can derive an entire stochastic calculus wrt mBm, only using the
existing stochastic calculus wrt fBm. This in particular includes Itô and Tanaka formulas both
in (L2) and in the sense of stochastic distributions or Hida’s sense (see [14, 15] as well as [14,
Theorem 6.1] and in [13, Theorems 3.4 & 4.1]). Beyond the result of both Theorem 2.1 and 2.2,
the proof of these latters is important since it shows how one can effectively derive, starting
from a known formula that involves stochastic integral wrt fBm, the analogue formula but where
stochastic integral wrt fBm have been replaced by stochastic integral wrt mBm. This way of
proceeding from stochastic integral wrt fBm to stochastic integral wrt mBm is independent of
the integration method chosen (White Noise Theory, Skorohod integral, pathwise integral...)
was foreshadowed from the results presented in [15].
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3 Technical background
3.1 Background on White Noise Theory
The following subsection being on purpose extremely short. The reader who is no familiar with
white noise theory should refer to [10] and references therein.
Define the measurable space (Ω, F) by setting Ω := S

′(R) and F := B(S ′(R)), where B
denotes the σ-algebra of Borel sets. Denotes µ the unique probability measure on (Ω, F) such
that, for every f in L2(R), the map < ., f >: Ω → R defined by < ., f > (ω) =< ω, f > (where
<, > continuously in L2(R) extends the action of tempered distributions on Schwartz functions)
is a centered Gaussian random variable with variance equal to ∥f∥2

L2(R) under µ. We also denote
(L2) the space L2(Ω, G, µ) where G is the σ-field generated by (< ., f >)f∈L2(R), and for every
n in N, define the n−th Hermite function by en(x) := (−1)n π−1/4(2nn!)−1/2ex2/2 dn

dxn (e−x2).
Denote A the operator defined on S (R) by A := − d2

dx2 +x2+1 and Γ(A) the second quantization
operator of A (see [10, Section 4.2]). Denote, for φ in (L2), ∥φ∥2

0 := ∥φ∥2
(L2) and, for n in N, let

Dom(Γ(A)n) be the domain of the n−th iteration of Γ(A). Define the family of norms (∥ ∥p)
p∈Z

by:
∥Φ∥p := ∥Γ(A)pΦ∥0 = ∥Γ(A)pΦ∥(L2), ∀p ∈ Z, ∀Φ ∈ (L2) ∩ Dom(Γ(A)p).

For p in N, define (Sp) := {Φ ∈ (L2) : Γ(A)pΦ exists and belongs to (L2)} and define (S−p) as
the completion of the space (L2) with respect to the norm ∥ ∥−p. As in [10], we let (S) denote
the projective limit of the sequence ((Sp))p∈N and (S)∗ the inductive limit of the sequence
((S−p))p∈N. This means that we have the equalities (S) = ∩

p∈N
(Sp) (resp. (S)∗ = ∪

p∈N
(S−p))

and that convergence in (S) (resp. in (S)∗) means convergence in (Sp) for every p in N (resp.
convergence in (S−p) for some p in N ).
The space (S) is called the space of stochastic test functions and (S)∗ the space of Hida dis-
tributions. Since (S)∗ is the dual space of (S). We will note <<, >> the duality bracket be-
tween (S)∗ and (S). If ϕ and Φ both belong to (L2) then we have the equality << Φ, φ >>=
< Φ, φ >(L2) = E[Φ φ]. A function Φ : R → (S)∗ is called a stochastic distribution process, or
an (S)∗−process, or a Hida process. A Hida process Φ is said to be differentiable at t0 ∈ R if
lim
r→0

r−1(Φ(t0 + r) − Φ(t0)) exists in (S)∗.
The S-transform of an element Φ of (S∗), noted S(Φ), is defined as the function from S (R) to
R given, for every η in S (R), by S(Φ)(η) :=<< Φ, : e<.,η> :>>, where : e<.,η> : is, by definition,
e<.,f>− 1

2 |f |20 and where (| |p)
p∈Z is the family norms defined by

|f |2p :=
+∞∑
k=0

(2k + 2)2p < f, ek >2
L2(R), ∀(p, f) ∈ Z × L2(R).

Finally for every (Φ, Ψ) ∈ (S)∗ × (S)∗, there exists a unique element of (S)∗, called the Wick
product of Φ and Ψ and noted Φ ⋄ Ψ, such that S(Φ ⋄ Ψ)(η) = S(Φ)(η) S(Ψ)(η) for every η in
S (R). We will use a lot the following results in the sequel.

Lemma 3.1. For any (p, q) in N2 and (X, Y ) in (S−p) × (S−q),

|S(X ⋄ Y )(η)| ≤ ∥X∥−p ∥Y ∥−q e|η|2max{p;q} .

Lemma 3.2. [10, Remark 2 p.92] For every p in N∗, c in [1, ∞) and every integer q ≥ p + 1,
the following inequality holds for all X and Y in (S−p)

∥X ⋄ Y ∥−q ≤ c ∥X∥−p ∥Y ∥−p. (3.1)
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3.2 Background on operators MH and on the derivative of a
Gaussian process

We now introduce two operators, denoted MH and ∂MH
∂H , that will prove useful for the definition

of the integral with respect to fBm and mBm.

Operators MH and ∂MH

∂H

Let H be a fixed real in (0, 1) and recall that cH has been defined right after (1.1). Follow-
ing [5] and references therein, define the operator MH , specified in the Fourier domain, by◊�MH(u)(y) :=

√
2π

cH
|y|1/2−H û(y) for every y in R∗. This operator is well defined on the ho-

mogeneous Sobolev space of order 1/2 − H, denoted L2
H(R) and defined by L2

H(R) := {u ∈
S ′(R) : û ∈ L1

loc(R) and ∥u∥H < +∞}, where the norm ∥ ∥H derives from the inner prod-
uct <, >H defined on L2

H(R) by < u, v >H := 1
c2

H

∫
R |ξ|1−2H“u (ξ) “v (ξ) dξ. The definition of

the operator ∂MH
∂H is quite similar. More precisely, define for every H in (0, 1), the space

ΓH(R) := {u ∈ S ′(R) : û ∈ L1
loc(R) and ∥u∥δH(R) < +∞}, where the norm ∥ ∥δH(R) derives

from the inner product on ΓH(R) defined by setting:

< u, v >δH
:= 1

c2
H

∫
R

(βH + ln |ξ|)2 |ξ|1−2H “u (ξ) “v (ξ) dξ.

Following [14], define the operator ∂MH
∂H from (ΓH(R), <, >δH(R)) to (L2(R), <, >L2(R)), in the

Fourier domain, by: ◊�∂MH
∂H (u)(y) := −(βH + ln |y|)

√
2π

cH
|y|1/2−H û(y), for every y in R∗. It is

easy to verify that the Gaussian field B := (B(t, H))t∈[0,T ], defined by setting:

B(t, H) :=< ., MH(1[0,t]) >, (3.2)

is a fractional Brownian field. Indeed, define Ĥ := H+H′

2 and having in mind the definition of
R given in Theorem 1.1, the proof of [14, Lemma 3.2 (ii)] allows us to write that:

R(t, H, s, H ′) := E[B(t, H)B(s, H ′)] = < MH(1[0,t]), MH′(1[0,s]) >L2(R)

=
c2

Ĥ
cHcH′

[1
2
(
|t|2“H + |s|2“H − |t − s|2“H)]. (3.3)

for every (s, t, H, H ′) in R2 × (0, 1)2. Thus, the processes BH := (BH
t )t∈[0,T ] and Bh :=

(Bh
t )t∈[0,T ], defined by:

BH
t := B(t, H); and Bh

t := B
h(t)
t := B(t, h(t)) (3.4)

are, respectively, a fBm of Hurst index H and a mBm of functional parameter h. Thanks to
[15, Propositions 3.1, 3.2 and Remark 3] we know that, for every t in [a, b] ⊂ R, the map
H 7→ B(t, H) is C1, in the L2(Ω) sense, from (0, 1) to L2(Ω). Moreover, for all [a, b] × [c, d] ⊂
R × (0, 1), there exists (Λ, δ) ∈ (R∗

+)2, such that, for all (t, s, H, H ′) ∈ [a, b]2 × [c, d]2,

E[(B(t, H) − B(t′, H ′))2] ≤ Λ
Ä
|t − t′|2c + |H − H ′|δ

ä
. (3.5)

In particular the time derivative of BH
t and Bh

t are the (S)∗-valued process defined by setting:

W H
t :=

+∞∑
k=0

MH(ek)(t) < ., ek >, (3.6)

W h
t :=

+∞∑
k=0

Mh(t)(ek)(t) < ., ek > + h′(t)
+∞∑
k=0

(∫ t

0
∂MH
∂H (ek)(s)

∣∣
H=h(t)ds

)
< ., ek >, (3.7)
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where both equalities hold in (S)∗. The (S)∗-process W H := (W H
t )t∈[0,T ] is called fractional

white noise while W h := (W h
t )t∈[0,T ] is called multifractional white noise. Note moreover that

(3.7) may be written as:
W h

t = W
h(t)
t + h′(t) · ∂B

∂H
(t, h(t)), (3.8)

where W
h(t)
t is nothing but W H

t |H=h(t) and where the equality holds in (S)∗. For more details
on the properties of MH and ∂MH

∂H one may refer to [14, Sections 2.2 and 4.2].

3.3 Background on integrals with respect to fBm and mBm
We give below the definition of both fractional Wick-Itô integral and multifractional Wick-
Itô integral (or Wick-Itô integrals wrt fBm and mBm), in the framework of Bochner integral.
Readers who are not familiar with Bochner integral may refer to Appendix 6.2.
Let G := (Gt)t∈[0,T ] be either a fBm of Hurst index H or a mBm with functional parameter h.

Definition 1 (Wick-Itô integral wrt to G, in the Bochner sense). Let I be a Borel subset of
[0, T ], and Y := (Yt)t∈I be an (S)∗-valued process. Denote W (G) := (W (G)

t )t∈[0,T ] the derivative,
in Hida’s sense of the process G. Assume that:

(i) there exists p ∈ N such that Yt ∈ (S−p) for almost every t ∈ I, .

(ii) the process t 7→ Yt ⋄ W
(G)
t is Bochner integrable on I.

then, Y is said to be Bochner-integrable with respect to G on I and its integral, denoted∫
I Ys d⋄Gs is an element of (S)∗, which is defined by setting:∫

I
Ys d⋄Gs :=

∫
I

Ys ⋄ W (G)
s ds. (3.9)

As it has been shown in [11, Lemma 3.1] (resp. in [11, Remark 5.1]), the Bochner integrability of
an (S)∗-valued process Y is a simple condition that ensures the Wick-Itô integrability of Y with
respect to a fBm of any Hurst index H in (0, 1) (resp. wrt a mBm with any C1 deterministic
function h).

Remark 1. In order to keep the name given in [5] and in [14], and since the Pettis and
Bochner integrals both coincide, when they both exist, there is no risk of confusion by calling
fractional Wick-Itô integral the Wick-Itô integral wrt fBm, in the Bochner sense. It is the same
for multifractional Wick-Itô integral and the Wick-Itô integral wrt mBm, in the Bochner sense
Moreover, and in order to simplify notations, we will denote W H

s instead of W
(BH)
s and W h

s

instead of W
(Bh)
s , for every real s.

Integral with respect to mBm as a sum of integrals with respect
to fBm
The way used in [15] to construct an integral wrt mBm using approximating integrals wrt fBms,
that will be denoted

∫ T
0 Yt d⋄Bh

t and that will be named limiting fractional Wick-Itô integral,
is the following. For any integer p0, define the set Λp0 by setting:

Λp0 := {Y := (Yt)t∈[0,T ] ∈ (S−p0)R : Y is Bochner integrable of index p0 on [0, T ]}.

Having in mind the expression of
∫ T

0 Ys d⋄Bhn
s , given in (1.3), we can now give a rigorous

definition of limiting fractional Wick-Itô integral.
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Theorem-Definition 3.3. (Limiting fractional Wick-Itô integral [15], Corollary 4.7) For any
fixed integer p0 and any element Y := (Yt)t∈[0,T ] in Λp0, the quantity:

Ih
p0(T ) := lim

n→∞

∫ T

0
Yt d⋄Bhn

t +
∫ T

0
h′(t) Yt ⋄ ∂B

∂H
(t, h(t)) dt,

where the limit and the equality both hold in (S)∗, is well-defined and belongs to (S)∗.

The multifractional Wick-Itô integral of Y built in Definition 1, can be obtained as limit of
fractional Wick-Itô integrals. More precisely we have the following result, stated in [15, Theorem
4.8].

Theorem 3.4. Let Y := (Yt)t∈[0,T ] be a Bochner integrable process of index p0 in N. Then Y
is integrable wrt mBm in both senses of Definition 1 and Theorem-Definition 3.3. Moreover the
following equality holds in (S)∗. ∫ T

0
Yt d⋄Bh

t = Ih
p0(T ),

where, once again, the limit and the equality both hold in (S)∗.

Since both quantities
∫ T

0 Yt d⋄Bh
t and Ih

p0(T ) are equal, we will use only the notation
∫ T

0 Yt d⋄Bh
t

for both the multifractional Wick-Itô integral and the limiting fractional Wick-Itô integral Ih
p0(T )

in the sequel.

Remark 2. The reader interested in the main properties of the limiting fractional Wick-Itô
integral integral may refer to [11, Section 4] as well as to [15, Sections 3 & 4]. Moreover a
complete comparison between the limiting fractional Wick- Itô integral and the multifractional
integral wrt mBm defined in [14] can be found in [11, Section 5].

4 The Transfer principle
Let’s now describe the transfer principle, a consequence of which will be an Itô formula for
Multifractional Brownian Motion. This latter result will be proved in Section 6.
B := (B(t, H))(t,H)∈Dh

T
still denote the fractional Brownian field introduced at Section 1. Let

p0 be a positive integer and let X, Y, Z be three fields

X, Y, Z : [0, T ] × (0, 1) → (S−p0)

such that:

Y & Z are both continuous in H and
∫ T

0
( sup
H∈K

∥Y (t, H)∥−p0 + sup
H∈K

∥Z(t, H)∥−p0)dt < ∞,

(FY,Z)
for every compact interval K ⊂ (0, 1).

Denote ∂X

∂H
: [0, T ] × (0, 1) → (S−p0) the partial derivative of X with respect to H, when it

exists. We will make another assumption on X which is:

X is partially differentiable in H & ∂X

∂H
: [0, T ] × (0, 1) → (S−p0) is continuous in both variables.

(FX)
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All Hida processes below are supposed to be weakly measurable. Given a C1-function, denoted
h : [0, T ] → (0, 1), we denote Xh

t for X(t, h(t)) and we identify the constant function t 7→ H
with the real number H.
We moreover assume that the following equation holds in (S)∗, for every t ∈ [0, T ] and H in
Im(h),

XH
t = XH

0 +
∫ t

0
Y H

s ⋄ W H
s ds +

∫ t

0
ZH

s ds. (4.1)

One can think about (4.1) as:
dXH

t = Y H
t d⋄BH

t + ZH
t dt.

Note however that only Equation (4.1) has a clear and rigorous meaning. The following result
constitutes the main result of this section.

Theorem 4.1. Under both Assumptions (FY,Z) and (FX), the following equality holds in (S)∗.
For every t ∈ [0, T ],

Xh
t = Xh

0 +
∫ t

0
Y h

s ⋄ W h
s ds +

∫ t

0
Zh

s ds +
∫ t

0
h′(s)

Å
∂X

∂H
(s, h(s)) − Y h

s ⋄ ∂B
∂H

(s, h(s))
ã

ds︸ ︷︷ ︸
=:“Multifractional Correction Term”

. (4.2)

Proof. We here mainly follow [11, Section 4]. A standard argument, as in [11, Lemma 3.1],
shows that all integrals in (4.1)–(4.2) exist in (S)∗. Let hn still denote the function defined at
(1.2), for the piecewise constant approximation of h on [0, t] instead of [0, T ]. Then, thanks to
[11, Theorem 4.1], one can write:∫ t

0
Y h

s ⋄ W h
s ds −

∫ t

0
h′(s)Y h

s ⋄ ∂B

∂H
(s, h(s))ds = lim

n→∞

∫ t

0
Y h

s ⋄ W hn
s ds =: I, (4.3)

where the last limit stands in (S)∗. Now, for sufficiently large q ∈ N, one can write:

J (q)
n (t) :=

∥∥∥∥∫ t

0
Y h

s ⋄ W hn
s ds −

∫ t

0
Y hn

s ⋄ W hn
s ds

∥∥∥∥
−q

≤

∥∥∥∥∥∥
qn−1∑
k=0

∫ x
(n)
k+1

x
(n)
k

(Y h(s)
s − Y hn(s)

s ) ⋄ W hn
s ds

∥∥∥∥∥∥
−q

≤
qn−1∑
k=0

∫ x
(n)
k+1

x
(n)
k

∥∥∥(Y h(s)
s − Y hn(s)

s ) ⋄ W hn(s)
s

∥∥∥
−q

ds

≤
qn−1∑
k=0

∫ x
(n)
k+1

x
(n)
k

∥∥∥(Y h(s)
s − Y hn(s)

s )
∥∥∥

−p0

∥∥∥W hn(s)
s

∥∥∥
−2

ds =
∫ t

0

∥∥∥Y h(s)
s − Y hn

s

∥∥∥
−p0

∥∥∥W hn
s

∥∥∥
−2

ds

≤ sup
(u,H)∈Dh

t

∥W H
u ∥−2

∫ t

0
∥Y h

s − Y hn
s ∥−p0 ds −→

n→∞
0, (4.4)

by dominated convergence and the assumptions made on Y .
Besides, writing (4.1) with (t, H) = (x(n)

k+1, h(x(n)
k )), then with (t, H) = (x(n)

k , h(x(n)
k )) and finally

subtracting the latter one to the first one, we get:∫ x
(n)
k+1

x
(n)
k

Y
h(x(n)

k
)

s ⋄ W
h(x(n)

k
)

s ds = X
h(x(n)

k
)

x
(n)
k+1

− X
h(x(n)

k
)

x
(n)
k

−
∫ x

(n)
k+1

x
(n)
k

Z
h(x(n)

k
)

s ds.

We then add up this latter equality from k = 0 up to k = qn−1 and hence get:∫ t

0
Y hn

s ⋄ W hn
s ds =

qn−1∑
k=0

Å
X

h(x(n)
k

)
x

(n)
k+1

− X
h(x(n)

k
)

x
(n)
k

ã
−

∫ t

0
Zhn

s ds. (4.5)
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On the other hand, we can write:

Xh
t − Xh

0 = X(t, h(t)) − X(0, h(0))

=
qn−1∑
k=0

Ä
X
Ä
x

(n)
k+1, h(x(n)

k+1)
ä

− X
Ä
x

(n)
k+1, h(x(n)

k )
ää

+
qn−1∑
k=0

Ä
X
Ä
x

(n)
k+1, h(x(n)

k )
ä

− X
Ä
x

(n)
k , h(x(n)

k )
ää

=:
qn−1∑
k=0

A
(n)
k +

qn−1∑
k=0

B
(n)
k . (4.6)

Gathering (4.5) and (4.6), one can write:∫ t

0
Y hn

s ⋄ W hn
s ds = Xh

t − Xh
0 −

qn−1∑
k=0

A
(n)
k −

∫ t

0
Zhn

s ds.

and thus, using (4.3) and (4.4),

I = lim
n→∞

∫ t

0
Y hn

s ⋄ W hn
s ds = Xh

t − Xh
0 + lim

n→∞

(
qn−1∑
k=0

Å
X

h(xn
k )

x
(n)
k+1

− X
h(x(n)

k+1)

x
(n)
k+1

ã
−

∫ t

0
Zhn

s ds

)
. (4.7)

The convergence of (
∫ t

0 Zhn
s ds)n∈N to

∫ t
0 Zh

s ds, in (S)∗, is just a consequence of the assumptions
made on the process Z and an even simpler reasoning than the one provided in (4.4). Hence,
the sequence involving only the sums converges as well. Moreover, (4.7) now reads:

Xh
t = Xh

0 + I +
∫ t

0
Zh

s ds + lim
n→∞

qn−1∑
k=0

Å
X

h(x(n)
k+1)

x
(n)
k+1

− X
h(x(n)

k
)

x
(n)
k+1

ã
. (4.8)

In view of (4.3), one then has:

Xh
t = Xh

0 +
∫ t

0
Y h

s ⋄W h
s ds+

∫ t

0
Zh

s ds−
∫ t

0
h′(s)Y h

s ⋄ ∂B

∂H
(s, h(s))ds+ lim

n→∞

qn−1∑
k=0

Å
X

h(x(n)
k+1)

x
(n)
k+1

− X
h(x(n)

k
)

x
(n)
k+1

ã
.

(4.9)
As convergence of the sequence has already been argued we only need to identify the limit by
means of the S-transform.

fη(s, h(s)) := S(X(s, h(s)))(η).
A straight consequence of (FX) is that, for every η in S (R), the map s 7→ S(X(s, h(s)))(η) is
C1-differentiable on [0, t]. Using the properties of S-transform2, as well as fundamental Theorem
of calculus to the S-transform, we can write, for every (a, b) in [0, t]2,

S(X(b, h(b)))(η) − S(X(b, h(a)))(η) = fη(b, h(b)) − fη(b, h(a)) =
∫ b

a

∂fη

∂r2
(b, h(u)) · h′(u) du

=
∫ b

a
S
(

∂X
∂H (b, h(u))

)
(η) · h′(u) du = S

Å∫ b

a

∂X

∂H
(b, h(u)) · h′(u) du

ã
(η).

(4.10)

The integrability of S
(

∂X
∂H (t, h(u))

)
(η) · h′(u) results from the C1-differentiability of the map

s 7→ S(X(s, h(s)))(η). Applying (4.10) for (a, b) = (x(n)
k , x

(n)
k+1) and taking the sum from 0 to

qn−1, we get

S

(
qn−1∑
k=0

Å
X

h(x(n)
k+1)

x
(n)
k+1

− X
h(x(n)

k
)

x
(n)
k+1

ã)
(η) = S

Å∫ t

0

∂X

∂H
(ū(n), h(u)) · h′(u) du

ã
(η).

2see e.g. [14, Lemma 2.6]
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where ū(n) denotes the rounding to the closest point larger or equal to u in the qn-th par-

tition. The convergence, in (S)∗, of
qn−1∑
k=0

Å
X

h(x(n)
k+1)

x
(n)
k+1

− X
h(x(n)

k
)

x
(n)
k+1

ã
is granted since (4.8). This

ensures us that
∫ t

0

∂X

∂H
(ū(n), h(u)) · h′(u) du is also convergent in (S)∗. The equality between

limn→∞

∫ t

0

∂X

∂H
(ū(n), h(u)) · h′(u) du and

∫ t

0

∂X

∂H
(u, h(u)) · h′(u) du is just a consequence of the

assumptions made on ∂X

∂H
and an even simpler reasoning than the one provided in (4.4). The

uniform continuity of the field X on Dh
t therefore allows us to write:

lim
n→∞

qn−1∑
k=0

Å
X

h(x(n)
k+1)

x
(n)
k+1

− X
h(x(n)

k
)

x
(n)
k+1

ã
= lim

n→∞

∫ t

0

∂X

∂H
(ū(n), h(u)) · h′(u) du =

∫ t

0

∂X

∂H
(u, h(u)) · h′(u) du,

where the convergence holds in (S)∗. Thus (4.9) now reads:

Xh
t = Xh

0 +
∫ t

0
Y h

s ⋄ W h
s ds +

∫ t

0
Zh

s ds −
∫ t

0
h′(s)Y h

s ⋄ ∂B

∂H
(s, h(s))ds +

∫ t

0

∂X

∂H
(u, h(u)) · h′(u) du,

which is nothing but (4.2) and thus ends the proof.

5 Proof of auxiliary results
Until the end of this paper, M will denote an universal positive constant, that may differ from
a line to another, but which is independent of all parameters n, k, η, ....

5.1 Auxiliary results on White Noise Theory
The following results will be used extensively in the next section to establish the Itô formula
stated in Equality (2.2).
Let us start with a result given in [9, p.217 − 218] and which is a consequence of the Cameron-
Martin shift.

Fact 1. Let X :=
+∞∑
k=0

ak < ., ek > and Y :=
+∞∑
k=0

bk < ., ek > be two Gaussian random variables.

Since E[: e<.,η> :] = 1, for every η in S (R), we can define a probability measure, denoted Qη,
by setting:

dQη

dµ

def=: e<.,η> : .

Moreover, it is easy to check that:

LQη

(X,Y ) = Lµ
(X+S(X)(η),Y +S(Y )(η)), (5.1)

i.e. that the law of (X, Y ), under the probability measure Qη, is the same as the law of (X +
S(X)(η), Y + S(Y )(η)), under the probability measure µ.

The result presented in the following lemma, that will be used in the next section, is very well-
known although it is usually formulated in terms of Malliavin calculus (see e.g. [8, Proposition
4.7]), we provide below an elementary proof which does not make use of Malliavin derivatives.
One can also refer to [7] to see how one applies this result in an SPDE’s framework.
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Lemma 5.1. Let X :=
+∞∑
k=0

ak < ., ek > and Y :=
+∞∑
k=0

bk < ., ek > be two Gaussian random

variables and let j : R → R be a a map of class C1, the derivative of which is denoted j′. If
there exists (C, λ) in (R∗

+)2, such that:

∀x ∈ R, |k(x)| ≤ Ceλx2
, (5.2)

for every k in {j, j′} and where λ < (4 E[X2])−1, then the following equality holds in (L2):

j(X) · Y = j(X) ⋄ Y + E[X · Y ] j′(X). (5.3)

Proof. Denote (σ1, σ2) the couple of positive reals defined by σ2
1 := E[X2], σ2

2 := E[Y 2].
Denote σ1,2 := E[XY ] and d2 := σ2

1 σ2
2 − σ2

1,2. We recall that, for every positive real number σ

and every γ in [0, 1
2σ2 ), we have the following equality:

Iγ,σ2 := E[eγZ2 ] = 1√
1 − 2γσ2

, (5.4)

where Z ⇝ N (0, σ2). Let k be fixed in {j, j′}. For any ε in (0, 2), one can write:

E[(k(X) Y )2] ≤
Å

E
[
|k(X)|2−ε]

ã 2
1−ε/2

·
(
E
[
|Y |2+ε]

) 2
1+ε/2 (5.5)

Since Y is a centered Gaussian random variable, it is clear that one can write:

E
[
|Y |2+ε] ≤ 1 + E

[
|Y |41|Y |≥1] ≤ 1 +

√
105 σ2

2. (5.6)

Besides, using (5.4), one gets:

E
[
|k(X)|2−ε] ≤ C2−ε · E

[
e(2−ε)λX2 ] = C2−ε · (1 − 2λ(2 − ε) · E[X2])−1/2 (5.7)

The use of (5.4) here is authorized since the inequality λ < (4 E[X2])−1, which is provided by
the assumption, allows us to prove that the right hand side of the following equivalence holds:

λ(2 − ε) ∈ (0, (2σ2
1)−1) ⇐⇒ 0 < 4λσ2

1 − 2ελσ2
1 < 1.

The right hand side quantity of (5.7) is therefore finite for the same reasons. This proves
that both j(X) · Y and j′(X) · Y belongs to (L2). Moreover, replacing Y by 1 in (5.5) allows
us to state that both j(X) and j′(X) belongs to (L2). Since j(X) ⋄ Y belongs to (S)∗, it is
sufficient, in order to establish (5.3), to show that both right and left members have the same
S-transform. Let η be in S (R), define s1 := S(X)(η), s2 := S(Y )(η), I := S(j(X) · Y )(η) and
J := S(j(X) ⋄ Y + E[X · Y ] · j′(X))(η), . Thanks to (5.1) we get:

I = EQη [j(X) Y ] = E[j(X + S(X)(η)) (Y + S(Y )(η))]

=
∫

R2
j(x + s1) (y + s2) 1

2π
√

d2
e

−1
2d2 (σ2

2x2+σ2
1y2+σ1,2xy) dx dy

= s2

σ1
√

2π

∫
R

j(x + s1) e
−x2

2σ2
1 dx + σ1,2

σ3
1

√
2π

∫
R

j(x + s1) x e
−x2

2σ2
1 dx

= s2√
2π

∫
R2

j(σ1 u + s1) e−u2/2 du + σ1,2

σ3
1

√
2π

∫
R

j(x + s1) x e
−x2

2σ2
1 dx =: I1 + I2. (5.8)
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An integration by parts allows us to write that:

I2 = σ1,2√
2π

∫
R

j′(u σ1 + s1) · e−u2/2 du. (5.9)

Besides, we have the equality:

S(Y )(η)S(j(X))(η) = s2 EQη [j(X)] = s2 E[j(X+S(X)(η))] = s2√
2π

∫
R2

j(σ1 u+s1)·e−u2/2 du = I1.

(5.10)
Using j′ instead of j in (5.10) , as well as (5.9), allows us to claim that:

E[XY ] S(j′(X))(η) = σ1,2√
2π

∫
R2

j′(σ1 u + s1) · e−u2/2 du = I2. (5.11)

In view of (5.10) and (5.11), (5.8) can now be written under the following form:

I = S(Y )(η) S(j(X))(η) + E[XY ] S(j′(X))(η) = S(j(X) ⋄ Y + E[XY ] j′(X))(η) = J.

5.2 Proof of a technical lemma
M still denote an universal positive constant, that may differ from a line to another, but which
is independent of all parameters n, k, η, .... Let K be any element in

¶
f, ∂f

∂t , ∂f
∂x , ∂2f

∂x2

©
.

Lemma 5.2. Define the maps

∂B
∂H : Dh

T → (L2)
(t, H) 7→ ∂B

∂H (t, H)
ρ : Dh

T × Dh
T → (L2)

(t1, t2, H1, H2) 7→ BH1
t1 · ∂B

∂H (t2, H2) (5.12)

K : [0, T ] × Dh
T → (L2)

(s, t, H) 7→ K(s, BH
t ).

All the maps defined above are continuous.

Proof. The continuity of the map ∂B
∂H is a straightforward consequence of the fact that Hypothe-

sis (H2) in [15, p.684] is verified for the field B defined in (3.2), according to [15, Proposition 3.1].
This entails, in particular, that there exists (∆, α, λ) ∈ (R∗

+)3 such that, for all (t, s, H, H ′) in
[a, b]2 × [c, d]2,

E
î(

∂B
∂H (t, H) − ∂B

∂H (s, H ′)
)2ó ≤ ∆

Ä
|t − s|α + |H − H ′|λ

ä
. (5.13)

By Gaussianity, both functions ∂B
∂H (t2, H2) and BH1

t1 are even continuous in (L4) and their
product is continuous in (L2) by Hölder. Moreover, the (L2)-continuity of ρ is obvious since it
is a product of two continuous functions, in (L2). Denote

mT,h := sup
(t,H) ∈ Dh

T

t2H & εT,h := 2
( 1

4λmT,h
− 1
)

(5.14)

For every (t, H) in Dh
T and ε in [0, εT,h), we easily get, using (5.4),

E[eλ(2+ε)(BH
t )2 ] = (1 − 2λ(2 + ε)t2H)−1/2

14



and thus
sup

(t,H) ∈ Dh
T

E[eλ(2+ε)(BH
t )2 ] ≤

(
1 − 2λ(2 + ε)mT,h

)−1/2
. (5.15)

The right-hand side quantity of (5.15) is finite since ε is in [0, εT,h). On can therefore deduces
that

∀ε ∈ [0, εT,h), sup
(s,t,H) ∈ [0,T ]×Dh

T

E
ï∣∣∣K(s, BH

t )
∣∣∣2+ε

ò
< ∞. (5.16)

According to La Vallée Poussin’s criterion, we deduce from (5.16) the uniform integrability of
{
(
K(s, BH

t )
)2

, (s, t, H) ∈ [0, T ] × Dh
T }. Furthermore, we know that map K is continuous on

[0, T ] × R. Besides, gathering [1, Proposition 2.1 & Proposition 2.2 (a)], we know that, almost
surely, the map (t, H) 7→ BH

t (ω) is continuous on Dh
T . From these facts we immediately deduce

that the map K : [0, T ] × Dh
T → (L2) defined by K (s, t, H) := K(s, BH

t ) is continuous. This
ends the proof.

Remark 3. Define

δDh
T

(ε) := max
{

sup
(s,t,H) ∈ [0,T ]×Dh

T

E
ï∣∣∣K(s, BH

t )
∣∣∣2+ε

ò
, K ∈

¶
f, ∂f

∂t , ∂f
∂x , ∂2f

∂x2

©}
. (5.17)

In view of (EC,λ) this quantity does not depend on K. Besides, it is finite for every ε in (0, εT,h),
according to (5.16).

The proof of the following result, can be found in [12, (4.7)]

Lemma 5.3. For every η in S (R), we have the following equality:

S(K(t, BH
t ))(η) =

∫
R

K
(
t, u tH + < MH(1[0,T ]), η >

) 1√
2π

e−u2/2 du. (5.18)

6 Proof of Itô formula
Let us prove theorem 2.1, given page 5, in two steps. First we prove that the Itô formula holds
in (S)∗ and then that it also holds in (L2).

6.1 Proof of the Itô formula in (S)∗

We start by proving the Itô Formula in (S)∗. To do so we first have to use Theorem 4.1 with:

• XH
t := X(t, H) := f(t, BH

t ) = f(t, B(t, H)),

• Y H
t := Y (t, H) := ∂f

∂x
(t, BH

t ) = ∂f

∂x
(t, B(t, H)) and

• ZH
t := Z(t, H) := ∂f

∂t
(t, BH

t )+Ht2H−1 ∂2f

∂x2 (t, BH
t ) = ∂f

∂t
(t, B(t, H))+Ht2H−1 ∂2f

∂x2 (t, B(t, H)).

15



6.1.1 Assumption (FY,Z) holds

Note first that (5.16) ensures us that all quantities XH
t , Y H

t and ZH
t belong to L2(Ω). Moreover,

using (5.17), we easily get the following inequality:∫ T

0
( sup
H∈K

∥Y (t, H)∥0 + sup
H∈K

∥Z(t, H)∥0) dt ≤ 2δDh
T

(0) ·
∫ T

0
t2H−1 dt < ∞, (6.1)

for every compact interval K ⊂ (0, 1). The continuity in H of both Y and Z is obvious 3, in
view of Lemma 5.2.

6.1.2 Assumption (FX) holds

We are going to prove more than that. Precisely, let’s prove that:

A: ∂f

∂x
(t, BH

t ) · ∂B
∂H

(t, H) belongs to (L2),

B: lim
ε→0

X(t, H + ε) − X(t, H)
ε

(L2)= ∂f

∂x
(t, BH

t ) · ∂B
∂H

(t, H).

The lemma below will help us in the sequel.

Lemma 6.1. Let Q := {Q(t, H), (t, H) ∈ [0, T ]×(0, 1)} be a centered Gaussian field, continuous
from [0, T ] × (0, 1) to L2(Ω), denote ΓQ(t, H) := ∂f

∂x
(t, BH

t ) · Q(t, H).
For every (t, H) in [0, T ] × (0, 1), the random variable ΓQ(t, H) belongs to (L2). Moreover, for
every ε in (0, εT,h), one has the following inequalities:

E
[∣∣ΓQ(t, H)

∣∣2+ε/2] ≤ MT,ε

Ç
E
ñ∣∣∣∣∂f

∂x
(t, BH

t )
∣∣∣∣2+ε

ôå1/p

·
Ä
E
î
|Qt,H |2

óä1+ε/4
(6.2)

≤ MT,ε ·
Ä
δDh

T
(ε)
ä1/p

· sup
(t,H)∈Dh

T

Ä
E
î
|Q(t, H)|2

óä1+ε/4
., (6.3)

where we have set MT,ε := κ((2 + ε/2)q)ε/(4+2ε).

Proof. In view of (5.17); it is clear that one can write, for every ε in (0, εT,h),

E
î
|ΓQ(t, H)|2+ε/2

ó
≤ E

ï∣∣∣∣∂f

∂x
(t, BH

t )︸ ︷︷ ︸
:=At,H

· Q(t, H))︸ ︷︷ ︸
:=Qt,H

∣∣∣∣2+ε/2ò
. (6.4)

Define p = (4 + 2ε)/(4 + ε) and q = 2 + 4/ε, by Hölder’s inequality, we get:

E
[∣∣ΓQ(t, H)

∣∣2+ε/2] ≤
Ä
E
î
|At,H |(2+ε/2)p

óä1/p
·
Ä
E
î
|Qt,H |(2+ε/2)q

óä1/q
. (6.5)

We remind the following equality:

E [|X|α] = κ(α) ·
Ä
E
î
|X|2

óäα/2
, (6.6)

3One can replace Z(0, H) by 0 in order to eliminate the singularity at t = 0, when 2H − 1 ≤ 0.
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where X is a centered Gaussian random variable and where κ(α) := 2α/2 Γ(α+1
2 )

√
π

, for every

α > 0. In view of (6.6), one can therefore write, since Qt,H is a centered Gaussian random
variable, Ä

E
î
|Qt,H |(2+ε/2)q

óä1/q
= (κ((2 + ε/2)q))1/q ·

Ä
E
î
|Qt,H |2

óä1+ε/4
.

Using this latter result, as well as Remark 3, Inequality (6.5) therefore reads:

E
[∣∣ΓQ(t, H)

∣∣2+ε/2] ≤ MT,ε

Ç
E
ñ∣∣∣∣∂f

∂x
(t, BH

t )
∣∣∣∣2+ε

ôå1/p

·
Ä
E
î
|Qt,H |2

óä1+ε/4
(6.7)

≤ MT,ε sup
(t,H) ∈ Dh

T

Ç
E
ñ∣∣∣∣∂f

∂x
(t, BH

t )
∣∣∣∣2+ε

ôå1/p

· sup
(t,H)∈Dh

T

Ä
E
î
|Qt,H |2

óä1+ε/4

≤ MT,ε ·
Ä
δDh

T
(ε)
ä1/p

· sup
(t,H)∈Dh

T

Ä
E
î
|Q(t, H)|2

óä1+ε/4
, (6.8)

MT,ε := κ((2 + ε/2)q)ε/(4+2ε). On the right-hand side of (6.8), the last factor is finite by the
continuity of Q : [0, T ] × (0, 1) → L2(Ω) and δDh

T
(ε) is also finite since ε belongs to (0, εT,h),

according to Remark 3. This proves that ΓQ(t, H) := ∂f
∂x (t, BH

t ) · Q(t, H) belongs to L2(Ω).

6.1.2-A The random variable ∂f
∂x

(t, BH
t ) · ∂B

∂H
(t, H) belongs to (L2)

This result is obvious in view of Lemma 6.1 with Q(t, H) := ∂B
∂H (t, H).

6.1.2-B lim
ε→0

X(t, H + ε) − X(t, H)
ε

(L2)= ∂f

∂x
(t, BH

t ) · ∂B
∂H

(t, H).

Let (t, H0, H) be fixed in [0, 1] × (h([0, T ]))2 such that H ̸= H0. Applying a first order Taylor
with integral remainder formula to the map u 7→ f(t, u), between points B(t, H0) and B(t, H),
provides us with the equality:

f(t, BH
t ) − f(t, BH0

t ) − (B(t, H) − B(t, H0))∂f

∂x
(t, B(t, H0)) =

∫ B(t,H)

B(t,H0)

∂2f

∂x2 (t, u) (B(t, H) − u) du

= (B(t, H) − B(t, H0))2 ·
∫ 1

0

∂2f

∂x2 (t, (B(t, H0) + u(B(t, H) − B(t, H0))) · (1 − u) du.

One can therefore write:
X(t, H) − X(t, H0)

H − H0
− ∂f

∂x
(t, B(t, H0)) · (B(t, H) − B(t, H0))

H − H0︸ ︷︷ ︸
=:DH,H0

=
(B(t, H) − B(t, H0))

H − H0︸ ︷︷ ︸
:=EH,H0

· (B(t, H) − B(t, H0)︸ ︷︷ ︸
:=FH,H0

·
∫ 1

0

∂2f

∂x2 (t, (B(t, H0) + u(B(t, H) − B(t, H0))) (1 − u)du︸ ︷︷ ︸
:=GH,H0

,

(6.9)

where the equality holds in (L2). Note first that DH,H0 belongs to (L2) as a difference of
elements of (L2). Besides, using (5.14), one can write, for every u in [0, 1]:

Var(B(t, H0) + u(B(t, H) − B(t, H0))) = Var((1 − u)B(t, H0) + uB(t, H))

≤
Ä
(1 − u)∥B(t, H0)∥L2(Ω) + u∥B(t, H)∥L2(Ω)

ä2
≤ mT,h. (6.10)
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Moreover, by definition of εT,h, given at (5.14), one can therefore write, for every ε in (0, εT,h):

∥GH,H0∥L2(1+ε)(Ω) ≤
∫ 1

0

∥∥∥∥∥∂2f

∂x2 (t, (B(t, H0) + u(B(t, H) − B(t, H0)))
∥∥∥∥∥

L2(1+ε)(Ω)
du

≤
∫ 1

0

Å
E
ïÄ

eλ((1−u)B(t,H0)+uB(t,H))2ä2(1+ε)
òã 1

2(1+ε)
du =

∫ 1

0

Ä
E
î
e2λ(1+ε)Z2

u

óä 1
2(1+ε) du,

(6.11)

where we have set Zu := (1 − u)B(t, H0) + uB(t, H). Using (5.4), and (6.10) one gets:

E[e2λ(1+ε)Z2
u ] = 1√

1 − 4λ(1 + ε) Var(Zu)
≤ 1√

1 − 4λ(1 + εT,h) mT,h

(6.12)

Both (6.11) and (6.12) allow one to state that ∥GH,H0∥L2(1+ε)(Ω) < ∞, for every ε in (0, εT,h).
Besides, for every ε in (0, εT,h), one can apply Hölder inequality, with p := 1 + ε and then
q := ε

1+ε , and then Cauchy-Schwarz inequality for E
[
|EH,H0 · FH,H0 |

2(1+ε)
ε

]
; to get:

E[|EH,H0 · FH,H0 · GH,H0 |2] ≤ E
î
|GH,H0 |2(1+ε)

ó 1
1+ε · E

[
|EH,H0 · FH,H0 |

2(1+ε)
ε

] ε
1+ε

≤ E
î
|GH,H0 |2(1+ε)

ó 1
1+ε · E

[
|EH,H0 |

4(1+ε)
ε

] ε
2(1+ε) · E

[
|FH,H0 |

4(1+ε)
ε

] ε
2(1+ε)

(6.13)

Using again Equality (6.6), one easily gets:

E
[
|EH,H0 |

4(1+ε)
ε

] ε
2(1+ε) =

Ä
κ
Ä4(1+ε)

ε

ää ε
2(1+ε) · E

î
|EH,H0 |2

ó
&

E
[
|FH,H0 |

4(1+ε)
ε

] ε
2(1+ε) =

Ä
κ
Ä4(1+ε)

ε

ää ε
2(1+ε) · E

î
|FH,H0 |2

ó
.

In view of the previous result, and starting from (6.9), one can write, for every ε in (0, εT,h),

∥DH,H0∥2
L2(Ω) = E[|EH,H0 · FH,H0 · GH,H0 |2]

≤
Ä
κ
Ä4(1+ε)

ε

ää ε
1+ε · ∥GH,H0∥2

L2(1+ε)(Ω) · ∥EH,H0∥2
L2(Ω) · ∥FH,H0∥2

L2(Ω)

≤ wT,h · ∥EH,H0∥2
L2(Ω) · ∥FH,H0∥2

L2(Ω). (6.14)

where we have set wT,h := (1 − 4λ(1 + εT,h) mT,h)− 1
4(1+ε) ·

Ä
κ
Ä4(1+ε)

ε

ää ε
1+ε . Since EH,H0 con-

verges in (L2), as H tends to H0, ∥EH,H0∥2
L2(Ω) is bounded. Besides ∥FH,H0∥2

L2(Ω) clearly
converges to 0. Inequality (6.14) then allows us to claim that DH,H0 converges to 0 in (L2), as
H tends to H0. This proves that X : [0, T ] × h([0, T ]) → (L2) is partially differentiable in H.
Finally the continuity of ∂X

∂H : [0, T ] × (0, 1) → (L2) results from Lemma 5.2. This achieves to
prove that Assumption (FX) holds. □

6.1.3 Proof of Itô Formula in (S)∗

This will provide us with the following equality, in (S)∗:

f(t, Bh
t ) = f(0, Bh

0 ) +
∫ t

0

∂f

∂x
(s, Bh

s ) ⋄ W h
s ds +

∫ t

0

Å
∂f

∂t
(s, Bh

s ) + h(s)s2h(s)−1 ∂2f

∂x2 (s, Bh
s )
ã

ds

+
∫ t

0
h′(s)

Å
∂X

∂H
(s, h(s)) − ∂f

∂x
(s, Bh

s ) ⋄ ∂B
∂H

(s, h(s))
ã

ds. (6.15)
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Applying Definition 1 (Equality (3.9)) with the mBm i.e. with G = Bh, and in view of the
equality:

∂X

∂H
(t, H) = ∂f

∂x
(t, BH

t ) · ∂B
∂H

(t, H),

one can write Equality (6.15) under the following form:

f(t, Bh
t ) = f(0, Bh

0 ) +
∫ t

0

∂f

∂x
(s, Bh

s ) d⋄Bh
s +

∫ t

0

Å
∂f

∂t
(s, Bh

s ) + h(s)s2h(s)−1 ∂2f

∂x2 (s, Bh
s )
ã

ds

+
∫ t

0
h′(s)

Å
∂f

∂x
(s, Bh

s ) · ∂B
∂H

(s, h(s)) − ∂f

∂x
(s, Bh

s ) ⋄ ∂B
∂H

(s, h(s))
ã

ds. (6.16)

Using Lemma 5.1 with X := B
h(s)
s , Y := ∂B

∂H (s, h(s)) and j := ∂f
∂x (s, .), we get the following

equality:

∂f

∂x
(s, Bh

s ) · ∂B
∂H

(s, h(s)) − ∂f

∂x
(s, Bh

s ) ⋄ ∂B
∂H

(s, h(s)) = ∂2f

∂x2 (s, Bh
s ) E

ï
Bh

s

∂B
∂H

(s, h(s))
ò

. (6.17)

The quantity E
[
Bh

s
∂B
∂H (s, h(s))

]
, introduced in the previous equality, can be easily computed

using the isometry E[< ., f > · < ., g >] = < f, g >L2(R) (valid for all (f, g) in L2(R) × L2(R)).
Indeed, one gets, for every (t, H) in [0, T ] × (0, 1), the equality:

E[BH
s · ∂B

∂H (s, H)] = E[< ., MH(1[0,s])· < ., ∂MH
∂H (1[0,s]) >] = < MH(1[0,s]), ∂MH

∂H (1[0,s]) >
L2(R)

= 1
2 · d

dH [< MH(1[0,s]), MH(1[0,s]) >
L2(R)] = 1

2 · d
dH [s2H ] = s2H · ln s. (6.18)

Plug (6.18) in (6.17), Equality (6.16) now reads:

f(t, Bh
t ) = f(0, 0) +

∫ t

0

∂f

∂x
(s, Bh

s ) d⋄Bh
s +

∫ t

0

Å
∂f

∂t
(s, Bh

s ) + h(s)s2h(s)−1 ∂2f

∂x2 (s, Bh
s )
ã

ds

+
∫ t

0
h′(s)∂2f

∂x2 (s, Bh
s ) s2h(s) ln s ds

= f(0, 0) +
∫ t

0

∂f

∂t
(s, Bh

s ) ds +
∫ t

0

∂f

∂x
(s, Bh

s ) d⋄Bh
s

+
∫ t

0

∂2f

∂x2 (s, Bh
s ) ·

Ä
h(s)s2h(s)−1 + h′(s) s2h(s) ln s

ä
ds,

and finally, we get the following equality, in (S)∗:

f(t, Bh
t ) = f(0, 0)+

∫ t

0

∂f

∂t
(s, Bh

s ) ds+
∫ t

0

∂f

∂x
(s, Bh

s ) d⋄Bh
s + 1

2

∫ t

0

∂2f

∂x2 (s, Bh
s )· R′

h(s) ds, (6.19)

which establishes the Itô formula for mBm in (S)∗.

6.2 Proof of Itô formula in L2(Ω)
In order to prove that (6.19) also holds in L2(Ω), one first notice that this latter equality can
be rewritten as:∫ t

0

∂f

∂x
(s, Bh

s ) d⋄Bh
s = f(t, Bh

t )−f(0, 0)−
∫ t

0

∂f

∂t
(s, Bh

s ) ds− 1
2

∫ t

0

∂2f

∂x2 (s, Bh
s )· R′

h(s) ds. (6.20)

Hence, one just need to prove that all terms of the right hand side of Equality (6.20) belong to
L2(Ω). To do so, we use the arguments given in [12, p.23], which will be briefly given here, in the
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particular case of mBm, for reader’s convenience. Thanks to (EC,λ) and (5.17), we may write,
for every K in

{
f, ∂f

∂t , ∂f
∂x , ∂2f

∂x2

}
and s in [0, t], that E

[
K(t, Bh

s )2] ≤ M2, where we set M2 :=
C2 (1 − 4λRh)−1/2 and Rh := sup{t2h(t); s ∈ [0, T ]}. Moreover, s 7→ ∥K(s, Bh

s )∥0 belongs to
L1([0, T ], dt) while t 7→ R′

h(s) · ∥∂2f
∂x2 (t, Bh

s )∥0 belongs to L1([0, T ], ds). The measurability of the
maps s 7→ S(K(s, Bh

s )(η) is clear in view of (5.18). A simple application of [12, Theorem 4.3]
then yields that all members on the right hand side of (6.20) exist and are in (L2). Moreover,
Lemma 3.1, as well as [12, Point 2 of Example 3.3.1.], provides the upper-bound

|S(∂f
∂x (s, Bh

s ) ⋄ W h
s )(η)| ≤ M ∥W h

s ∥−q e|η|2q ,

for all (η, s) in S (R) × [0, T ] and all q ≥ 2. A straightforward application of Theorem A.3,
given in the Appendix of this work, then shows that

∫ t
0

∂f
∂x (s, Bh

s ) d⋄Bh
s belongs to (S)∗and thus,

achieves the proof.
As we stated in the introduction, the proof of this result shows that, starting with any method
that provides a stochastic integral wrt fBm (such as White Noise Theory, Skorohod integral,
pathwise integral · · · ), we can derive an entire stochastic calculus wrt mBm, only using the
existing the stochastic calculus wrt fBm. Beyond the result of Theorem 2.1, the proof of this
latter is important since it shows how one can effectively derive, starting from a known formula
that involves stochastic integral wrt fBm, the analogue formula but where stochastic integral
wrt fBm have been replaced by stochastic integral wrt mBm. This way of proceeding from
stochastic integral wrt fBm to stochastic integral wrt mBm is independent of the integration
method chosen (White Noise Theory, Skorohod integral, pathwise integral · · · ).

Appendix

Background on the Bochner integral
In order not to weigh down this statement we will only give the necessary tools to proceed. On
can refer to [10, p.247] as well as to [6] for more details about Bochner integral.

Definition 2 (Bochner integral [10], p.247). Let I be a Borel subset of [0, 1] and Φ := (Φt)t∈I

be an (S)∗-valued process verifying:

(i) the process Φ is weakly measurable on I i.e. the map t 7→ << Φt, φ >> is measurable on I,
for every φ in (S).

(ii) there exists p ∈ N such that Φt ∈ (S−p) for almost every t ∈ I and t 7→ ∥Φt∥−p belongs
to L1(I).

Then there exists an unique element in (S)∗, noted
∫

I Φu du, called the Bochner integral of Φ
on I such that, for all φ in (S),

<<

∫
I

Φu du, φ >> =
∫

I
<< Φu, φ >> du. (A.21)

In this latter case one says that Φ is Bochner-integrable on I with index p.

Proposition A.2. If Φ: I→(S)∗ is Bochner-integrable on I with index p then ∥
∫

I Φt dt∥−p ≤∫
I ∥Φt∥−p dt.
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Theorem A.3 ([10], Theorem 13.5). Let Φ := (Φt)t∈[0,1] be an (S)∗-valued process such that:

(i) t 7→ S(Φt)(η) is measurable for every η in S (R).

(ii) There exist p in N, b in R+ and a function L in L1([0, 1], dt) such that, for a.e. t in
[0, 1], |S(Φt)(η)| ≤ L(t) eb|η|2p, for every η in S (R).

Then Φ is Bochner integrable on [0, 1] and
∫ 1

0 Φ(s) ds ∈ (S−q) for every q > p such that 2 · b ·e2 ·
D(q−p) < 1, where e denotes the base of the natural logarithm and where D(r) := 1

22r

∑+∞
n=1

1
n2r ,

for any r in (1/2, +∞).
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