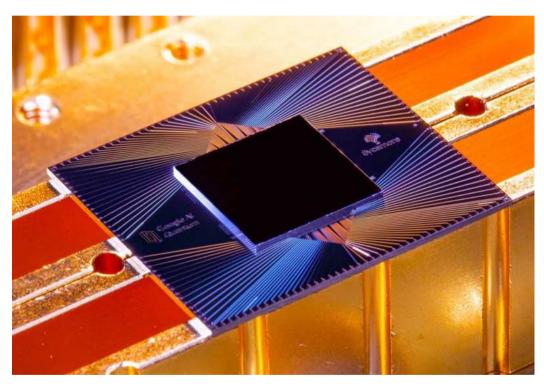
Studiengang Quantum Engineering

Grundlagen der Quantentechnologien in Physik und Ingenieurswissenschaften

Prof. J. Eschner, Experimentalphysik

2020


Fachrichtung Physik
Fachrichtung Systems Engineering
Universität des Saarlandes

Quantum Computer 2019

"Quantum supremacy using a programmable superconducting processor" F. Arute et al., Nature **574**, 505–510 (2019)

Google's 53-qubit "Sycamore" quantum chip. (nature.com)

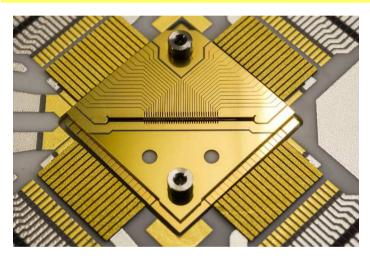
Cryostat of Google's quantum computer. (Google)

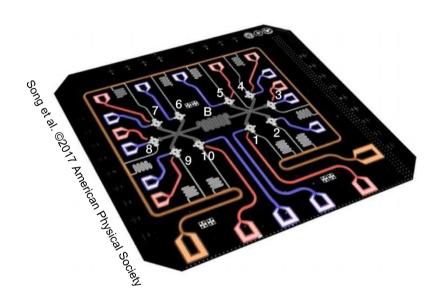
Was ist Quantentechnologie?

Quantentechnologien 1. Generation

- Anwendung von Quanteneffekten: Supraleitung, Materiewellen, Lichtpartikel (Photonen), Interferenz, GMR-/TMR-Sensorik, Tunneln
- Beispiele: MRT (Magnetresonanz-Tomographie), SQUID (Magnetfeldmessung), LIDAR, Festplatten, Handys

Quantentechnologien 2. Generation


- Anwendung von Quanteneffekten: Verschränkung, no-cloning, Quantenmessung
- Beispielanwendungen: Quantencomputer, Kryptographie, Sensorik, Quanten-Simulatoren, Metrologie

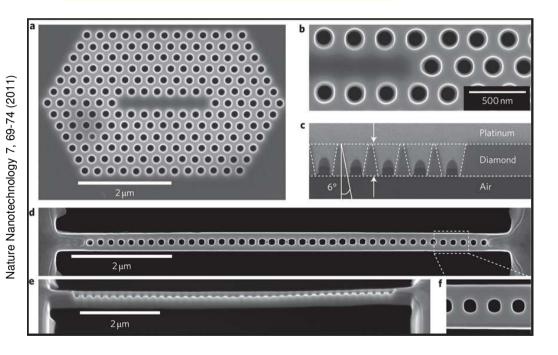

Quantencomputing

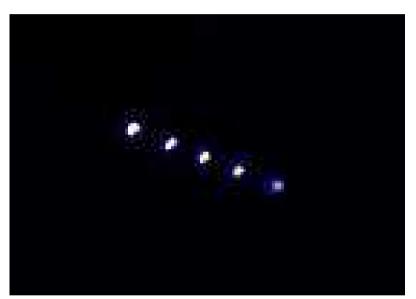
Ionenfallen-Quantencomputer

https://www.quantenbit.physik.uni-mainz.de/quantum-computer/

Quantencomputer-Chip mit 10 verschränkten Quantenbits

An der UdS: **Prof. F. Wilhelm-Mauch**, **Physik Prof. M. Möller**, **Systems Engineering**



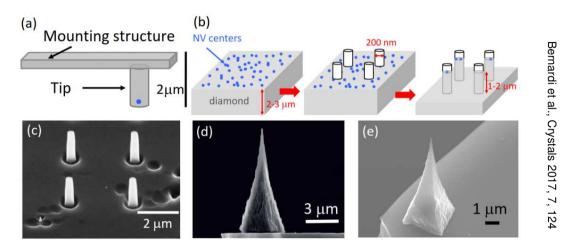


Quantenkommunikation

Mikrostrukturierte Kristalle kontrollieren die Photonen

Einzelne Atome senden und empfangen einzelne Lichtteilchen

An der UdS: **Prof. C. Becher, Physik Prof. J. Eschner, Physik**

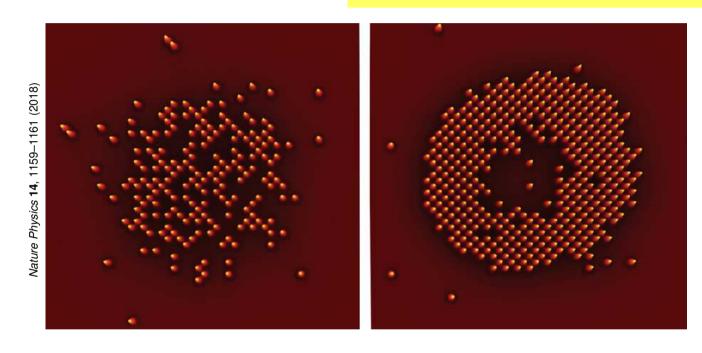


Quantensensorik

Chip-scale atomic clock

Atomkraft-Mikroskop mit Quantenlicht

An der UdS: Prof. A. Schütze, Systems Engineering
Dr. E. Neu-Ruffing, Physik
Prof. U. Hartmann, Physik



Quantensimulation

Simulation von Quantenmaterialien mit einzelnen Atomen in einer Lichtfalle

An der UdS: Prof. G. Morigi, Physik

Quantum Engineering

Die Sichtweise des Physikers:

- Verständnis & Kontrolle von Quantensystemen
- Messungen an den fundamentalen = quantenphysikalischen Grenzen von Empfindlichkeit und Auflösung
- Verständnis und Nutzung des quantenmechanischen Zufalls
- Brücke von der Mikro-/Nano- in die Makro-Welt

Quantum Engineering

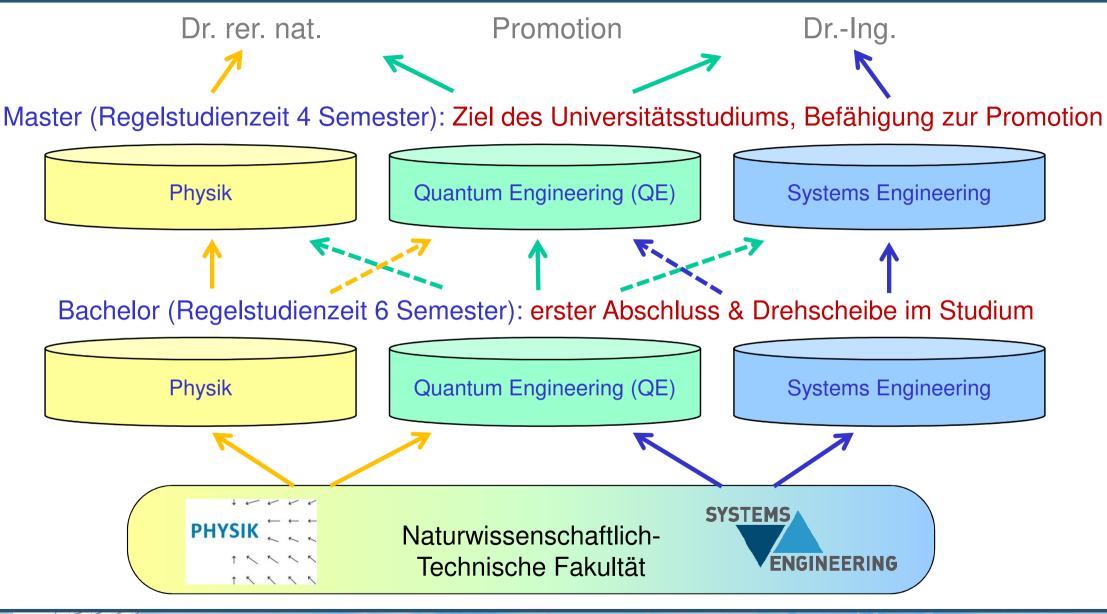
Die Sichtweise des Ingenieurs:

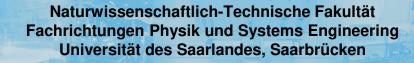
- Design und Fabrikation von kontrollierbaren Quantensystemen
- Erweiterung und Anwendung klassischer Technologien (Elektronik, Hochfrequenztechnik, Mess- und Regelungstechnik, etc.) auf Quantensysteme
- Sensoren und Messsysteme mit integrierten Quantenstandards
- Integrierte Systeme zur Anregung, Kontrolle und zum Auslesen von Quantenzuständen

Der Studiengang QE: Das Konzept

Studienmotivation:

- Faszination der Quantenwelt und der Technologie
- Das Studium kombiniert
 - den ingenieurwissenschaftlichen Ansatz (Problemlösungs-orientiert)
 - den naturwissenschaftlichen Ansatz (Erkenntnis-orientiert)


Alleinstellung:


- Anwendungsorientierte Wissenschaft
- Ausrichtung auf das Zukunftsfeld Quantentechnologie
- Hochattraktives Berufsbild in der High-Tech-Industrie

Der Studiengang QE: Das Konzept

Bachelor-Master-Studiengang QE

Bachelor of Science (BSc)

- sechs Semester Regelstudiendauer
- Kombination Physik und Systems Engineering mit Fokus Elektronik
- stark strukturierte Grundlagenausbildung in Theorie und Praxis
- zusätzlich: Studium Generale (z.B. Sprachen, BWL, Patentrecht) oder Tutortätigkeit
- Abschluss: Bachelorarbeit (Projektarbeit im Labor), Dauer ca. 3 Monate

→ Detaillierter Studienplan mit Pflicht- und Wahlbereichen im Anhang!

Master of Science (MSc, wird 2020 eingerichtet)

- vier Semester Regelstudiendauer
- gestaltbar für individuelle Vertiefung und Schwerpunktsetzung
- Pflichtbereich ca. 1/3 inkl. Laborpraktika
- Wahlpflicht ca. 1/4, (auch Soft Skills, Patentrecht, Teamprojekte ...)
- Abschluss: Laborprojekt und Masterarbeit (Projektarbeit im Labor), Dauer ca. 9 Monate
- → Nach dem BSc auch Wechsel zu MSc Physik oder Systems Engineering möglich.

Beruf: Quanten-Ingenieur / -Physiker

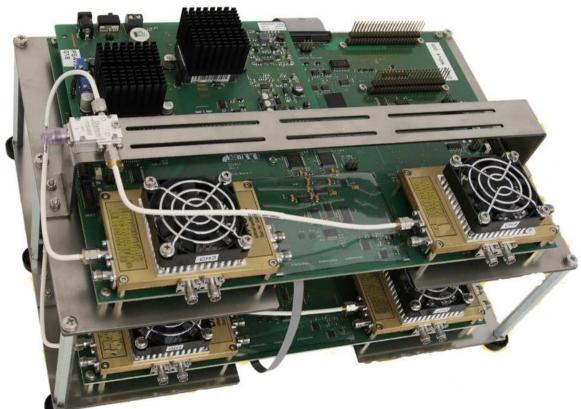
High-Tech-Industrie

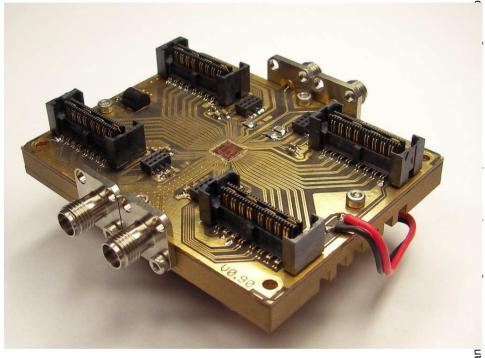
 Forschung, Entwicklung und Fertigung z.B. in Optik / Photonik / Laser Elektronik / Mikroelektronik / Chipfertigung Materialien / Sensoren / Nanotechnologie Informatik / Datenverarbeitung

Forschungsinstitute und Universitäten

- Grundlagenforschung in Physik, Mathematik, Informatik
- Angewandte Forschung in Systems Engineering, Materialwissenschaften

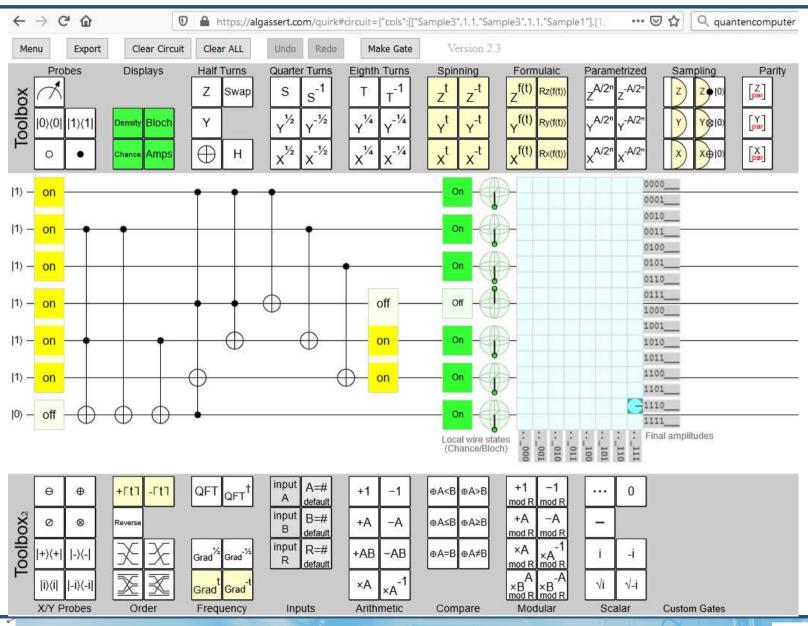
Atom- / Laserphysik für QT





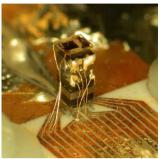
Naturwissenschaftlich-Technische Fakultät Fachrichtungen Physik und Systems Engineering Universität des Saarlandes, Saarbrücken

Elektronik für QT



Vier der derzeit weltweit schnellsten, im Femtosekunden Bereich synchronisierten, Analog/Digital- und Digital/Analog-Wandler mit Abtast-Raten über jeweils 100 GS/s zum Anregen und Auslesen von Quanten-Signalen.

Programmieren für QT


Naturwissenschaftlich-Technische Fakultät
Fachrichtungen Physik und Systems Engineering
Universität des Saarlandes, Saarbrücken

QT Anwendungen

Es gibt bereits erste Armbanduhren auf der Basis von Chip-Scale Atomic Clocks.

Zufallsgeneratoren auf der Basis von Quantenmessungen können für Nachrichtenverschlüsselung (und Internet-Casinos) verwendet werden.

Studium Quantum Engineering: Fazit

- Quantenphysik und Technologie aus der Sicht der Physiker und der Ingenieure
- Naturwissenschaft und/oder Ingenieurwissenschaft:
 Vielfältige Gestaltungsmöglichkeiten und Perspektiven für (z.B. noch unentschlossene) MINT-Interessierte
- Lernen in kleinen Teams mit individueller Betreuung
 - Im Rahmen des Studiums
 - Im Rahmen internationaler Forschung (*)
 - (*) Quantentechnologien sind nationaler und europäischer Forschungsschwerpunkt
- Hervorragende Jobaussichten in der High-Tech-Industrie

QE: weitere Informationen

Weitere Infos im Web:

• <u>www.uni-saarland.de</u> oder <u>www.physik.uni-saarland.de</u> oder <u>www.se.uni-saarland.de</u>

Zentrale Studienberatung:

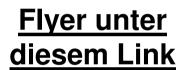
Campus Center, Tel. 0681 302-7117
 Email: mint-studienberatung@uni-saarland.de

Studienfachberatung:

- Physik: Prof. Dr. Jürgen Eschner
 Gebäude E2 6, Zi. 3.02, Tel. 58016, 58017
 Email: juergen.eschner@physik.uni-saarland.de
- Systems Engineering: **Prof. Dr. Andreas Schütze** Gebäude A5 1, Zi. 2.33, Tel. 4663 Email: schuetze@LMT.uni-saarland.de

Fachschaft Physik:

fachschaft.stud.uni-saarland.de/physik


z.B.

- Prüfungsordnung
- Studienordnung
- Studienplan
- Modulhandbuch
- Richtlinien für das Industriepraktikum

QE: weitere Informationen

https://www.uni-saarland.de/fileadmin/upload/fachrichtung/physik/Studium/Quantum Engineering/Flyer QE UdS.pdf

Bachelor Quantum Engineering

QE: Links

Quantentechnologien.de

Welches Studium passt zu mir?

www.uni-saarland.de/start.html

Bachelor Quantum Engineering

www.uni-saarland.de/studium/angebot/bachelor/quantum-engineering.html

Master Quantum Engineering

www.uni-saarland.de/studium/angebot/master/quantum-engineering.html

Bachelor Quantum Engineering

Detaillierter Studienplan mit Pflicht- und Wahlbereichen

Tabelle III: Experimentalphysikalische Grundlagen für Quantentechnologien – 33 Credit Points, davon mind. 19 CP benotet*

Modul	RS	Element	Zyklus	LV	SWS	СР	Note	Prüfungsart
Experimentalphysik I	1	Mechanik, Schwingungen und Wellen	WS	V/PÜ/Ü	6/2	10	В	Schriftl. od. mündl. /PVL
Experimentalphysik II	2	Elektromagnetismus	SS	V/Ü	4/2	8	В	Schriftl. od. mündl. /PVL
Experimentalphysik IIIa	3	Optik, Thermodynamik	WS	V/Ü	3/1	5	В	Schriftl. od. mündl. /PVL
Experimentalphysik IIIb	4	Quantenphysik, Atomphysik	SS	V/Ü	4/1	6	В	Schriftl. od. mündl. /PVL
Experimentalphysik IVa	5	Festkörperphysik I	WS	V/Ü	2/1	4	В	Schriftl. od. mündl. /PVL

Tabelle IV: Theoretische Physik – 16 Credit Points, davon mind. 8 CP benotet*

Modul	RS	lement Zyklus L		LV	SWS	СР	Note	Prüfungsart
Theoretische Physik II	3	Elektrodynamik	WS	V/Ü	4/2	8	В	Schriftl. od. mündl.
Theoretische Physik III	4	Quantenphysik	SS	V/Ü	4/2	8	В	Schriftl. od. mündl.

Tabelle V: Physikalische Wahlpflicht – benotet, mind. 5 Credit Points*

Modul	RS	Element	Zyklus LV		SWS	S CP Note		Prüfungsart
Nanostrukturphysik I	5		WS	V/Ü	4/0	5	В	Schriftl. od. mündl.
Einführung in die Quanten- informationsverarbeitung	5		SS	V/Ü	3/1	5	В	Schriftl. od. mündl.

Tabelle VII: Ingenieurwissenschaftliche Grundlagen für Quantentechnologien – 43 Credit Points, davon mind. 25 CP benotet*

Modul	RS	Element	Zyklus	LV	SWS	СР	Note	Prüfungsart
Grundlagen der Elektrotechnik I	1		WS	V/Ü	2/1	5	В	Schriftl. od. mündl.
Grundlagen der Elektrotechnik II	2		SS	V/Ü	2/1	5	В	Schriftl. od. mündl.
Mikrotechnologie	1		WS	V/Ü	2/1	4	В	Schriftl. od. mündl.
Elektronik	3	Physikalische Grundlagen	WS	V/Ü	4	6	В	Schriftl. od. mündl.
Schaltungstechnik	4		SS	V/Ü	4	6	В	Schriftl. od. mündl.
Messtechnik und Sensorik	4		SS	V/Ü	2,5/1,5	6	В	Schriftl. od. mündl.
Theoretische Elektrotechnik1	4		SS	V/Ü	2,5/2	6	В	Schriftl. od. mündl.
Theoretische Elektrotechnik 2	5		WS	V/Ü	2/2	5	В	Schriftl. od. mündl.

Tabelle VIII: Ingenieurwissenschaftliche Wahlpflicht – benotet, mind. 6 Credit Points, mind. 2 Veranstaltungen

Modul	RS	Element	Zyklus	LV	SWS	СР	Note	Prüfungsart
Elektronik	5	Bauelemente	WS	V/Ü	2/1	3	В	Schriftl. od. mündl.
Elektronische Systeme	5		WS	V/Ü	1,5/0,5	3	В	Schriftl. od. mündl.
Mikroelektronik 1	5		WS	V/Ü	2/1	4	В	Schriftl. od. mündl.
Mikroelektronik 2	4		SS	V/Ü	2/1	4	В	Schriftl. od. mündl.
Aufbau- und Verbindungstechnik 1	5		WS	V/Ü	2/1	4	В	Schriftl. od. mündl.
Einführung in die Materialwissenschaft	5		WS	V/Ü	2/3	6	В	Schriftl. od. mündl. /PVL

Tabelle VI: Physikalische Praktika – mind. 11 Credit Points, unbenotet

Modul	RS	Element	Zyklus	LV	SWS	СР	Note	Prüfungsart
Grundpraktikum für Quantum Engineering (mind. 5 CP)	3	Phys. Grundpraktikum (GP Ia)	WS	P+S	1	2	U	Schriftl. od. mündl.
	4	Phys. Grundpraktikum (GP lb)	SS	P+S	3	5	U	Schriftl. od. mündl.
Fortgeschrittenenpraktikum für Quantum Engineering I	6		SS	Р	3	6	U	Schriftl. od. mündl.

Tabelle IX: Ingenieurwissenschaftliche Praktika – mind. 6 Credit Points

Modul	RS	Element	Zyklus	LV	SWS	СР	Not	Prüfungsart
							е	
Ingenieurwissenschaftliche	5	Praktikum Grundlagen der Elektrotechnik	WS	Р	2	3	U	Schriftl. od. mündl.
Praktika	6	Praktikum Schaltungstechnik	SS	Р	2	3	U	Schriftl. od. mündl.
	6	Ingwiss. Projektseminar	SS	PS	2-4	2-4	U	Schriftl. od. mündl.
	6	Mikroelektronik-Praktikum	SS	Р	4	4	U	Schriftl. od. mündl.
		(FPGA-Programmierung)						

Tabelle I: Mathematische Grundlagen – 25 Credit Points, davon mind. 16 CP benotet*

Modul	RS	Element	Zyklus	LV	SWS	СР	Note	Prüfungsart
Theoretische Physik Ia	1	Theoretische Physik Ia: Rechenmethoden der Mechanik	WS	V/Ü	3/2	7	В	Schriftl. od. mündl./PVL
Höhere Mathematik für Ingenieure 2	2		SS	V/Ü	4/2	9	В	Schriftl. od. mündl. /PVL
Höhere Mathematik für Ingenieure 3	3		WS	V/Ü	4/2	9	В	Schriftl. od. mündl. /PVL

Tabelle II: Allgemeine Grundlagen – 10 Credit Points, davon 5 CP benotet

Modul	RS	Element	Zyklus	LV	SWS	CP	Note	Prüfungsart
Ringvorlesung	1	Perspektiven des Quantum Engineering	WS	V	2	2	U	Schriftlich
Programmieren für Ingenieure	2	Programmieren für Ingenieure	SS	V/Ü	2/1	5	В	Schriftl. od. mündl. /PVL
P³: ProgrammierPraxisProjekt	5	Projekt Programmieren für Ingenieure	SS	Р	2	3	U	Schriftl. od. mündl. /PVL

Tabelle X: Module der Kategorie Freie Wahlpflicht (es können max. 7 CP angerechnet werden)

	RS	Modul	Zyklus	LV	SW S	СР	Not e	Prüfungsart
Erweiterte Grundlagen	6	Stochastische Bewertungsmethoden in der Technik	SS	V/Ü	2/1	4	В	Schriftl. od. mündl.
	6	Effizientes Lernen/Wissenschaftliche Darstellung	WS	S	2	2	U	Schriftl. od. mündl.
	6	Allgemeine Chemie	WS	V/Ü	2/1	4	В	Schriftl. od. mündl. /PVL
Studium generale	6	z.B. Sprachkurse	WS/SS	Ü	1	3	U	Schriftl. od. mündl.
_	6	z.B. BWL,	WS/SS	V	2	2	U	Schriftl. od. mündl.
		z.B. Unternehmensgründung	SS	V/Ü	2	2	U	Schriftl. od. mündl.
		z.B. Patent- und Innovationsmanagement	WS	V	2	3	U	Schriftl. od. mündl.
	6	Schlüsselkompetenzen gem. §9 der PO (max. 3 CP)	WS/SS	V/Ü		max. 3	U	Schriftl. od. mündl.
	6	Tutortätigkeit (max. 4 CP)	WS/SS	Ü	1-2	2-4	U	Schriftl. od. mündl.
Fachliche Erweiterung und Vertiefung	6	weitere Lehrveranstaltungen der Physik und Ingenieurwissenschaften	WS/SS	V			В	Schriftl. od. mündl.
Ç	6	Seminare, Projektseminare und Praktika der Ingenieurwissenschaften	WS/SS	V			В	Schriftl. od. mündl.
	6	weitere Versuche im physikalischen Grund- oder Fortgeschrittenenpraktikum	WS/SS	Р			U	Schriftl. od. mündl.
	6	Industriepraxis Elektro- und Informations- technik	WS/SS	Р		max. 6	U	Schriftl. und mündl.
	Vom	Prüfungsausschuss genehmigte Lehrveranstalt	ungen gem	näß §6 /	Abs. 6			

Tabelle XI: Abschlussarbeit – 18 Credit Points

Modul	RS	Element	Zyklus	LV	sws	СР	Note	Prüfungsart
Bachelor-Seminar	6		WS+SS	S		6	В	Schriftl. o. mündlich
Bachelor-Arbeit	6		WS+SS			12	В	Arbeit

Master Quantum Engineering

Detaillierter Studienplan mit Pflicht- und Wahlbereichen

Anhang A: Module und Modulelemente

Sommersemester

Die Tabellen dieses Anhangs verwenden folgende Abkürzungen:

RS Regelstudiensemester Praktikum LV Lehrveranstaltungsart benotet CP Workload in Credit Points Vorlesung Projektseminar unbenotet Prüfungsvorleistungen Semesterwochenstunden Übung wahlweise B o. U SWS WS Projekt schriftliche Prüfung Wintersemester SS Seminar mündliche Prüfung

Tabelle 2: Module der Kategorie Kernbereich Systems Engineering (mind. 16 CP, mind. 3 Veranstaltungen)

Modul	RS	Zyklus	LV	sws	СР	Note	Prüfung
Advanced Electronic Packaging	2	SS	V+Ü	3	4	В	SP/MP/PVL
Microelectronics 2	2	SS	V+Ü	3	4	В	SP
Digital Transmission, Signal Processing (Telecommunications I)	3	WS	V+Ü	6	9	В	SP/MP/PVL
Microsensors	3	WS	V+Ü	3	4	В	SP/MP/PVL
High Frequency Engineering	3	WS	V+Ü	3	4	В	SP/MP/PVL
Antenna Theory 1	3	WS	V+Ü	3	5	В	MP

Tabelle 3: Module der Kategorie Kernbereich Quantenphysik (mind. 16 CP)

Modul	RS	Zyklus	LV	sws	СР	Note	Prüfung
Theoretische Physik IV für QE	1	WS	V+Ü	6	6 o. 8	В	SP/MP/PVL
Theoretical Physics V for QE	2	SS	V+Ü	6	4 o. 8	В	SP/MP
Solid State Physics II	2	SS	V+Ü	3	4	В	SP/MP
Physics of Atoms and Molecules	1	WS	V+Ü	3	4	В	SP/MP
Quantum and Modern Optics*	3	ws	V+Ü	4	5	В	MP
Physics of Nanostructures II a/b	2	WS/SS	V+S	4	5	В	MP

^{* =} von diesen Modulen kann eine i<mark>m Kernb</mark>ereich<mark>, d</mark>ie anderen (siehe Tab. 4) ggf. in der fachspezifischen Wahlpflicht eingebracht werden

Tabelle 4: Module der Kategorie Fachspezifische Wahlpflicht (mind. 16 CP)

Modul	RS	Zyklus	LV	sws	СР	Note	Prüfung
Multisensorsignalverarbeitung	2	SS	V+S	3	4	В	MP
Mikroelektronik 3	3	ws	V+Ü	3	4	В	MP
Mikroelektronik 4	2	SS	V+Ü	3	4	В	MP
Computational Electromagnetics 1	1	ws	V+Ü	3	4	В	SP+MP
Computational Electromagnetics 2	2	SS	V+Ü	3	4	В	MP
High Speed Electronics	2	SS	V+Ü	3	4	В	SP/MP/PVL
Zuverlässigkeit 1	3	ws	V+Ü	3	4	В	SP/MP
Nanomechanik	2	a <mark>lle</mark> 2 Jahre	V+S	4	5	В	SP/MP
Quantentheorie des Lichts*	2	alle 2 Jahre	V+S	4	5	В	SP/MP
Teilchenfallen und Laserkühlung*	2	alle 2 Jahre	V+Ü	4	5	В	SP/MP
Computerphysik	2	alle 2 Jahre	V+Ü	4	5	В	SP/MP
Theoretische Physik für Quantentechnologien	2	alle 2 Jahre	V+Ü	4	5	В	SP/MP

Zusätzlich:

- Weitere Module aus den Kernbereichen Quantenphysik und Systems Engineering
- Vom Prüfungsausschuss genehmigte Informatikveranstaltungen
- Vom Prüfungsausschuss genehmigte Module gemäß §6 Absatz 5

^{* =} von diesen Modulen kann eine im Kernbereich, die anderen (siehe auch Tab. 3) ggf. in der fachspezifischen Wahlpflicht eingebracht werden

Tabelle 5: Module der Kategorie Fachspezifische Seminare (max. 4 CP) und Praktika und Projektseminare (in Summe mind. 9, max. 12 CP)

Modul	RS	Zyklus	LV	sws	СР	Note	Prüfung
Physics or System Engineering Seminars						В	
Physikalisches Fortgeschrittenenpraktikum IIa für QE	1	WS	P+S	4	7	В	MP
Physikalisches Fortgeschrittenenpraktikum IIb für QE	2	SS	P+S	2	4	В	MP
Praktikum Mikroelektronik (FPGA)**	3	WS	PS	4	4	В	SP/MP
Mikrocontroller-Projektseminar**	3	ws	PS	2	3	В	SP/MP
Team Project (small)	3	WS/SS	PS	3	3	В	SP/MP
Team Project (large)	3	WS/SS	PS	6	6	В	SP/MP

^{** =} diese Module können nur eingebracht werden, wenn das Modul noch nicht im Bachelor-Studiengang eingebracht wurde

Tabelle 6: Allgemeine Wahlpflicht (max. 15 CP, davon mind. 6 CP benotet)

Modul	Modulelement	RS	Zyklus	LV	SWS	СР	Note	Prüfung
Höhere Mathematik IV (a+b)		2	SS	V+Ü	6	9	В	SP/MP/PVL
Kontinuumsmechanik		3	WS	V+Ü	3	4	В	SP/MP
Finite Elemente in der Mechanik		2	SS	V+Ü	3	4	В	SP/MP
Empirische und statistische Modellbildung		2	SS	V+Ü	3	4	В	SP/MP/PVL
	z.B. Patent- und Innovationsmanagement, Technologiemanagement, Projektmanagement*		WS/SS	V+Ü			U	SP/MP/PVL
Studium generale, z.B.	Lebende Sprache*		WS/SS	V+Ü			U	SP/MP/PVL
	z.B. Einführung in die BWL, Unternehmensgründung*		WS/SS	V+Ü			U	SP/MP/PVL
	Schlüsselkompetenzen gem. §9 der PO (max. 3 CP)					max. 3	U	SP/MP/PVL
Alle nicht belegten Module der Kategorien Kernbereich SE/Physik oder fachspezifische Wahlpflicht			WS/SS				В	SP/MP/PVL
Industrial Internship			WS/SS	Р		max. 9	U	SP/MP/PVL
Tutortätigkeit			WS/SS	Р		2 pro SWS, max. 4	U	SP/MP/PVL
Research Seminar			WS/SS	PR		9	U	SP/MP/PVL
Project Seminar			WS/SS	PS		6	В	SP/MP/PVL

^{*}Konkrete Veranstaltungen nach Zustimmung durch den Prüfungsausschuss.

Tabelle 7: Laborprojekt und Master-Arbeit

Modul	Mod	du <mark>le</mark> lement	RS	Zyklus	LV	sws	СР	Note	Prüfung
Laboratory Project			3	WS/SS	PR		15	U	SP und MP
Master's Thesis			4	WS/SS	MA		30	В	SP und MP

