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Translational research in neuroscience is increasingly focusing on the analysis

of multi-modal data, in order to account for the biological complexity

of suspected disease mechanisms. Recent advances in machine learning

have the potential to substantially advance such translational research

through the simultaneous analysis of different data modalities. This review

focuses on one of such approaches, the so-called “multi-task learning”

(MTL), and describes its potential utility for multi-modal data analyses in

neuroscience. We summarize the methodological development of MTL

starting from conventional machine learning, and present several scenarios

that appear particularly suitable for its application. For these scenarios, we

highlight different types of MTL algorithms, discuss emerging technological

adaptations, and provide a step-by-step guide for readers to apply the MTL

approach in their own studies. With its ability to simultaneously analyze

multiple data modalities, MTL may become an important element of the

analytics repertoire used in future neuroscience research and beyond.

KEYWORDS
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Introduction

Many psychiatric disorders are thought to result from a complex interplay of genetic
predisposition and exposure to environmental risk factors (1). As neuroimaging research
has successfully identified brain-structural and functional alterations in illnesses such
as schizophrenia, bipolar or major depressive disorder, there has been a strong interest
in understanding how the illness’s genetic risk architectures contribute to such changes
(2, 3). However, this risk architecture is complex and characterized by polygenicity and
epistasis, with individual genetic polymorphisms explaining only little illness-associated
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variance. Similarly, there are significant hurdles in relating
measures of peripheral gene expression to illness-associated
differences in the brain. As a result, there is a substantial
challenge in identifying a suitable strategy of how to investigate
neurogenetic effects. Initially, a large body of literature from
the “imaging genetics” field focused on testing associations
between genetic variation in individual susceptibility genes
and brain structure or function (2, 4). More recently, the
increased availability of whole genome information and
their aggregation into polygenic risk scores has fueled
interest in testing associations between such scores and
neural effects (4–6). These investigations reflect translational
research strategies that are “sequential” in nature, i.e., they
rely on the identification of illness-associated univariate or
multivariate (e.g., polygenic) effects that are then tested for
association with illness-relevant neural measures. Advances
in the computational analysis of high-dimensional data have
provided the opportunity for investigations in individual data
modalities to become increasingly sophisticated. For example,
deep learning is becoming a commonly applied tool for the
exploration of neuroimaging data (7, 8) and is starting to be
used for the analysis of genetics data (9). Such efforts will
advance sequential translational research as more advanced
computational approaches will explain larger portions of illness-
relevant variation and thus lead to an improved understanding
of how changes in different modalities interact to cause complex
psychiatric phenotypes.

In this review, however, we would like to approach
translational research from a different perspective. Advances
in machine learning (ML) have created the possibility to
identify sets of (e.g., biological) features that are simultaneously
predictive of multiple outcomes. For example, it is now
technically possible to identify a genetic signature that
simultaneously predicts diagnostic grouping as well as illness-
relevant brain function. This turns the classical, sequential
approach of translation into a simultaneous exploration. The
advantages are not only in the increased efficiency but,
primarily, in the fact that it allows the identification of
dimensions in high-dimensional data that may be of higher
translational relevance. For example, while a conventional
polygenic risk score may not predict illness-relevant differences
in brain function, it is conceivable that there exists a polygenic
measure predictive of both diagnosis and neural phenotypes,
which cannot be identified from genetic association data alone.
One machine learning approach facilitating such analyses is
called multi-task learning (MTL) and has been successfully
applied in numerous data-intensive fields, including biomedical
informatics (10–14), speech and natural language processing
(15, 16), image processing and computer vision (17, 18), as
well as web-based applications (19, 20). Here, we present the
MTL approach, describe its utility for neurogenetics analyses,
and provide the reader with a step-by-step guide (see the
Supplementary material) on how to apply this promising tool

to his/her own data. The guide is based on the R package
RMTL (21), which can be easily downloaded and installed from
the CRAN website.1 As a methodological basis, the review will
first focus on the so-called “regularization,” which reduces the
complexity of machine learning models and builds a central
element of MTL. Then, we describe the utility of widely applied
as well as emerging MTL methods for neurogenetics analyses in
psychiatry and provide an intuitive protocol for the application
of common MTL approaches.

Interpretable machine learning
models for the exploration of
neurogenetic effects

Machine learning

An important goal of the machine learning method is
to predict a given outcome by optimally combining multiple
predictors in a linear (i.e., linear regression) or non-linear (i.e.,
random forest) fashion. These methods are called “supervised”
because information about the outcome is available during the
training phase of the model. Figure 1 shows an example of how
linear machine learning predicts a given outcome y based on
a linear combination of the input data x using coefficients w.
In biomedical applications, the number of predictors frequently
far exceeds the number of observations. This increases the risk
of overfitting, where models fit too closely to a given training
dataset and do not generalize well to unseen data. In addition to
limiting predictive performance, such overfitting also obscures
the true biological hallmarks underlying a given learning task,
since these often show small effect sizes and are drowned out by
stronger chance associations. This reduces the interpretability
of the identified biological signatures due to an enrichment of
false-positive predictors. A promising approach to address this
is to integrate information related to the biological context of
the prediction task into the machine-learning algorithm, i.e., via
regularization.

min
w

L
(
w|x, y

)
+ λ�(w)

Here, L (w) refers to the loss function, which can be
understood as a measure of “discrepancy” between the data
distribution (x, y) and the built model. Minimizing this
loss function over coefficients w leads to a model fit to
a given dataset. Depending on the selection of the loss
function, the machine learning method can be adapted to
perform regression, classification or unsupervised tasks. For
example, the least square loss (L (w) = ||Y − Xw||22) is usually
used for regression.

1 https://cran.r-project.org/
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FIGURE 1

An example application of a linear machine learning model. The
“outcome” y is predicted by the linear combination of three
predictors (x), and we aim to identify the coefficient vector w.

Regularization

The function �(w) describes a “regularization” term, which
is frequently also called the “penalty.” The function can be seen
to penalize the discrepancy between the selected solution w and
a set of assumptions made by the investigator. This strategy
works well for high dimensional data, e.g., molecular “omics”
data, because there usually exists an unlimited number of
“optimal” solutions (that show similar predictive performance),
and such strategy enables the algorithm to automatically select a
more “interpretable” one among these.

This approach has been repeatedly applied in psychiatric
research. In particular, regularization-based analysis for
biomarker identification has been applied with a focus on
various disorders, e.g., schizophrenia (22), bipolar disorder
(23), and major depressive disorder (24). Compared to the
conventional univariate analysis, a key factor contributing to the
success of these approaches is that regularization-based machine
learning allowed the unbiased integration of weakly outcome-
associated signals distributed over the high-dimensional
space (e.g., the entire genome) into a comparatively stronger
risk score. The representative regularization approaches
for this aim are the Lasso, ridge regression and elastic net
(see Supplementary Table 1), which have already been
applied to predict psychiatric phenotypes and explore genetic
signatures associated with psychiatric illness (22, 25). In the
Supplementary material, we detail how these approaches
address challenges arising from high-dimensionality and
strong correlation structures that are frequently presented in
biological data.

Various regularization approaches have been proposed
to identify biomarker candidates that are adapted to
the specific structure of a given analysis question. We
categorized these advanced methods into two classes:
(I) penalization on the coefficients and (II) penalization
on the difference between coefficients. A detailed

explanation of these approaches can be found in the
Supplementary material.

Multi-task learning for
multi-modal data analysis in
neurogenetics

As the name suggests, the core principle of MTL is
the attempt to simultaneously learn different prediction tasks
(i.e., classification tasks). This aims to explore the underlying
commonality between tasks, which may lead to improved
generalizability and, potentially, more meaningful translational
research. This review aims to highlight MTL’s utility for
multi-modal data analysis. In biomedical applications, it is
common to analyze the integration of heterogeneous but
related data modalities, e.g., predictions at different time points
during illness progression (26), case-control classification in
different cohorts (27), or response prediction of multiple
drugs (12). In psychiatric research, MTL has already been
used to integrate schizophrenia markers from multiple cohorts
(27) as well as measures of cognitive functioning and
structural neuroimaging (28). By presenting MTL from different
perspectives in the following sections, we hope to encourage
the reader to identify useful applications in translational
and neurogenetic research, such as the genetic prediction of
illness risk and neural function (i.e., for identifying a genetic
risk profile that shows neural effects) or the simultaneous
prediction of diagnostic status and treatment response (i.e.,
to identify illness-associated biological patterns that are also
responsive to treatment).

To enable knowledge transfer among tasks during the
training, researchers exploit different methodological research
lines. These research lines adopted different structures
of variables to transfer the information, e.g., multi-task
Gaussian processes shared covariance structure among tasks,
and multi-task neural networks shared the hidden layers.
Regularization-based MTL extended from regularized ML
and has been among the most frequently employed methods
due to its robustness and interpretability. Therefore, we
provide here an introduction to “regularized MTL.” In
the Supplementary material, we briefly summarize the
current development of deep MTL due to its potential in
neuroimaging studies.

Multi-task learning

Regularized MTL builds upon the regularization strategies
used for single-task machine learning. The penalty was
designed to capture the multiple aspects of task-relatedness
and can aid in increasing the generalizability as well as
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the interpretability of the models. This approach is usually
formulated as:

min
w1,...wi,...wt

t∑
i = 1

L (wi| Xi, Yi)+ λ�(w1, ...wi, ...wt)

Cross-task regularization

The regularization term �(w1, wi, wt) takes the coefficient
vectors of all tasks as input and modulates relationships
between the tasks according to the assumptions made by
the investigators. From the perspective of penalization, the
regularization term penalizes the degree of deviation between
the learned models and such assumptions. λ controls the
strength of the penalty. Thus by setting λ = 0, the MTL
models are “degenerated” to a set of single-task learning models.
Usually, an optimal λ is selected via a resampling procedure,
such as cross-validation.

Multi-modal data analysis

In translational psychiatry, MTL is a promising approach
because it allows the integrative analysis of clinically- and
biologically relevant data modalities. Specifically, in multi-
modal data analysis, MTL can differentiate information
shared between and specific for different modalities (29).
Unlike machine learning, which estimates a parameter for
a predictor (e.g., the expression value of a gene) within a
data modality, MTL estimates the parameters of biologically
related predictors (e.g., the expression value of a gene and
the DNA methylation at the methylation sites in chromosomal
proximity to the same gene) across modalities simultaneously
through regularization. This allows disentangling modality-
shared effects from modality-specific effects.

The intuition of categorization

The regularization term �(w1, wi, wt) is frequently
rewritten as �(W), where W = [w1, wi, wt]. Thus, predictors
and tasks are indexed by the rows and columns of W,
respectively (see Figure 2). Such a simplified form provides
an intuitive interpretation of the cross-task regularization: it
penalizes the complexity of the matrix W = p× t, and aims
to identify a simple and representative structure of W that
represents all tasks well. Thus, this form is also called “structural
regularization” (30). Based on this interpretation, several
regularization methods have been proposed. For example, in
Figure 2, a row-wise sparse structure is explored for W, such
that all three tasks are forced to share the same set of predictors.

Instead of structural regularization, other researchers
described task-relatedness as a pairwise task similarity matrix

or a network. Such methods can be understood as an extension
of network-based single-task regularization (see Supplementary
material), which penalizes the difference between tasks
connected over a network and thus encourages the smoothness
of coefficient vectors. Under this strategy, several studies have
modeled real-world problems as MTL problems by engineering
the assumed pairwise task similarities. Alternatively, instead
of engineering the similarity matrix manually, another line of
research has attempted to learn such a matrix from the data. The
remainder of this section will describe methods and example
applications falling into these two classes.

Multi-task learning with structural
regularization

Multi-task learning methods using structural regularization
aim to identify a simplified structure of the coefficient matrix W,
i.e., a sparse or “low-rank” structure. This means the coefficients
to be learned can be represented in a compressed form that best
describes the major variation in the data, leading to improved
robustness against noise. As shown in Figure 2, an MTL method
with joint predictor selection (31, 32) (see Supplementary
Table 1) has been proposed as the multi-task version of the
Lasso, which aims to select the predictors important to all tasks
simultaneously.

This approach has been applied in the multi-omics
analysis. For example, one study (33) integrated three gene
expression and one genetic association datasets using this
approach for predicting bone mineral density (BMD). This
allowed the selection of genes and of biologically relevant
SNPs that are simultaneously associated with BMD. Another
work (34) adopted a similar approach to identify the shared
imaging features that simultaneously predict two subtypes
of bipolar disorders. The superior performance showed that
the underlying biological heterogeneity of bipolar disorders
could be disentangled by considering a detailed clinical
characterization using MTL. Similarly, another work (35)
identified the shared behavioral rhythms that simultaneously
predict ten symptoms of schizophrenia. In other research fields,
this method has been applied to overcome the problem of
data scarcity in the transcriptomic analysis of cancer (36). The
authors tested the approach on four breast cancer cohorts with
different phenotypes, such as recurrence risk. By incorporating
additional cohorts, the authors observed improved prediction
accuracy for each task. Another study (37) applied the method
successfully to integrate imaging-genetics data over multiple
institutions to identify reproducible risk variants associated with
Alzheimer’s disease (AD).

Another mainstream structural regularization approach is
to explore the low-rank structure of the W matrix, the so-
called “trace-norm” approach (see Supplementary Table 1).
This method aims at identifying a shared low-dimensional space
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FIGURE 2

Graphical illustration of multi-task learning (MTL) with joint predictor selection. Three different tasks are predicted by the same set of predictors.
The aim is to identify the coefficient matrix W that maximizes the prediction accuracy.

among all tasks and specific coefficients for each task. This
method has been applied successfully to predict drug response
by simultaneously exploring the associated molecular pattern
of multiple drugs (12). Via the trace-norm regularization,
multiple drugs (or coefficient vectors) were compressed in a low-
dimensional space such that similar drugs (correlated coefficient
vectors) were naturally clustered. The resulting low-rank modal
strongly outperformed the single-task elastic net regarding
prediction performance and biological plausibility. This method
has not been applied to mental disorders to our knowledge. An
example of a potential application could be comorbidity analysis
with the objective to identify the, e.g., molecular signature that
is simultaneously associated with multiple illness phenotypes.
Such analysis would provide a low-dimensional representation
of shared molecular effects and potentially provide insights into
the biology of comorbidity.

Multi-task learning incorporating
pairwise task similarity

For MTL methods falling into this category, the task-
relatedness is described as the pairwise task similarity matrix
or the network. And the regularization penalizes the difference
between tasks connected over the network. This method
aims at identifying the coefficients that satisfy the shared

similarity structure and explain the task-specific variation.
A representative model in this category is the so-called “mean-
regularized MTL” (38) (see Supplementary Table 1). Intuitively,
the method assumes the existence of an identical latent model
underlying all tasks, analogous to a “mean model” of all tasks.
And the underlying true model is expected to be identified
by considering the task-specific variations. This method has
been used for the integration of multi-cohort gene expression
datasets to identify expression signatures in brain samples from
donors with schizophrenia (27). This study illustrated that MTL
models showed higher reproducibility to unseen data cohorts
than conventional machine learning methods and may thus be
of particular use for the identification of reproducible biomarker
signatures across studies.

By engineering the task-task similarity network according
to assumed temporal relationships, MTL methods have further
been applied to predict disease progression. For example, one
study (26) identified MRI markers that track the progress
of Alzheimer’s disease. The authors assumed the markers
associated with disease progression change continuously and
that the change of markers between adjacent time points
is small. Consequently, a series of interpretable models was
obtained by training the tasks simultaneously and penalizing
the difference between two temporally adjacent tasks. In a
follow-up study (14), several variations of the approach were
proposed to introduce a sparse structure to the coefficient
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matrix. These variations aimed at selecting progression-related
and task-specific predictors. We summarize these variations in
Supplementary Table 1.

All these network-based regularization strategies can be
unified in a framework by engineering a task similarity matrix
with specific coefficients for a specific aim, e.g., modeling disease
progression. A tutorial for designing the task similarity matrix
was described elsewhere (39), and this feature is supported by
the currently available MTL analysis software (21).

Instead of manually engineering the task similarity matrix,
an interesting approach is to learn such a matrix from the
data. One study (40) proposed such an approach, called “multi-
task relationship learning” (40) (see Supplementary Table 1).
Intuitively, this approach iteratively learns the model coefficients
that fit the data and the task similarity matrix that fits the
models. Another method (41) alternatively attempted to identify
the clustering structure of tasks (called “convex clustered MTL”).
This approach was derived from the spectral relaxation of the
K-means clustering method. Notably, it was found (42) that
the MTL with a low-rank structure also leads to a grouping
of tasks, especially when there are large numbers of tasks.
Due to its computational simplicity, the trace-norm model (see
Supplementary Table 1) was suggested as the first approach for
users to learn the similarity matrix of tasks. To our knowledge,
these novel approaches have not been applied in psychiatry
yet. One relevant problem these methods could address is the
comorbidity and pleiotropy analysis of psychiatric disorders.
These problems could comprise a large number of tasks (e.g.,
many potentially pleiotropic traits). This requires relatively
large-scale data repositories for accurate estimation of the task
similarity matrix. Such analyses may, for example, be useful for
characterizing the genetic risk landscape of mental illness, and
highlight risk contributions that are shared across, and specific
to, different diagnoses.

“Dirty” multi-task learning

The above MTL methods tend to work well when the
task-relatedness is not confounded by unwanted biological and
technical sources of variation. However, in biomedical data,
such variations are common and can thus significantly impact
MTL analyses. To make a reliable inference with MTL, it is
essential to account for these unwanted variations, which gave
rise to the development of so-called “robust” MTL methods. In
this section, we described several regularization approaches to
account for unwanted sources of variation during integrative
data analysis, i.e., the inconsistent noise levels across tasks or
outliers. Such “augmented” MTL methods may be suitable for
real-world biological problems.

An interesting regularization method based on the
“superposed structure” (43) originates from a class of statistical
models called “dirty statistical models” (44), which assume

that a given predictive pattern cannot be captured by any
single model but can be interpreted well as a “superposition”
of multiple base models (44). In the context of MTL, the
“superposition” refers to a decomposition of the coefficient
matrix into a sum of several independent matrices regularized
by different methods (i.e., W = P + Q). The underlying
rationale is to bolster MTL’s ability to capture the additional
variation by incorporating additional regularization. These
sources of variation are common in biological applications.
For example, to select biological markers from multiple
cohorts, the conventional MTL with joint feature selection
(see Supplementary Table 1) naively assumes that all cohorts
share the same predictive pattern and consistent noise levels
across tasks. However, different cohorts might have originated
from different institutions, potentially using different data
acquisition protocols, leading to cross-cohort variability effects.
Therefore, only exploring shared predictors may not maximize
predictability across all tasks. One study (45) illustrated that the
prediction performance of conventional MTL with joint feature
selection was worse than that of the single-task elastic net if
the extent of shared predictors is less than a given threshold or
if the weights of the shared predictors are highly uneven. To
address this issue, a dirty MTL (43) was proposed as a hybrid
regularization (see Supplementary Table 1). This approach
decomposes the regularization effect into one term capturing
the shared predictors across tasks and one quantifying the
association of the predictors with the individual task. This
enables the algorithm to learn any extent of predictor sharing
across tasks because the effects of individual tasks are isolated
from the shared effect. Meanwhile, such a hybrid model avoids
the loss of prediction accuracy due to the issue that predictors
may not share representations across all tasks. A similar
regularization strategy has been applied to predict depression
severity using behavioral data (46). The data was collected from
mobile devices, i.e., phones or wristbands, and used to predict
the self-rated symptom severity score, as well as a clinical
severity score. Here, the dirty model was used to capture the
inconsistency between the self-reported and the clinical severity
score. Another interesting dirty MTL method, called “robust
MTL” (47), aims to detect outlier tasks. In addition to identifying
the shared outcome-associated signature among tasks, another
regularization component is used to remove outlier tasks, which
are not sufficiently predictive or where the corresponding
signatures do not overlap with the task-shared signatures. To
our knowledge, this approach has not been applied in psychiatry
yet. A potential example application is the integrative analysis
of large-scale repositories. Since data quality, measurement
techniques, sample size and cohort-specific properties may be
heterogeneous across cohorts, it may be challenging to identify
a single signature that predicts a given phenotype consistently
across all repositories. The robust MTL has utility for this
scenario because it allowes the identification of a signature set
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that is predictive of the target phenotype in most repositories
and that can exclude outlying tasks.

Emerging multi-task learning
applications for multi-modal
analysis in neuroscience

In this section, we will present two emerging areas in
MTL research, which bear substantial promise for multi-modal
analysis in neuroscience.

High-order multi-task learning

There is an emerging trend in the MTL community to
represent the predictor coefficients in the form of a tensor
(i.e., a 3-dimensional matrix) aiming to represent the complex
relationships between multiple data modalities. We denote this
type of method as “high-order MTL.” Figure 3 illustrates the
evolutional path from conventional machine learning to high-
order MTL, as well as the difference between high-order and
conventional MTL. In many real applications, multiple data
modalities (X1∼X3 in Figure 3) and multiple outcomes (Y1∼Y3
in Figure 3) are available, where any single outcome can be
predicted by any data modality with a certain level of accuracy.
This task relationship cannot be captured appropriately
by conventional cross-task regularizations because the data
modalities in conventional MTL are not cross-mapped to the
outcomes. High-order MTL offers a potential solution for this
increasingly common scenario. One study (48) proposed a high-
order MTL formulation, called “multilinear MTL” by employing
the tensor-based trace-norm regularization (see Supplementary
Table 1) to identify the shared pattern across tasks. The
authors demonstrated the superior performance of the proposed
method compared to conventional MTL using internet data.
This method appears suitable for modeling the genetic and
molecular basis of psychiatric and neuroimaging phenotypes.
With high-throughput technologies, different data modalities,
including gene expression and genetic association data, can be
analyzed simultaneously. Any of these data modalities can be
associated with any given brain-imaging measure with a certain
level of accuracy. Such “multiple-to-multiple” mappings are
ideal applications of high-order MTL.

Another high-order MTL formulation aims to learn a
consistent pattern of predictor interactions across tasks and
is called “multi-task predictor interaction learning (49).”
This formulation adds pairwise predictor interactions in the
regression as a matrix of variables (see Supplementary Table 1).
Then by stacking such matrices across tasks, the interaction
tensor is regularized by introducing the sparse and low-rank
structures. We summarize the formulations in Supplementary
Table 1. The authors demonstrated the superior performance of

the method using educational data. This method may also have
significant utility for capturing biological interactions such as
those present in co-regulated biological networks and biological
pathways relevant to psychiatric disorders such as schizophrenia
(50). In machine-learning analysis, studies have incorporated
co-expression information to improve gene marker discovery
(51), but few have tested the predictability of the gene
interactions for diagnosis. This may be due to the large number
of coefficients that require estimation, limiting the statistical
power. The corresponding MTL approaches offer the possibility
to improve statistical power by incorporating additional samples
and constraining model complexity with regularization.

Distributed multi-task learning

It is straightforward to parallelize the training of MTL
models, which facilitates their distributed application on
geographically distributed data sources. This is because the
optimization procedure of most regularization-based MTL
methods can be disentangled into two operations performed
independently. As shown in Figure 4, the first operation entails
identifying a potential solution for fitting the data on the
local client. The second operation performs the cross-task
knowledge transfer on a central server. Two operations are
performed iteratively. Therefore, the first operation can be easily
parallelized. Figure 4 demonstrates a simple distributed strategy
for MTL with joint predictor selection (see Supplementary
Table 1), which may not be efficient in practice. For example,
the parameter server only performs the second operation
after collecting all messages from the clients, and thus, the
computing speed is limited by the slowest network connection.
To address this, one study (52) proposed an asynchronous
approach for distributed MTL such that the first operation need
not wait for the response from the server. This results in a
substantially improved efficiency but an earlier convergence.
In recent years, many conventional MTL methods have been
adapted to distributed learning, i.e., the distributed multi-
task kernel machine (53) and distributed MTL with network
incorporation (53).

Current genetic and neuroimaging research substantially
profits from the establishment of large consortia involving
numerous institutions, e.g., IMAGEMEND (54) and ENIGMA
(55). The collaborative network ENIGMA comprises over 200
research institutions from 43 countries. In such a scenario,
the protection of data privacy, as well as the logistics of data
analysis across institutions, becomes challenging. Distributed
MTL offers the possibility to naturally integrate data resources
across hospitals into a machine-learning framework. To prevent
the data leakage of patients during the integration procedure, a
new research line emerged called “federated machine learning”
(56), which aims at training the distributed model in a privacy-
preserving fashion. The security and privacy issues relevant
to federated learning systems are summarized in Box 1.
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FIGURE 3

From machine learning (ML) to High-order MTL. In ML, one functional mapping links the predictors and the outcome, and the coefficients are
represented as a vector. In conventional MTL, similar to ML, multiple “one-to-one” mappings link the predictor and outcome domain, where the
mappings are not crossed among tasks. The resulting coefficients are represented as a matrix. In high-order MTL, highly complex
multi-modality is accounted for by “multiple-to-multiple” mappings to connect the predictor with the outcome domain. The coefficients are
represented as a tensor.

FIGURE 4

Schematic overview of distributed MTL. The Figure shows the distributed computations and parameter exchange of the MTL method with joint
predictor selection (see Supplementary Table 1 for details). Once the algorithm starts, the client i performs a one-iteration gradient descent and
transfers the result wi to the server. After the server collected messages from all clients, the second operation is performed, and the updated w

′

i

is returned to client i. This procedure is repeated until the convergence of the solution (W
′

≈W).
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BOX 1 Security and privacy issues of federated learning.

Federated learning (FL) is a new and fast-growing area. Questions related to the security and privacy of information are of particular relevance for FL approaches
and subjects of active research.
Security refers to the vulnerability of FL systems that could be abused by a potential attacker with the aim to break the system (59). For example, the FL systems
require substantial communication between nodes in order to update a given model, which is associated with significant risks; in the client-server architecture, the
central server is an important node connecting all clients, and may become the target of an attack. A common type of such an attack in the context of security is the
so-called “poisoning”. In this attack, the malicious client node updates the local model with malicious data points or parameters, causing the global model to lose its
predictive capacity (83).
Privacy issues refer to the threats that can reveal a given individual’s sensitive information by exploring the models’ parameters (59). This type of attacks are also
termed “inference attacks”. For example, membership inference attack aims at identifying whether certain data were used as part of the training set.

The techniques for addressing security issues were classified
as “proactive” and “reactive” techniques. The former type
progressively guesses the potential risks of the system and
performs a defensive procedure, whereas the latter type initiates
after the attacks occurred. Blockchain (57) has been applied in a
federated learning system to support both defensive techniques.
Blockchain provides an “immutable ledger” for saving the
contributions of each node to the global model such that the
malicious change of the global model can be detected before
or after the attacks. For privacy issues, researchers introduced
cryptologic algorithms into the distributed learning framework,
in order to prevent the leakage of individually identifiable
information. Differential privacy (58) is one of such algorithms,
and aims at statistically erasing identifiable characteristics from a
well-trained model. More countermeasures for these challenges
have been explored in Mothukuri et al. (59). There are already
studies adopting this methodology to perform data integration
across hospitals. For example, one study integrated COVID-
19 patients’ information across multiple hospitals for training
a prediction model using a variant of a federated algorithm (60).
Recently, a user-friendly federated MTL software supporting
multi-modal biomedical analysis has been developed (29).

Another application scenario of federated MTL with
relevance to psychiatry is the analysis of mobile data collected
by handheld and wearable devices. In recent years, the
widespread distribution of these devices enabled the monitoring
of emotional and cognitive changes in the daily life context and
for intervention tailored by personalized and context-specific
information (61). These daily life data allowed investigating, e.g.,
psychosis in daily life, which might improve our understanding
of this condition and lead to a better mechanistic model
(61). One study (62) already showed improved prediction
accuracy (82%) using ESM (experience sampling method) data
collected from mobile devices. Federated MTL could have
useful application scenarios in this research field. First, the
heterogeneity of mobile data collection could be modeled by
federated MTL. Mobile devices usually contain many sensors
and recording channels, thus generating multi-modal data.
Modeling such cross-modality heterogeneity could provide
an opportunity for investigating psychiatric outcomes more
comprehensively. In fact, a recent study (63) described a multi-
task dynamic system for analyzing multi-modal time series,
which built the theoretical and algorithmic framework for

solving this problem. Second, the temporal dependency of
mobile data could be modeled by federated MTL. Mobile data
usually represents time series violating the I.I.D assumption,
and MTL could capture the temporal relationship by cross-task
regularization. A similar concept has been pursued to model
disease progression (14).

Discussion

In this review, we provide a comprehensive overview
of MTL methods that have the potential to substantially
advance translational research in neuroscience. MTL is an
emerging technology that has already been applied extensively
in biomedical studies and, occasionally, in neuroscience. With
its ability to account for complex relationships across different
data modalities, MTL appears suitable for integrative, multi-
modal data analyses in neuroscience. As a data integration tool,
MTL can provide an increase in statistical power, due to the
assumpted cross-task structure and the resulting compression
of the search space of model parameters.

An interesting property of MTL with regard to its
application in translational neuroscience is that it allows for
a “parallelization” of the identification of biological (and
other) signatures and may thus accelerate the discovery of
clinically useful and mechanistically informative patterns. We
argued in this review that this approach might be particularly
useful for the analysis of multi-modal data. To illustrate this,
we first explored the utility of regularization-based machine
learning methods with regard to high data dimensionality and
complex feature correlation, and categorized these methods
according to specific use cases relevant to neurogenetics
studies. We then introduced the MTL concept and categorized
methods according to specific methodological characteristics for
capturing the task relationships, with possible applications for
the integration of multiple data modalities. To illustrate the
technical properties of these methods, we provided information
on relevant considerations in the Supplementary material.
Finally, we highlighted two emerging areas in MTL that might be
of benefit for future studies in neuroscience. With the increasing
richness of available data resources, capturing the relationships
between data modalities will be a promising but challenging
focus of machine learning analyses. As the more complex
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“multiple to multiple” relationship among tasks is beyond the
capacity of conventional MTL, high-order MTL may offer a
potential solution. The utilization of large-scale data resources is
further aided by approaches such as federated machine learning,
which does not require data to be brought together into a
single storage solution. This will support the integrative analysis
of sensitive data, as well as of data that cannot be directly
shared due to their large scale. While approaches such as
regularized MTL are particularly effective for high-dimensional
data analysis, in low-dimensional scenarios, there are similar
approaches in the regression analysis framework that have
utility for multi-modal data analysis. Approaches of interest in
this context include multilevel regression (64) and multivariant
regression (65, 66).

In translational psychiatry, multi-modal machine learning
approaches have already been applied in numerous studies,
including for personalized medicine approaches. Some of such
studies support that clinical decision-making can potentially
be improved through AI-based integration of information
from other data modalities. In this context, MTL may be a
valuable addition to the repertoire of available computational
techniques, due to its ability to simultaneously link multiple,
clinically relevant phenotypes. Interesting application areas
could include the integration of audio, video and text-based
data, as has been previously investigated for improving the
diagnostic classification of bipolar disorder and depression (67).
Another similar example is the integration of audio and text data
from social media platforms (68), and more studies have been
reviewed in (69).

Another interesting example is the integration of
multimodal data for the development of prognostic models,
e.g., using clinical and neuroimaging data for the prediction
of social functioning in high-risk psychosis (83% accuracy)
or recent onset depression patients (70% accuracy) (70).
These accuracy estimates were higher than those obtained
from human experts, highlighting the possible utility of
computer-aided prognostic models. Another prognostic
study (71) successfully predicted the transition to psychosis
by integrating clinical, neurocognitive, neuroimaging, and
genetic information. These analyses support the utility of
multimodal integration for the development of machine
learning models in psychiatry, and point to possibilities for the
application of MTL that may further refine such approaches.
Such analyses may be particularly relevant for the integrative
analysis of distributed, large-scale data repositories, where
MTL could offer a computational approach for disentangling
sources of heterogeneity that may affect the cross-repository
generalizability of models (72, 73). In this context, federated
applications of MTL are of particular relevance, and we here
presented several methodological considerations.

Beyond the predictive accuracy and the generalizability
of models, MTL may have substantial utility for improving
our mechanistic understanding of mental illness by linking

multiple data modalities in a single analysis. Interesting
examples include the special correlation between brain-
structural and –functional effects (74) that may support
a mechanistic relevance for illnesses such as schizophrenia
(75). Multimodal integration of brain alterations has been
performed repeatedly, using techniques such as canonical
correlation analysis (76), deep learning (77), and other
methodologies (78), which may be well complemented by
MTL strategies. A particularly interesting focus area would
be the integrative analysis of resting state and task-based
MRI in relation to cognitive functioning relevant to mental
illness (79, 80). Linking these modalities directly through MTL
could provide a deeper insight into mechanisms involved in
the process underlying potentially transdiagnostic symptom
clusters, and thus contribute to a dissection of patient
heterogeneity through a more in-depth understanding of the
underlying neurobiology. By identifying shared mechanistic
effects across data modalities, multitask learning may thus aid
in stratification that has a direct connection to a clinically
relevant phenotype, which may aid in overcoming typical
challenges associated with unsupervised clustering tools. The
relevance of multitask learning for such integrative analysis is
supported by emerging studies that, for example, focus on the
integrated analysis of neuroimaging and genetic association data
for prediction of schizophrenia (81) or of the disease stages of
Alzheimer’s disease (82). With the ever-increasing availability
of large-scale, multi-modal data, we believe these emerging
algorithms will find innovative applications in translational
psychiatric research.

Conclusion

Multi-task learning approaches offer a computational
framework for multi-modal data analysis, and could allow
dissecting data heterogeneity. MTL has numerous interesting
application scenarios in biomedical research, including
patient stratification, comorbidity modeling, multimodal
data integration, disease process modeling, or multi-cohort
biomarker discovery. We thus believe that it will be increasingly
applied in psychiatric research, could contribute to an improved
mechanistic understanding of mental illness, and may provide
the basis for novel, clinically useful applications.

Security refers to the vulnerability of FL systems that could
be abused by a potential attacker with the aim to break the
system (59). For example, the FL systems require substantial
communication between nodes in order to update a given
model, which is associated with significant risks; in the client-
server architecture, the central server is an important node
connecting all clients, and may become the target of an attack.
A common type of such an attack in the context of security is
the so-called “poisoning.” In this attack, the malicious client
node updates the local model with malicious data points or
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parameters, causing the global model to lose its predictive
capacity (83).
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