
Chapter 2

Antenna Fundamentals

2.1 Introduction

2.1.1 Electromagnetic Spectrum, Radio Waves

Table2.1.1 shows that the electromagnetic spectrum is divided into several re-
gions. Their boundaries are not precisely defined; rather, they are determined
by changes in main physical characteristics, which are gradual, and also by the
state of technology. In particular, there is a spectral overlap of radio waves and
infrared light.

The term radio frequency (RF) refers to the frequency range up to 3 THz,
corresponding to free-space wavelengths down to 100 μm. That range is divided
into a number of bands which are listed in Table 2.1.2.

Example 2.1.1 (ELF waves: Schumann resonances). The surface of the earth,
mainly salt water, and the ionosphere constitute two conducting surfaces. The
air region in between forms a spherical cavity resonator which supports a dis-
crete set of so called Schumann resonances. Schumann resonances are excited
by lightnings. The first resonances are 7.8 Hz, 14.3 Hz, and 20.8 Hz. The mean
circumference of the earth is ≈ 40000 km. The height of the conducting layer of

Table 2.1.1: The electromagnetic spectrum.

Name Freespace Wavelength Frequency Photon Energy
Unit m Hz eV
Radio waves < ∞ 100 · 10−6 > 0 3 · 1012 < 12.4 · 10−3
Infrared light 10−3 800 · 10−9 300 · 109 375 · 1015 < 1.55
Visible light 800 · 10−9 400 · 10−9 375 · 1015 750 · 1015 < 3.1
Ultraviolet light 400 · 10−9 10 · 10−9 750 · 1015 30 · 1015 < 124
X rays 10 · 10−9 10 · 10−12 30 · 1015 30 · 1018 < 124 · 103
γ rays 10 · 10−15 30 · 1021

2.1.1
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Table 2.1.2: Radio frequency bands.

Frequency Code Name Main Usage
3 – 30 Hz ELF Extremely Low Frequency

30 – 300 Hz SLF Super-Low Frequency Power grids
300 – 3000 Hz ULF Ultra-Low Frequency Aircraft power

3 – 30 kHz VLF Very Low Frequency Submarine communication
30 – 300 kHz LF Low Frequency Beacons

300 – 3000 kHz MF Medium Frequency AM broadcast
3 – 30 MHz HF High Frequency AM broadcast

30 – 300 MHz VHF Very High Frequency FM broadcast, TV
300 – 3000 MHz UHF Ultra High Frequency TV, cellular, LAN

3 – 30 GHz SHF Super High Frequency Radar, LAN, satellites, data
30 – 300 GHz EHF Extremly High Frequency Radar, data

the ionosphere may be assumed at 300 km (maximum of electron density during
day and night.)

2.1.2 Radio Communication Link

Fig. 2.1.1 shows a simple wireless communication link comprising a transmitter,
a wireless channel, and a receiver. The transmitter consists of an RF generator,
a feed line, and an antenna that converts the guided wave coming from the feed
to a radiating waveform in open space. In the receiver, the antenna serves the
opposite purpose: to convert a free-space wave to a guided wave on a feed line
which leads to an RF amplifier. Note that

• Antennas are devices for radiating or receiving radio waves; but:

• Antennae are sensitive organs of insects.

At GHz frequencies, a physical limitation for applications in wireless commu-
nications is given by the atmospheric attenuation of electromagnetic waves due
to water vapor and absorption by gases [9]; see Fig. 2.1.2.

2.1.3 Network Representation

In typical applications, the transmitter and receiver antennas are so far apart that
the fraction of radiated power accepted by the receiver is very small. While such
links would be very inefficient for power transfer, they may still be very useful
for information (data) exchange. It is characteristic of such configurations that
the presence or absence of the receiver does not affect the overall characteristics
of the transmitter, such as antenna input impedance or far-field patterns.
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Figure 2.1.1: A simple wireless communication link.

An equivalent circuit for the transmitter is shown in Fig. 2.1.3: The generator
is modeled by a voltage source of source impedance ZS, the feed line is character-
ized by its length, propogation coefficient, and wave impedance, and the antenna
by some load impedance. Its resistive part is caused by the power radiated into
space and the losses inherent to the antenna. Its reactive component corresponds
to the energy stored in the near-field around the antenna.
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Figure 2.1.2: Atmospheric attenuation versus frequency. Reproduced from [9].

Figure 2.1.3: Equivalent circuit model of transmitter.
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Figure 2.2.1: Elliptical polarization of an EM wave.

2.2 Polarizaton of Locally Plane Wave

Definition 7 (Polarization of a locally plane wave). The property that describes
the time-varying direction and relative magnitude of the 
E vector; specifically,
the figure traced as a function of time by the extremity of the vector at a fixed
location in space, and the sense in which it is traced, as observed along the
direction of propagation. [10, p. 64]

Linear polarization means that the electric field vector as a function of time
moves along a straight line. For a given direction of propagation, there exist two
orthogonal, linearly polarized waves. Any wave propagating in this direction can
be written as a superposition of two linearly polarized waves of specific magnitude
and phase. If the phase difference between the linearly polarized waves is non-
zero, the resulting wave is of elliptical polarization: In general, the projection of

E as a function of time on the transverse plane is a tilted ellipse; see Fig. 2.2.1.

Definition 8 (Axial ratio (AR)). The ratio of the major axis to the minor axis
is called the axial ratio (D: Achsenverhältnis).

A special case is circular polarization, in which case the AR is one. In case of
elliptical or circular polarization, right-hand polarization means that 
E rotates
in the clockwise sense, and left-hand polarization designates counter-clockwise
rotation.

Any plane wave can be decomposed into one left-handed and one right-handed
circularly polarized wave propagating in the same direction, each of specific am-
plitude and phase.

Exercise 2.2.1. Given one left-hand and one right-hand circularly polarized wave,
of same frequency, and propagating in the same direction. Prove that the waves
are orthogonal in the sense that they are energetically decoupled.
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Exercise 2.2.2. Prove that any circularly polarized wave can be represented by
the sum of a left-hand and a right-hand circularly polarized wave.

Exercise 2.2.3. Prove that any linearly polarized wave can be represented by the
sum of a left-hand and a right-hand circularly polarized wave.

Exercise 2.2.4. Let the time-harmonic electric field at a given point be described
by the phasor 
E = |E1|ejϕ1 ê1 + |E2|ejϕ2 ê2 + |E3|ejϕ3 ê3. What type of surface is
traced by the instantaneous field over one period? What is the maximum of the
instantaneous field over time, and at what phase instance does it occur?
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2.3 Antenna Parameters

2.3.1 Bandwidth

Definition 9 (Bandwidth (BW)). The range of frequencies within which the
performance of the antenna conforms to a specified standard with respect to
some characteristic:

BW = fmax − fmin. (2.3.1)

Often the relative bandwidth is used:

rel. BW =
fmax − fmin

f̄
with f̄ =

fmax + fmin

2
. (2.3.2)

Typical characteristics include pattern, impedance, polarization, etc..

2.3.2 Polarization of Antenna

Definition 10 (Polarization of antenna). The polarization of an antenna in a
given direction is that of the plane wave it radiates at large distances in that
direction.

If the direction of the polarization is not stated, the direction of maximum
gain is implied.

For non-reciprocal antennas which are not intended to transmit, it makes sense
to define the receiving polarization as the polarization of a plane wave, incident
from a given direction, which results in maximum available power at the antenna
port. If the receiving polarization is meant, this must be clearly specified.

Definition 11 (Co-polarization (D: Kopolarisation)). That polarization which
the antenna is intended to radiate.

Definition 12 (Cross-polarization (D: Kreuzpolarisation)). In a specified plane
containing the reference polarization ellipse, the polarization orthogonal to a
specified reference polarization.

The reference polarization is usually the co-polarization.

2.3.3 Antenna Input Resistance

Definition 13 (Input resistance R (D: Eingangswiderstand)). The input resis-
tance is the resistance measured at the terminals of the antenna.

Let i denote the current at the location of the terminals. Then the input
resistance is obtained from the radiated power Prad by

Prad =
1

2
Rrad |i|2. (2.3.3)
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Example 2.3.1 (Input resistance of Hertzian dipole). According to (1.4.37), the

total radiated power is given by Prad =
|i|2
2

2π
3
η0

(
|Δl|
λ

)2

. Since the current along
the Hertzian dipole is constant,

R = Rrad =
2π

3
η0

( |Δl|
λ

)2

. (2.3.4)

2.3.4 Radiation Patterns

The purpose of antennas is not only to excite radiating waveforms but also to
direct the radiated power to selected directions: Most antennas are directional
radiators. The radiation pattern or antenna pattern is defined as a mathematical
function or a graphical representation of the radiation properties as a function of
space coordinates. Since radiation patterns are defined for the far-field zone, they
are most commonly expressed in terms of the directional spherical coordinates of
the observation point, the look angles ϑ and ϕ.

Radiation patterns may be defined for a variety of physical quantities. The
most common choices are power flux density Tr(ϑ, ϕ) and electric field strength

E(ϑ, ϕ). Whereas Tr is a real-valued scalar, 
E(ϑ, ϕ) is a complex-valued vector.
Thus, to fully describe 
E fields, a total of four patterns is required: one for the
magnitude and phase of each of the two transverse components. The importance
of 
E patterns lies in the fact that many antennas are polarization-dependent,
i.e., the strength of the signal received depends on the relative orientation of the
antenna with respect to the direction of 
E.

Most often, magnitude patterns are normalized with respect to the respective
maximum assumed over all look angles, e.g.:

normalized power pattern: pnorm(ϑ, ϕ) =
Tr(ϑ, ϕ)

Tr(ϑ, ϕ)max

, (2.3.5)

normalized field pattern: Eϑ,norm(ϑ, ϕ) =
|Eϑ(ϑ, ϕ)|

|Eϑ(ϑ, ϕ)|max

. (2.3.6)

Normalized patterns are dimensionless ratios which are often represented by log-
arithmic measures, in decibel (dB). For consistency, the calculation must reflect
the origin as a power or field ratio, respectively:

logarithmic measure of pnorm = 10 log10 pnorm(ϑ, ϕ) in dB, (2.3.7)
logarithmic measure of Eϑ,norm = 20 log10 Eϑ,norm(ϑ, ϕ) in dB. (2.3.8)

Definition 14 (Isotropic radiator). A hypothetical lossless antenna having equal
radiation in all directions.
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(a) Three-dimensional view. (b) Elevation plane.

Figure 2.3.1: Hertzian dipole iΔlêz: linearly scaled normalized FF patterns of Eϑ.

Since the radiation intensity of an isotropic radiator Uiso does not depend on
the look angles, we have

Prad =

∮
Ω

Uiso dΩ = Uiso

∮
Ω

dΩ = 4πUiso, (2.3.9a)

Uiso =
Prad

4π
. (2.3.9b)

Definition 15 (Omnidirectional radiator). An antenna having an essentially
nondirectional pattern in a given plane.

Principal Planes

Definition 16 ( 
E plane, 
H plane, principal planes). The 
E plane ( 
H plane) of
a linearly polarized antenna is the plane containing the electric (magnetic) field
vector and the maximum radiation. The 
E plane and the 
H plane are referred
to as the principal planes.

It is common use to choose the coordinate system such that at least one of
its principal planes coincides with the principal planes of the radiation pattern.
For antennas providing linear polarization, it often suffices to characterize them
by two two-dimensional patterns in their principal planes.
Example 2.3.2 (FF Pattern of Hertzian Dipole). The Hertzian dipole radiates
linearly polarized waves. The 
H plane of the antenna is given by its equatorial
plane. By symmetry, the 
E plane is not unique; it is represented by any plane
containing the dipole. The radiation pattern of the dipole is omnidirectional in
the 
H plane but directional in the 
E plane; see Fig. 2.3.1.
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Figure 2.3.2: Classification of radiation lobes.

Antenna Lobes

Definition 17 (Radiation lobe (D: Strahlungskeule, Antennenkeule)). A portion
of the radiation pattern bounded by regions of relatively weak radiation intensity.

The radiation patterns of directional antennas feature one or more lobes.
The main lobe, major lobe or main beam is the lobe containing the direction of
maximum radiation. All others are called minor lobes ; The standard defines a
sidelobe as a lobe in any direction other than the intended lobe. In practical
use, sidelobes are the larger, unwanted minor lobes adjacent to the main lobe, in
forward direction. The sidelobe level is the ratio of the maximum power density
of the sidelobe to that of the main lobe, usually expressed in db.

A back lobe is defined as defined as a radiation lobe the axis of which makes an
angle of approximately 180 degrees with respect to the beam axis of an antenna
lobe in the half-space opposed to the direction of peach directivity. Loosely
speaking, a back lobe is any lobe radiating into the opposite half-space of the
main lobe.

In a pattern cut containing the direction of the maximum of a lobe, the
half-power beamwidth (HPBW) is given by the angle between the two directions
in which the radiation intensity is one half the maximum value. If the major
lobe has a half-power contour that is essentially elliptical, the principal HPBWs
denote the HPBWs in the two pattern cuts that respectively contain the major
and minor axes of the ellipse.

The first-null beamwidth (FNBW) is the angle between the two directions in
which the radiation intensity has a null. In practise the nulls may be filled up due
to phase errors. The FNBW may then be approximated by the angle between
the two directions of minimum radiation.

Fig. 2.3.2 illustrates the definitions above.
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2.3.5 Directivity and Beam Solid Angle

Definition 18 (Directivity D (D: Richtfaktor, Direktivität)). The directivity D(ϑ, ϕ)
is the ratio of the radiation intensity in a given direction from the antenna to
the radiation intensity averaged over all directions, i.e., the ratio to the radiation
intensity of an isotropic radiator of same total radiated power:

D(ϑ, ϕ) =
U(ϑ, ϕ)

Uiso

∣∣∣∣
Prad=const

= 4π
U(ϑ, ϕ)

Prad

. (2.3.10)

If the direction is not specified, the direction of maximum radiation intensity is
implied.

Since the directivity is a dimensionless ratio that may vary greatly, it is com-
mon to give a logarithmic measure, in decibel over isotropic (dBi).

logarithmic measure of D = 10 log10 D(ϑ, ϕ) in dBi. (2.3.11)

Definition 19 (Beam solid angle ΩA, beam area (D: äquivalenter Raumwinkel)).
The solid angle through which all the radiated power would stream if the power
per unit solid angle were constant throughout this solid angle and at the maximum
value of the radiation intensity Umax:

ΩA :=
Prad

Umax

. (2.3.12)

By (2.3.12) and (2.3.10), the beam area is related to the maximum directivity
by

ΩA =
4πUiso

Umax

=
4π

Dmax

. (2.3.13)

Example 2.3.3 (Directivity and beam area of Hertzian dipole). The radiation
intensity is given by (1.4.36) and the radiated power by (1.4.37). Eq. (2.3.10)
yields

D(ϑ, ϕ) =
4πU

Prad

= 4π

|i|2
2

η0
4

(
|Δl|
λ

)2

sin2 ϑ

|i|2
2

2π
3
η0

(
|Δl|
λ

)2 , D(ϑ) =
3

2
sin2 ϑ, (2.3.14)

Dmax =
3

2
∧
= 1.76 dBi, (2.3.15)

ΩA =
4π

Dmax

=
8π

3
ster. (2.3.16)
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2.3.6 Gain and Equivalent Isotropically Radiated Power

Definition 20 (Gain, absolute gain (G(ϑ, ϕ)) (D: absoluter Gewinn)). The ratio
of the radiation intensity in a given direction to the radiation intensity that would
be produced if the power accepted by the antenna were isotropically radiated:

G(ϑ, ϕ) :=
U(ϑ, ϕ)

Pin/(4π)
. (2.3.17)

If the direction is not specified, the direction of maximum radiation intensity is
implied.

Definition 21 (Relative gain (g(ϑ, ϕ)) (D: relativer Gewinn)). The ratio of the
gain of an antenna in a given direction (ϑ, ϕ) to the gain of a reference antenna
in an agreed reference direction (ϑref , ϕref ):

g(ϑ, ϕ) =
G(ϑ, ϕ)antenna under test

G(ϑref , ϕref )reference antenna
. (2.3.18)

Since gain is related to accepted rather than available power, it does not
include reflection loss due to impedance mismatch of the feed. It is independent
of the system the antenna is connected to. In contrast to directivity, gain accounts
for dissipative losses within the antenna structure.

Definition 22 (Radiation efficiency (ecd)). The ratio of the total power radiated
by an antenna to the net power Pin accepted by the antenna from the connected
transmitter:

ecd :=
Prad

Pin

. (2.3.19)

The indices emphasize that conduction and dielectric losses are included.
Combining (2.3.19), (2.3.17), and (2.3.10) yields

G(ϑ, ϕ) = ecdD(ϑ, ϕ). (2.3.20)

Definition 23 (Equivalent Isotropically Radiated Power (EIRP)). In a given
direction, the gain G(ϑ, ϕ) of a transmitting antenna multiplied by the net power
Pin accepted by the antenna from the connected transmitter:

EIRP(ϑ, ϕ) := G(ϑ, ϕ)Pin. (2.3.21)

2.3.7 Mismatch Mechanisms

Reflection Loss

In the transmission case, the antenna is excited through the feed by an incident
wave of complex amplitude a1; there is no incident wave from the antenna, a2 = 0.



Antenna Theory 1 – R. Dyczij-Edlinger, WS 2016/17 2.3.7

Unless the feed is perfectly wave-matched to the antenna, a reflected wave will be
excited in the feed. Its amplitude b1 is related to a1 by the reflection coefficient ρ1,

b1 = ρ1a1. (2.3.22)

By definition of a and b, the available power Pavail and the reflected power Prefl

are given by

Pavail = |a1|2, (2.3.23)
Prefl = |b1|2 = |ρ1|2Pavail. (2.3.24)

Assuming that the junction is lossless, the power accepted by the antenna Pin is
obtained from conservation of power:

Pavail = Pin + Prefl, (2.3.25)
Pin = (1− |ρ1|2)Pavail. (2.3.26)

Definition 24 (Impedance mismatch factor (ep)). The fraction of the available
power that is accepted by the antenna:

ep :=
Pin

Pavail

= 1− |ρ1|2, (2.3.27)

wherein ρ1 is the input reflection factor.

Definition 25 (Realized gain (Gr(ϑ, ϕ))). The ratio of the radiation intensity in
a given direction to the radiation intensity that would be produced if the power
available at the input port of the antenna were isotropically radiated:

Gr(ϑ, ϕ) :=
U(ϑ, ϕ)

Pavail/(4π)
. (2.3.28)

In contrast to gain, realized gain also accounts for the impedance mismatch
factor. Eqs. (2.3.28), (2.3.27), (2.3.20) imply

Gr(ϑ, ϕ) = epG(ϑ, ϕ) = epecdD(ϑ, ϕ). (2.3.29)

Polarization Loss

Definition 26 (Polarization efficiency, polarization loss factor (PLF)). The ratio
of the power received by an antenna from a given plane wave of arbitrary polar-
ization to the power that would be received by the same antenna from a plane
wave of the same power flux density and direction of propagation, the state of
polarization of which has been adjusted for a maximum received power.
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Figure 2.3.3: Polarization mismatch between a linearly polarized plane wave and
a receiving dipole antenna.

Example 2.3.4. The polarization of the Hertzian dipole antenna is linear and in
the direction of is axis; see Sec. 1.4.3. A linearly polarized plane wave is impinging
upon a dipole pointing in the êr direction. The electric field vector at the location
of the receiver is given by E = êiEi; see Fig. 2.3.3. Determine the PLR.

The component of the incident electric field in the direction of the polarization
of the antenna E‖ is given by the projection

E‖ = êd · êiEi = cosψpEi, (2.3.30)

wherein ψp denotes the angle between the dipole axis and E.
Since power is proportional to |E|2, we have

PLF =
|E‖|2
|Ei|2 = (êd · êi)2 = cos2 ψp. (2.3.31)

Exercise 2.3.1. A right-hand circularly polarized plane wave is received by a
right-hand polarized antenna (per def.: transmission scenario!). Calculate the
polarization loss factor.
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2.4 Receiving Properties

2.4.1 Effective Antenna Length

Definition 27 (Effective length of a linearly polarized antenna). For a linearly
polarized antenna receiving a plane wave from a given direction, the ratio of
the magnitude of the open-circuit voltage developed at the terminals of the an-
tenna Uoc to the magnitude of the electric-field strength in the direction of the
polarization of the antenna [11, p. 13].

It thus makes sense to define the vector equivalent length le [10, p. 79] by

le : Uoc = Ei · le. (2.4.1)

The usefulness of the equivalent antenna length for dipoles and monopoles is
evident. It may be used for all types of antennas, including loops and apertures,
even though there is no immediate physical interpretation.
Exercise 2.4.1. Show that for a short dipole of length l � λ/2 the equivalent
antenna length is equal to half its physical length.
Exercise 2.4.2. What is the equivalent length of a half-wave dipole?

2.4.2 Effective Antenna Area

Definition 28 (Effective antenna area Ae (D: Antennenwirkfläche)). In a given
direction, the ratio of the available power at the terminals of a receiving antenna
to the power flux density of a plane wave incident on the antenna from that
direction, the wave being polarization matched to the antenna. [11, p. 13]

Ae(ϑ, ϕ) :=
Pavail(ϑ, ϕ)

Tr(ϑ, ϕ)
. (2.4.2)

If the direction is not specified, the direction of maximum radiation intensity is
implied. Synonymously, equivalent aperture may be used [10, p. 81].

For large aperture antennas, the equivalent area is equal to the physical area
of the aperture. The usage of Ae is not restricted to aperture antennas, though;
it may be computed via (2.4.2) for any kind of antenna.

In the general case, Ae may be interpreted as follows: Consider the entirety of
all flux tubes of the power flux density (Poynting) vector T leading to the input
terminal of the antenna. Their total flux is Pavail. At large distance from the
antenna, the area A covered by the cross-sections of these flux tubes in a plane
perpendicular to the direction of propagation is equal to Ae; see Fig. 2.4.1. The
reason is as follows: At large distance from the antenna, the fields form a locally
uniform plane wave. Thus the T flux tubes are in the direction of propagation
(even if there is reflection from the antenna), and the magnitude of T is constant;
hence TA = P .
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(a) Red line separates flux lines entering the
antenna from those passing by.

(b) At large distance, the cross-section of the
flux tubes entering the antenna is equal to Ae.

Figure 2.4.1: Interpretation of equivalent area by means of the Poynting vector.

Figure 2.5.1: A simple wireless transmission path.

2.5 Wireless Transmission Path Properties

2.5.1 Equivalence of Transmitting and Receiving Charac-
teristics

Consider the configuration of Fig. 2.5.1. When Antenna 1 is transmitting, and
Antenna 2 is receiving, the power density T21 of the plain wave impinging on the
receiver is related to the power accepted P1 by the transmitting antenna by

T21 =
G1(ϑ1, ϕ1)

4πR2
P in
1 . (2.5.1)

Hence the power available at the output port of Antenna 2, neglecting polarization
loss, is given by

P avail
21 =

Ae2(ϑ2, ϕ2)G1(ϑ1, ϕ1)

4πR2
P in
1 . (2.5.2)
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When Antenna 2 is taken as the transmitter and Antenna 1 as the receiver, while
the locations of the antennas remain unaltered, we have

P avail
12 =

Ae1(ϑ1, ϕ1)G2(ϑ2, ϕ2)

4πR2
P in
2 . (2.5.3)

Provided that both the antennas and the wireless channel are reciprocal,

P avail
21

P in
1

=
P avail
12

P in
2

, (2.5.4)

eqs. (2.5.2) and (2.5.3) imply
Ae2(ϑ2, ϕ2)

G2(ϑ2, ϕ2)
=

Ae1(ϑ1, ϕ1)

G1(ϑ1, ϕ1)
. (2.5.5)

Hence the ratio of equivalent area to gain is an invariant, whose value may be
determined by reference to, e.g., a lossless Hertzian dipole, with εcd = 1. Its
maximum directivity is known from (2.3.15), and its maximum equivalent area
will be calculated in Sec. 3.0.3, in (3.0.21):

Ae

G
=

Ae

εcdD
=

3λ2

8π

1 · 3
2

=
λ2

4π
. (2.5.6)

Hence, for any reciprocal antenna in any direction:
Ae(ϑ, ϕ)

G(ϑ, ϕ)
≡ λ2

4π
. (2.5.7)

Since the ratio Ae/G does not depend on the look angles (ϑ, ϕ), the transmitting
characteristics measured by G(ϑ, ϕ) and the receiving characteristics measured
by Ae(ϑ, ϕ) of any reciprocal antenna are the same, but for a scaling constant.
Exercise 2.5.1. What is the equivalent antenna area of an isotropic radiator?

2.5.2 The Friis Transmission Equation

Eq. (2.5.2) relates the power available at the terminals of the receiving antenna to
the power available at the input terminals of the transmitting antenna. Thanks
to (2.5.5), it may be expressed in terms of G only:

P avail
21 =

1(
4πR

λ

)2G2G1P
in
1 for polarization-matched antennas. (2.5.8a)

If the feeds are taken as the references and all losses are included, as shown in
Fig. 2.5.2, one obtains

P avail
feed2 =

(
1− |ρ1|2

) (
1− |ρ2|2

)︸ ︷︷ ︸
reflection

loss

(êd · êi)2︸ ︷︷ ︸
polarization

loss

1(
4πR

λ

)2︸ ︷︷ ︸
free-space

loss

εcd,2εcd,1︸ ︷︷ ︸
dissipative

loss

D2D1P
avail
feed1. (2.5.8b)

Eqs. (2.5.8a) and (2.5.8a) are variants of the Friis Transmission Equation.



2.5.4 Antenna Theory 1 – R. Dyczij-Edlinger, WS 2016/17

Figure 2.5.2: Wireless path including all losses.

Definition 29 (Free-space loss F (D: Freiraumdämpfung)). Free-space loss de-
notes the ratio of the power transmitted by an isotropic radiator to the power
transmitted by an isotropic antenna, as a function of the electric distance R

λ
of

the antennas. From (2.5.8a), its value is seen to be

F =

(
4π

R

λ

)2
∧
= 20 log10

(
4π

R

λ

)
dB. (2.5.9)

Free-space loss does not include dissipative processes in the atmosphere or
reflections. Rather, it describes the decrease in power density of a homogeneous
spherical wave as a function of the electric distance from the radiator.
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(a) Actual radar path. (b) Equivalent model for definition of RCS.

Figure 2.6.1: Modeling the scattering properties of a radar target.

2.6 Radar Path Properties
Radar (radio detection and ranging) denotes a broad class of methods for de-
termining the distance (range), angular direction (azimuth and elevation angles),
and speed of objects (targets) with the help of radio waves. The common principle
is to illuminate the target by a radio wave and evaluate its response (echo), with
regard to time delay, direction, magnitude, and Doppler shift. Thus a typical
radar path involves a transmitting antenna, a scatterer (target), and a receiv-
ing antenna. For cost reasons, many radar systems employ the same antenna
for transmitting and receiving. A comprehensive overview of radar techniques is
given in [12].

2.6.1 Radar Cross-Section

Fig. 2.6.1a shows a scatterer about the center of the coordinate system, a trans-
mitting antenna at (R1, ϑi, ϕi), and a receiving antenna at (R2, ϑs, ϕs). If the
directions to the antennas coincide, (ϑi, ϕi) = (ϑs, ϕs), the radar is monostatic;
else bistatic. The incident wave impinging upon the target is partly absorbed and
partly re-radiated, in various directions. That radiation from the target consti-
tutes the scattered field. Thus the signal at the location of the receiver depends
on the strength, frequency, and polarization êi of the incident wave, the distances
Ri and Rs, the incidence and observation directions (ϑi, ϕi) and (ϑs, ϕs), and, of
course, the characteristics of the target.

If the power density T2 at the receiver site were due to a fictitious isotropic
radiator at the target location, its total radiated power Ps would have to be

Ps = 4πR2
2T2. (2.6.1)

To afford that power, the target would need to intercept the power flow of the
incident wave through the so-called radar cross-section σ,

Ps =: σTi, [σ] = m2, (2.6.2)
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Table 2.6.1: Typical RCS Values at Microwave Frequencies (after [12, p. 64])

Target RCS in m2 RCS in dBsm
Conventional winged missile 0.1 -10
Small single-engine aicraft 1 0
Helicopter 3 xx
Medium jet airliner 20 13
Jumbo jet 100 20
Small insect (fly) 1e-5 -50
Large bird 0.01 -20
Adult 1 0
Bicycle 2 3
Automobile 100 20
Small open boat 0.02 -17
Cabin cruiser 10 10
Large ship at zero grazing angle ≥ 10 000 ≥ 40

where Ti denotes the power density of the incident wave at the target location.
Fig. 2.6.1b illustrates the concept.

Definition 30 (Radar cross-section σ (RCS) (D: Radarquerschnitt)). The area
intercepting that amount of power which, when scattered isotropically, produces
at the receiver a power density which is equal to that scattered by the actual
target.

Eqs. (2.6.1) and (2.6.2) imply

σ(ϑs, ϕs, ω;ϑi, ϕi, êi) = lim
R2→∞

4πR2
2

T2(ϑs, ϕs, ω;R2)

Ti(ϑi, ϕi, êi)
. (2.6.3)

The monostatic RCS is commonly abbreviated by σ0(ϑ, ϕ, ω, êi). Since RCS val-
ues may vary widely, they are often given in logarithmic form, in decibel over
square meter (dBsm). Def. 30 follows [10, p. 88], [12, p. 6], [2, p. 116] but does
not conform with the Standard [11, p. 30, p. 33], which includes the polarization
of the scattered wave. A selection of typical RCS values at microwave frequencies
is given in Table 2.6.1. Fig. 2.6.2 shows the monostatic RCS of a propeller-driven
aircraft in the azimuth plane.

2.6.2 The Radar Range Equation

We are now ready to calculate the power available at the terminals of the receiving
antenna P avail

2 from the input power of the transmitting antenna P in
1 . For brevity,

let us consider the polarization-matched case:

P avail
2 = Ae,2T2 = Ae,2

1

4πR2
2

Ps = Ae,2
σ

4πR2
2

Ti = Ae,2
σ

4πR2
2

G1

4πR2
1

P in
1 . (2.6.4)
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Figure 2.6.2: Monostatic RCS from B-26 two-engine propeller-driven aircraft at
3 GHz as a function azimuth angle. Reproduced from [12, p. 58].

Hence

P avail
2

P in
1

=
1

(4π)2
σAe,2

R2
2R

2
1

G1 =
1

(4π)3
σλ2

R2
2R

2
1

G2G1 =
1

4π

Ae,2Ae,1

R2
2R

2
1

σ

λ2
. (2.6.5a)

In the monostatic case, using a single antenna, (2.6.5a) simplifies to

P avail
2

P in
1

=
1

(4π)2
σAe

R4
G =

1

(4π)3
σλ2

R4
G2 =

1

4π

A2
e

R4

σ

λ2
. (2.6.5b)

Eqs. (2.6.5a) and (2.6.5b) are variants of the radar range equation. It becomes
apparent from (2.6.5b) that the received power decays with R4, which is much
faster than in the case of wireless transmission; see (2.5.8a).

Exercise 2.6.1. A perfectly conducting object is illuminated by a plane wave, with
Ei(
r). Calculate the equivalent sources for the scattered field in free space.

Exercise 2.6.2. For targets that are electrically large and of complicated shape,
the scattered fields in the FF region tend to be highly oscillatory functions of
the observation direction. Give a qualitative explanation. (Hint: Use the results
from Exercise 2.6.1.)


