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Abstract 

Science depends on trustworthy evidence. Thus, a biased scientific record is of questionable 

value because it impedes scientific progress, and the public receives advice on the basis of 

unreliable evidence that has the potential to have far-reaching detrimental consequences. 

Meta-analysis is a valid and reliable technique that can be used to summarize research 

evidence. However, meta-analytic effect size estimates may themselves be biased, 

threatening the validity and usefulness of meta-analyses to promote scientific progress. Here, 

we offer a large-scale simulation study to elucidate how p-hacking and publication bias 

distort meta-analytic effect size estimates under a broad array of circumstances that reflect 

the reality that exists across a variety of research areas. The results revealed that, first, very 

high levels of publication bias can severely distort the cumulative evidence. Second, p-

hacking and publication bias interact: At relatively high and low levels of publication bias, p-

hacking does comparatively little harm, but at medium levels of publication bias, p-hacking 

can considerably contribute to bias, especially when the true effects are very small or are 

approaching zero. Third, p-hacking can severely increase the rate of false positives. A key 

implication is that, in addition to preventing p-hacking, policies in research institutions, 

funding agencies, and scientific journals need to make the prevention of publication bias a 

top priority to ensure a trustworthy base of evidence. 
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p-Hacking and Publication Bias Interact to Distort Meta-Analytic Effect Size Estimates 

Science depends on trustworthy evidence. If the published scientific record is biased, 

its value is seriously compromised: Researchers are led to believe in phenomena that are frail 

or might not even exist at all. Theory development is led astray. The ability to explain the 

world to the public is undermined, and public trust in science is compromised. In short: If 

science fails to deliver trustworthy, reliable evidence, a society may wonder why it should 

invest in scientific endeavors at all. 

In recent years, the trustworthiness of psychological science has been seriously 

questioned (Lilienfeld & Waldman, 2017). One important reason for the doubt and criticism 

has been the observation that many published psychological studies cannot be replicated in a 

straightforward fashion (e.g., Nosek & Lakens, 2014; Open Science Collaboration, 2015). 

Several problems that may contribute to this lamentable status have been identified, including 

low statistical power (Bertamini & Munafò, 2012; Maxwell, 2004), the use of questionable 

research practices (John, Loewenstein, & Prelec, 2012; Simmons, Nelson, & Simonsohn, 

2011), publication bias (Bakker, van Dijk, & Wicherts, 2012; Fanelli, 2010), and 

hypothesizing after the results are known (HARKing; Kerr, 1998). Together, these problems 

may lead researchers to seriously overestimate the robustness of the cumulative evidence in a 

field of investigation. True effect sizes can be critically smaller and less stable than the 

available evidence suggests. As a consequence, Psychology has started to experience all of 

the detrimental consequences alluded to above.  

The most important methodological tool that can be used to quantitatively summarize 

the available evidence in a given research literature is a meta-analysis (Borenstein, Hedges, 

Higgins, & Rothstein, 2009; Gurevitch, Koricheva, Nakagawa, & Stewart, 2018; Johnson & 

Eagly, 2014). Meta-analyses summarize the results of multiple studies addressing the same 

research question to reach an overall understanding of the state of the evidence. Thus, the unit 
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of analysis changes from the individual level to the aggregated level—ideally, the complete 

body of evidence that has been collected with respect to a particular research question 

(Murad & Montori, 2013).  

Meta-analyses have several strengths. One salient strength is that due to the greater 

statistical power, meta-analyses can be conducted to reliably detect even small effects that are 

not as easy to detect with single primary studies. Meta-analyses can also be used to estimate 

(summary) effect sizes with greater precision (i.e., narrower confidence intervals) than single 

primary studies. Importantly, meta-analyses can also estimate variation in underlying true 

effects (e.g., when different populations are investigated across studies, different 

manipulations are employed, or different dependent variables are used) and shed light on 

moderating factors that may have been missed or were impossible to investigate in the 

primary studies. These and other properties make the meta-analysis a powerful tool that 

researchers can use to obtain a comprehensive overview of what is known and not yet known 

in a given field of research.  

In times of doubt about the replicability and robustness of individual primary studies, 

researchers are even more likely to rely on meta-analyses to obtain a trustworthy picture of 

the state of the evidence. Importantly, the validity of meta-analyses may also be threatened 

by the problems that lead to a lack of replicability and robustness in primary studies. For 

example, the quality of a meta-analysis crucially depends on the quality of the primary 

studies it is composed of. In a field featuring many poorly conducted studies, a meta-analysis 

may be unable to level out the biases of primary studies if these biases are systematic rather 

than unsystematic (Borenstein et al., 2009). Thus, it is imperative to examine the impact that 

various sources of bias can have on meta-analytic effect size estimates.  

In recent years, two problems in particular have received considerable attention as 

presumably the leading causes of deficient robustness in psychological science: Questionable 
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research practices—often referred to as p-hacking—and publication bias (Bakker et al., 2012; 

Munafò et al., 2017; Nelson, Simmons, & Simonsohn, 2018). It is widely assumed that both 

p-hacking and publication bias can seriously distort the cumulative evidence and 

consequently the meta-analyses that are conducted to summarize this evidence.  

There has been an active meta-scientific debate about the prevalence of p-hacking and 

publication bias (e.g., Dubben & Beck-Bornholdt, 2005; Hartgerink, 2017; Head, Holman, 

Lanfear, Kahn, & Jennions, 2015; Kuhberger, Fritz, & Scherndl, 2014). What has been 

surprisingly neglected are the quantifiable consequences of p-hacking and publication bias 

with respect to cumulative knowledge formation. Some of the most important questions are: 

To what extent do different degrees of p-hacking and publication bias distort meta-analytic 

effect size estimates? What are the relative impacts of p-hacking and publication bias in 

bringing about these distortions? And how might the consequences of p-hacking and 

publication bias depend on the extent to which the other exists; that is, how might they 

interact to jointly distort cumulative scientific evidence? This knowledge is crucial: In order 

to implement the structural and procedural changes in research institutions, publishing, 

funding, and policy that promise the greatest progress for obtaining a realistic reflection of 

reality from the published literature, the field needs to know which problems cause the 

greatest harm under which circumstances.  

Here, we addressed these important questions about the quantifiable consequences of 

p-hacking and publication bias for cumulative knowledge formation by conducting a large-

scale simulation study. In this study, we made no assumptions about the prevalence rates of 

p-hacking and publication bias. Rather, we simulated their consequences using a broad range 

of potential severities, thus accounting for (a) potential realities across a diverse array of 

research and (b) diverging assumptions about these prevalence rates by different researchers.  

What are p-Hacking and Publication Bias? 
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Definition of p-hacking. The concept of p-hacking refers to nonprincipled decisions 

during data analysis that are aimed at reducing the p-value of a significance test and thus 

make the data look more robust than they actually are. Examples are selectively excluding 

outliers, collecting additional data without controlling for inflated error rates, or selectively 

controlling for covariates (John et al., 2012; Simmons et al., 2011). Thus, although there are 

several different p-hacks, they all serve as functionally equivalent means to the same end: To 

reduce an originally nonsignificant p-value to significance. Such p-hacking can be caused by 

bad intentions but may often be driven by good intentions to help the data reveal the insights 

that are presumably hidden in them and are otherwise not as clearly observable (Nelson et al., 

2018). Also, it is likely that many researchers are not aware of the extent to which their data-

analytic practices increase false-positive rates (Simmons et al., 2011).  

The prevalence of p-hacking in (psychological) science is a subject of debate (Fiedler 

& Schwarz, 2016; John et al., 2012). Some researchers have argued that p-hacking is 

omnipresent and is so pervasive that it helps researchers get around a file drawer because 

they will p-hack (almost) any study into publishable significance (Nelson et al., 2018). Large-

scale analyses have sought (and found) indirect evidence for p-hacking by examining 

empirical p-value distributions in the published literature that suggested a cluster of p-values 

just below .05 (e.g., Head et al., 2015; Masicampo & Lalande, 2012). These findings are 

consistent with the assumption that most p-hacking researchers stop once they reach an 

outcome that barely crosses the crucial .05 border. These analyses and their underlying 

assumptions have been criticized on methodological and logical grounds (e.g., Hartgerink, 

2017; Lakens, 2015). They might also not be specific enough because they lump together all 

p-values reported across a large array of publications, including the many for which there was 

little publication pressure (e.g., manipulation checks, sanity checks, follow-up analyses, 

nonfocal hypothesis tests) with the few focal tests for which there was publication pressure 
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and therefore the incentive to p-hack. In sum, the true prevalence of p-hacking is unknown 

(Bruns & Ioannidis, 2016) and most likely varies across the different literatures.  

Definition of publication bias. Publication bias occurs when many studies that did 

not produce the desired outcomes are not published (Fanelli, 2012; Franco, Malhotra, & 

Simonovits, 2014). Authors are less likely to submit “failed” studies for publication, and if 

they do, reviewers and editors are less likely to support the publication of such studies 

compared with “successful” studies that produced statistically significant outcomes. As a 

result, most studies in Psychology that get published report hypotheses that “worked” 

(Fanelli, 2010; Sterling, 1959; Sterling, Rosenbaum, & Weinkam, 1995).  

Publication bias is a major threat to the validity of meta-analytic results. To reflect the 

true state of the evidence, meta-analyses require access to the full evidence base, or at least a 

representative sample of this evidence. If studies with certain characteristics are more likely 

to be included in a meta-analysis than others, this introduces systematic bias that distorts the 

conclusions that will be drawn. Meta-analyses enjoy a good reputation and are particularly 

trusted by many researchers due to their often seemingly authoritative data base. If they paint 

a misleading picture of the evidence because the evidence base is biased, scientific progress 

may be hampered because incorrect theories and beliefs will remain popular (Ferguson & 

Heene, 2012).  

There is little disagreement in the literature that publication bias exists, but the actual 

prevalence of bias has been debated and tends to vary across subdisciplines and different 

areas of research (Fanelli, Costas, & Ioannidis, 2017). Some analysts have suggested that 

publication bias is pervasive and particularly so in the Social Sciences such as Psychology 

(Bakker et al., 2012; Fanelli, 2010, 2012; Ferguson & Brannick, 2012).  

The Detrimental Impact of p-Hacking and Publication Bias 
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There is a general consensus that both p-hacking and publication bias exist in the 

psychological literature. What is under debate and unknown is their factual prevalence rates 

in Psychology as a whole and its subdisciplines. For the present study, the actual prevalence 

rates of p-hacking and publication bias were not our primary interest (and we did not seek to 

determine the actual prevalence rates). Instead, we sought to model the consequences of p-

hacking and publication bias in terms of meta-analytic effect size distortions as a function of 

wide ranges of potential severities of p-hacking and publication bias.  

How do p-hacking, publication bias, and their interplay distort meta-analytic effect 

size estimates? This can be conveniently illustrated with a funnel plot. Consider Figure 1. Let 

us assume researchers suspect a difference between two conditions but do not know whether 

or not this difference actually exists. Panel A depicts 1,000 simulated studies with a true 

population effect of zero. (Hence, in this example, the suspected difference does not exist.) 

Larger studies are located toward the top of the funnel and are more closely distributed 

around the true effect size. By contrast, smaller studies are located toward the bottom of the 

funnel and are more widely distributed around the true effect size. By definition, only 2.5% 

of all studies produce significant effects in the expected direction (genuine false positives) 

when a two-tailed significance test with α = .05 is applied (i.e., studies that fall outside the 

funnel and to the right). These significant findings that fall in the expected direction have a 

high probability of getting published. All other studies have a lower probability of getting 

published (Bakker et al., 2012; Fanelli, 2012; Sterling, 1959; Sterling et al., 1995). This also 

includes 2.5% of all studies that produce significant effects in the unexpected direction (i.e., 

studies that fall outside the funnel and to the left).  

The yellow-to-red colored dots on the right within the funnel represent studies that are 

“in danger of being p-hacked.” These studies revealed nonsignificant effects in the expected 

direction that researchers might be able to push below the significance level through p-
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hacking. Panel B depicts the same funnel plot as Panel A with the exception that about 50% 

of the studies that were “in danger of being p-hacked” were hacked to significance with 

resulting p-values that fell between .05 and .001. For these studies, the effect sizes ended up 

being inflated. Such p-hacking may have occurred in a variety of ways (e.g., unplanned 

inclusion of covariates, flexible outlier treatment). For the present purposes, it is 

inconsequential which specific p-hacks were used. They all serve the same purpose: to reduce 

an originally nonsignificant p-value to significance. (Again, this does not necessarily imply 

intentionally inappropriate behavior but may occur when a researcher runs multiple analyses 

while searching for a coherent story that the data may tell and without a clear awareness of 

the extent to which this approach can increase the false positive rate.) 

The two funnel plots in Figure 1 reveal three important insights: First, imagine that 

researchers only had access to studies that fell outside the funnel to the right. All other studies 

would be lost to the file drawer. Summarizing this subset of studies in a meta-analysis (i.e., 

the only evidence available: only significant studies in the expected direction) would lead to a 

vastly exaggerated meta-analytic effect size estimate. This is the consequence of publication 

bias. Second, in this case, when only significant studies in the expected direction are 

available to summarize, it seems that it would not matter much whether a large number of 

these significant studies were p-hacked to significance (Panel B, black dots plus colored dots) 

or not (Panel A, only black dots): Both subsets of studies that fell outside the funnel to the 

right would cluster relatively closely together and therefore yield similar summary effect 

sizes. In other words, p-hacking would seriously increase the rate of false positive studies in 

Panel B (i.e., all colored dots outside the funnel in Panel B are false positives). However, 

despite the larger number of false positives, the estimated summary effect would not increase 

to a notable extent. Third, imagine there was no publication bias, and researchers had access 

to all 1,000 studies in Figure 1. It would be obvious that this literature would reveal no effect. 
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Again, it would not matter much whether p-hacking was absent (Panel A) or present (Panel 

B). In this case, there would simply be too many black-dot studies both inside and outside the 

funnel for the hacked colored-dot studies to make an appreciable impact on the meta-analytic 

effect size estimate.  

In summary, the visual inspection of Figure 1 suggests that, perhaps surprisingly, p-

hacking might not matter much for the estimation of meta-analytic effect sizes when the 

publication bias is close to 0% or close to 100%. Yet, what happens between these extremes 

is less clear. As the ratio of significant to nonsignificant studies changes, p-hacking may 

contribute additional bias.  

The Present Research 

We set out to formally examine these provisional observations in a large-scale 

simulation study. In this study, we generated sets of simulated studies and systematically 

varied the degrees of both p-hacking and publication bias. More specifically, we varied the 

probability with which a study in danger of being p-hacked would actually be p-hacked to 

significance. This reflects the pervasiveness with which researchers in a field (intentionally or 

unintentionally) p-hack an originally nonsignificant p-value to significance if this is in 

principle possible. We also varied the degree of publication bias by moving different 

proportions of nonsignificant studies to the file drawer so that they would be unavailable for 

researchers interested in meta-analyzing the respective (simulated) literature. Finally, we 

conducted random-effects meta-analyses across the remaining (p-hacked and non-p-hacked) 

studies and calculated the meta-analytic effect sizes. In a real research literature, these meta-

analytic effect sizes would be used to approximate the true sizes of the effects of interest in 

the population.   

Factors of influence. Of course, meta-analytic effect size estimates in the actual 

literature are influenced by many more factors than p-hacking and publication bias. To 
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generalize the findings from varying levels of p-hacking and publication bias, we also 

systematically varied several such factors of influence that may be present in the actual 

literature:  

(1) Danger zone: How many studies are “in danger of being p-hacked”? Some 

researchers may believe that it is only possible to p-hack relatively small original 

p-values to significance (e.g., p = .200). Everything else may be unfeasible and 

reminiscent of the intentional fabrication of data. However, other researchers may 

believe that it is possible to p-hack even very large original p-values to 

significance (e.g., p = .800), for example, by employing complex combinations of 

various p-hacks (e.g., treatment of outliers, peeking at the data, inclusion of 

covariates).  

The larger the danger zone for original nonhacked p-values is, the greater the 

influence of p-hacking on meta-analytic summaries. This is because a larger 

danger zone encompasses a larger number of studies that can be hacked and that 

make a more extensive horizontal movement toward significance in the funnel 

(i.e., they particularly distort the meta-analytic summary effect). The actual size of 

a danger zone in a given literature is impossible to know. It is therefore important 

to examine the influence of the size of the danger zone across a broad range of 

possible values.  

(2) True effect size: When there is a true effect, nonhacked studies falling outside the 

funnel to the right will not represent false positives but will instead provide 

evidence of a real effect. The larger the true effect, the larger this proportion of 

studies (Simonsohn, Nelson, & Simmons, 2014a). Consequently, larger true 

effects should decrease the influence of p-hacking because the proportion of p-

hacked studies in the set of all significant studies will be smaller than in a field 
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with smaller true effects. Similarly, larger true effects will mean that publication 

bias will have less of an effect because, out of all the studies that were conducted, 

a larger proportion will be significant and will have a high probability of getting 

published.  

We examined a broad range of true effect sizes to allow for a comprehensive 

understanding of how the true effect size impacts the biases that p-hacking and 

publication bias exert.  

(3) Heterogeneity: In the psychological research literature, there is not one true fixed 

effect size. Instead, true effects vary: One manipulation of a construct may be 

more effective than another manipulation; the same manipulation may be more 

effective in one population of participants than in another population; one 

dependent variable used to measure a construct of interest may be more sensitive 

to an experimental manipulation than another dependent variable, and so forth 

(Borenstein et al., 2009). The funnel plot (and a meta-analysis for that matter) 

specifies one mean effect across all studies. If heterogeneity is acknowledged 

(random-effects model), the effect size estimate reflects the mean of the 

underlying true effects. Thus, heterogeneity increases the variability of studies on 

the x-axis in the funnel depicted in Figure 1. This may lead to a larger number of 

genuinely significant studies. A recent analysis of between-study heterogeneity 

based on more than 700 meta-analyses provided evidence for substantial 

heterogeneity in Psychology and variability in the levels of heterogeneity across 

the various research literatures (van Erp, Verhagen, Grasman, & Wagenmakers, 

2017). It is thus important to consider a broad range of values of heterogeneity 

when examining the impact of p-hacking and publication bias.  
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(4) Typical sample sizes: The more precise a study, the more accurately it can 

estimate the true underlying effect. Effect sizes based on smaller samples vary 

more strongly. Research literatures differ in how the sample sizes of individual 

studies are distributed: Some literatures typically feature larger, more precise 

studies than others (Marszalek, Barber, Kohlhart, & Cooper, 2011). This may 

influence the impact of p-hacking and publication bias, for example, because 

smaller studies require larger effect sizes to achieve statistical significance. Thus, 

it is important to consider the influence of various typical sample sizes when 

trying to understand the impact of p-hacking and publication bias on meta-analytic 

effect size estimates.  

(5) The probability that significant studies will be published: Studies with “positive” 

results (i.e., significant results in the expected direction) are more likely to be 

published than studies with “negative” (i.e., nonsignificant) results (Bakker et al., 

2012; Fanelli, 2012; Sterling, 1959). However, not all studies that “worked” will 

be published. For example, authors may be reluctant to submit a study for 

publication if they feel the study did not provide strong enough evidence in 

support of the favored hypotheses (Giner-Sorolla, 2012). Also, reviewers and 

editors may be reluctant to advocate the publication of studies that might not 

extend previous knowledge far enough to warrant publication (Nosek, Spies, & 

Motyl, 2012). Thus, there may be variability in a significant study’s probability of 

getting published.  

The lower the probability that significant studies will be published, the smaller the 

impact of p-hacking because, with a lower probability of publication, fewer of the 

p-hacked studies that could bias the meta-analytic estimate will be published. 

Also, the lower the probability of publication, the smaller the impact of 
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publication bias because the distortion introduced by the nonpublication of 

nonsignificant results is offset to the extent that significant findings are also not 

published. (Everything else being equal, there would be no bias in the mean effect 

size estimate if the same proportions of significant and nonsignificant findings 

were not published.) 

The interplay of p-hacking, publication bias, and all factors of influence can 

conveniently be graphically examined by means of two freely accessible interactive online 

applications that will be discussed in the Method section. Although we focused on the meta-

analysis of two-group comparison designs using Cohen’s d as the measure of effect size 

(Cohen, 1988), we believe that the insights gained by our study can be readily applied to 

various kinds of meta-analyses using different effect sizes. 

Method  

We simulated the effects of varying degrees of p-hacking and publication bias on the 

distortion of meta-analytic effect size estimates as a function of the five factors of influence 

identified in the Introduction: danger zone, true effect size, heterogeneity, typical sample 

sizes, and the probability that significant studies will be published. Essentially, this process 

involved simulating many different versions of the sets of studies depicted in the funnel plots 

in Figure 1, henceforth referred to as configurations. Figure 1 displays two of the many 

possible configurations. Simulating each configuration was a multistep process. In the first 

major step, studies were generated with varying levels of true effect sizes and heterogeneity 

and were based on different sample size distributions. In the second major step, varying 

levels of p-hacking and publication bias were introduced to the studies generated in the first 

step. In the third step, the meta-analytic summary effects of the configurations (a precision-

weighted average of all studies in a configuration) were graphically depicted in outcome 

figures that illustrate how the five factors of influence changed the interplay between p-
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hacking and publication bias in distorting the cumulative evidence base in our simulations. 

All simulations were conducted using R (R Core Team, 2017). The meta-analytic models 

were fit using the rmeta package (Lumley, 2012). 

In total, we simulated 282,240 different configurations. For reasons of clarity, we 

cannot report the results of all levels of the factors of influence (and their various 

combinations). However, we offer two interactive online applications that provide visual 

representations of the effects of the simulations: Interactive online application 1 

(https://bit.ly/2LIvRX7) visually represents how the factors of influence impact the funnel 

plot depicted in Figure 1. Interactive online application 2 (https://bit.ly/2Vno8gH) visually 

represents effects of the factors of influence on the graphical displays of the results akin to 

Figure 2. Both applications offer the opportunity to examine the results as a function of 

additional values of the factors of influence not reported in the manuscript (e.g., additional 

values of true effect sizes, danger zone, severity of p-hacking, heterogeneity).  

Study Generation  

The first step was to simulate individual studies in which two independent groups 

were compared. The true between-group mean difference per study was set to the sum of a 

fixed effect δ and a random effect τi, where values for τi were randomly drawn from a normal 

distribution with mean 0 and standard deviation τ. Fixed-effects models are based on the 

assumption that there is one true effect size underlying all studies included in a meta-analysis. 

By contrast, random-effects models are based on the assumption that true effect sizes may 

differ across studies due to, for example, different effects in different populations or different 

experimental manipulations. In our simulation we simulated random-effects (by introducing 

heterogeneity) and accordingly used random-effects meta-analysis for modeling. We assume 

that for most of the psychological literature, a random-effects model is more plausible than a 

fixed-effects model (Borenstein et al., 2009).  
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The τ and δ values were varied across configurations. We entered 0, 0.2, or 0.5 for the 

δ values (true effect size, Factor 2 listed above) and 0.10, 0.2, or 0.32 for the τ values 

(heterogeneity, Factor 3). Selected values for δ were based on Cohen’s conventions for small 

and medium effects (Cohen, 1988). We assume that these cover the majority of effects in 

Psychology (e.g., Bosco, Aguinis, Singh, Field, & Pierce, 2015; Gignac & Szodorai, 2016; 

Richard, Bond, & Stokes-Zoota, 2003). According to a recent meta-analysis, our chosen  

values for τ represent the 25%, 50%, and 75% quantiles in an empirical distribution of τ 

estimates in Psychology (van Erp et al., 2017). For additional values, see interactive online 

application 2. 

Samples sizes of individual studies were set to ni = mj + χi² * k, where χi² was 

randomly drawn from a χ² distribution with three degrees of freedom, k was set to 8, and mj 

was varied across configurations. Values more than 80 points above mj were truncated (about 

1.9% of the distribution). The default value for mj was 20. The resulting distribution was 

right-skewed, with skewness = 1.03, Mdn = 39, M = 42.61, SD = 16.80, Min = 20, Max = 

100. Hence, the distribution included both small and large sample sizes, but small sample 

sizes were more prevalent. In addition to the default of mj = 20, we also realized 

configurations with mj = 10 and mj = 50 (typical sample sizes, factor of influence 4). Thus, 

we utilized sample size distributions with Mdn = 29, 39, and 79 per condition. This approach 

enabled us to shift the central tendency of the distribution without changing its shape.1 See 

Figure S1 in the supplemental materials for a graphical depiction of the three sample-size 

distributions. We preferred a synthetic sample-size distribution over an empirically derived 

distribution for two reasons. First, investigations of historical sample sizes in Psychology 

(e.g., Fraley & Vazire, 2014; Marszalek et al., 2011) typically do not report the study design, 

                                                
1 The specific shape of the sample size distribution was arbitrary and based on plausibility assumptions. In 
additional simulations, we systematically varied df and k to ensure that our results were not artifacts of the shape 
of the selected sample-size distribution. This was the case. Variations in the shape of the distribution affected 
the results to a negligible extent. 
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rendering it impossible to infer the typical sample size per condition. Second, sample sizes in 

Psychology are changing rapidly (Nelson et al., 2018; Sassenberg & Ditrich, 2019), and we 

aimed to make projections for the present (and future) rather than the past.  

For each configuration, we started with a set of 1,000 simulated studies and computed 

the standardized mean difference (d, Cohen, 1988), the standard error of the standardized 

mean difference (SEd), and the p-value for each study.2  

Introduction of Biases 

Next, p-hacking and publication bias were applied to the set of studies.  

p-hacking. Studies were defined as “in danger of being p-hacked” if d was positive 

and the p-value fell above .05 and below a predefined cut-off value. The upper border of this 

danger zone was linearly increased across the full range of standard errors so that the danger 

zone was smallest for studies with minimum SEd (top of the funnel, Figure 1) and largest for 

studies with maximum SEd (bottom of funnel, Figure 1). This approach resulted in the curved 

danger zone border visible in Figure 1. The danger zone is smaller for precise studies and 

larger for imprecise studies. For example, one danger zone we considered was .4/.6, such that 

studies with the lowest standard errors (i.e., the largest sample size in the set) were in danger 

if their p-values fell between .050 and .400, and studies with the highest standard errors (i.e., 

the smallest sample size in the set) were in danger if their p-values fell between .050 and 

.600. This reflects the fact that studies with small sample sizes are easier to p-hack compared 

with studies with larger sample sizes (Bakker et al., 2012). Note that the specific largest and 

smallest n per cell in a given configuration depends on which 1,000 values (for 1,000 studies) 

are randomly selected from the sample size distribution and, of course, on the selected 

                                                
2 Note that the results for summary effect sizes, the primary outcome of our simulation, are independent of the 
number of simulated studies. This is the case because simulated studies in the meta-analysis are independent, 
such that studies already existing in the set have no impact on new studies being added. Every simulated 
configuration can be viewed as a data-generating mechanism with a specific underlying distribution of effect 
sizes. The presented results are estimates for the expected values (means) of the distributions. This expected 
value is the same, whether we draw k = 100, k = 1,000, or k = 10,000 from the distribution.  
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sample size distribution (small, standard, large). We report results for three levels of the 

danger zone factor: .2/.4, .4/.6, or .6/.8 (factor of influence 1). The effects of additional 

smaller and larger danger zones can be examined with interactive online application 2.  

Any study identified as in danger of being p-hacked was then hacked with a certain 

probability. It did not matter which specific p-hacking technique was used to reduce the p-

value of a study because different p-hacks serve as means to the same goal, that is, to lower 

the p-value of an originally nonsignificant study to significance. If a study was p-hacked, its 

p-value was replaced with a value randomly drawn from a triangular distribution with Max = 

0.049, Mode = 0.049, and Min = 0.001, thus satisfying the assumptions that (a) p-hacking 

leads to a left-skewed distribution of significant p-values (more p-values close to .05 than 

expected given a true effect; Simonsohn et al., 2014a; Simonsohn, Nelson, & Simmons, 

2014b), and (b) some studies nevertheless achieve quite low p-values after hacking 

(Simonsohn, Simmons, & Nelson, 2015). (For robustness checks of this procedure, see the 

Discussion section.) For p-hacked studies, d was then recomputed from the new p-value and 

the sample size. Average p-hacking probabilities were set to 0, 0.4 (only depicted in the 

illustrative example in Figure 2A) and 0.8 (p-hacking probability). Again, the choice of these 

values does not indicate that we deem these p-hacking probabilities particularly likely to 

reflect reality. Instead, we chose rather extreme values (no p-hacking at all, 80% of all studies 

in danger of being p-hacked were in fact hacked, respectively) and a moderate value to 

illustrate the potential range of influences that the probability of p-hacking can exert. 

(Although possible, we deemed p-hacking probabilities even higher than 0.8 unlikely to be 

representative of the psychological research literature.) 

To account for the fact that p-values closer to p = .05 are easier to push over the 

significance threshold than larger p-values, we introduced a linear gradient to the probability 

of p-hacking: Values that fell exactly on the (horizontal) middle of the danger zone received 
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the nominal average p-hacking probability (i.e., 80% at the 0.8 level). Values that fell at 

either (horizontal) end of the danger zone, that is, almost exactly at the significant threshold 

of p = .05 or almost exactly at the left-hand border of the zone, received p-hacking 

probabilities of 0.2 above and 0.2 below the nominal probability, respectively. The 

probability was linearly decreased from the left to the right border of the danger zone. In 

Figure 1, this is visually represented via the yellow-to-red color gradient. For simplicity, we 

refer to the p-hacking probabilities by their nominal (center) level. The gradient did not apply 

to p-hacking probabilities of 0 and 1 (only included in the online applications).  

Publication bias. We distinguished between two different kinds of publication bias: 

First, the nonpublication of studies that “did not work.” Second, the nonpublication of studies 

that “worked.” Following common conventions, we reserve the term publication bias for the 

former and call the latter “the probability of publishing significant studies.”   

Publication bias was simulated by removing a random subset of studies that were 

either nonsignificant with positive d-values or had negative d-values. The severity of 

publication bias was operationalized by varying the percentage of studies removed in steps of 

5% from 0% (no publication bias) to 100% (perfect publication bias).  

The probability of the publication of significant studies was modeled analogously. 

Specifically, significant studies with positive d-values were included in the final set with 

probabilities of 100%, 90%, or 80% (factor of influence 4). For the effects of a smaller 

probability of the publication of significant studies see interactive online application 2. 

Meta-analysis and graphical displays of the simulation results. In total, we 

simulated 282,240 unique configurations. For each configuration, we fit random-effects 

meta-analysis models. Because the simulations are probabilistic, running the same 

configuration twice never yields perfectly identical results. To stabilize the results, we ran all 

configurations reported in this article 1,000 times and averaged the resulting estimates. All 
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other configurations that are accessible in the interactive online application 2 were run 100 

times. This procedure reduced the influence of chance to a negligible amount. Finally, the 

summary effects were retrieved, some of which are presented in graphical displays of the 

simulation results. 

Figures 2B-2F depict summary effects of 126 configurations each (630 in total): 

Twenty-one levels of publication bias severity, two levels of p-hacking probability, and three 

levels of one selected factor of influence. All other factors of influence were held constant 

within each figure. In Figure 2A, all factors of influence were held constant at a set of default 

values.  

Results 

In a first step, we will expand on one representative example that illustrates how 

varying severities of p-hacking and publication bias distort the meta-analytic effect size 

estimate of one hypothetical simulated literature (Figure 2A). In this example, the true effect 

was set to d = 0.2, heterogeneity was set to the median value in psychological science, τ = 0.2 

(van Erp et al., 2017), the danger zone was set to .4/.6, and the probability that significant 

studies would be published was set to 90%. Although the true values from any given area of 

the literature are unknown, this configuration was intended to reflect one plausible 

approximation of reality for some research areas. Many additional configurations are reported 

in the following section, and other ones can conveniently be examined with interactive online 

application 2.  

In a second step, we examined the unique effects of each of the five factors of 

influence—danger zone, true effect size, heterogeneity, typical sample sizes, and the 

probability of publishing significant studies—by separately varying the values of one factor 

while holding the other factors constant (Figures 2B-2F).  

Step 1: Illustrative Example 
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The three lines in Figure 2A reflect the (biased) estimated meta-analytic effect size 

when p-hacking was absent (p-hacking probability = 0, solid line), moderate (p-hacking 

probability = 0.4, dashed/dotted line), and when p-hacking was severe (p-hacking probability 

= 0.8, i.e., 80% of all studies in the danger zone were p-hacked to significance, dashed line).  

The simulations revealed several interesting insights: First, in the absence of p-

hacking (solid line), the effect size bias increased exponentially as the severity of publication 

bias increased. Even when 50% of all “failed” studies were lost to the file drawer, there was 

only a relatively small effect size bias (true effect d = 0.2, estimated effect dest = 0.26, effect 

size bias dbias = 0.06). This pattern changed dramatically as publication bias became very 

severe (e.g., 95%). When this happened, the estimated effect was dest = 0.50 (dbias = 0.30), 

indicating that researchers would conclude that this literature represents a robust phenomenon 

with an average effect size that is more than twice the size of the true effect. An implication 

of this observation is that even modest reductions in publication bias can greatly reduce the 

effect size bias in the literature when researchers suspect very severe publication bias. 

Second, the effect of moderate p-hacking (dashed/dotted line, p-hacking probability = 

0.4) was only modest compared with no p-hacking (p-hacking probability = 0). Even 

assuming that 80% of all studies in the danger zone would be p-hacked to significance 

(dashed line, p-hacking probability = 0.8) did not dramatically increase the effect size bias. In 

the latter case of p-hacking probability of 0.8, the additional bias due to p-hacking (and its 

interaction with publication bias) remained below dhack = 0.1 across the various levels of 

publication bias (dhack equals the difference between the solid and dashed lines; see Figure 

S2). At very high levels of publication bias (i.e., 90-100%), the additional bias due to p-

hacking was negligible and even became negative (i.e., p-hacking led to a slight reduction in 

the overall degree of bias in these cases). Between 0% and approximately 80% of publication 

bias p-hacking had the greatest relative biasing effect (see Figure S2). 
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A different way to interpret Figure 2A is to examine what it takes to produce a certain 

effect. For example, let us assume that a meta-analysis revealed an average effect of dest = 

0.4. A researcher who is very experienced in the respective field may believe the true effect is 

d = 0.2 at best. This researcher is interested in what degrees of p-hacking and publication bias 

may have produced the supposedly biased effect size estimate of dest = 0.4. In the absence of 

publication bias (very left part of Figure 2A), p-hacking alone would be unable to even come 

close to a bias of dhack = 0.2. The actual effect size bias in the absence of publication bias 

would be only dhack = dbias = 0.01 (i.e., dest = 0.21) if 40% of all studies in danger of being p-

hacked were p-hacked, and only dhack = dbias = 0.04 (i.e., dest = 0.24) even when 80% of all 

studies in danger of being p-hacked were hacked. By contrast, in the absence of p-hacking, 

publication bias alone would be able to seriously bias the estimated effect: It would take a 

severity of 85% publication bias to double the true effect size to an estimated dest = 0.40. 

Illustrating the interaction of p-hacking and publication bias, assuming a p-hacking 

probability of 80%, a publication bias of “only” 75% would also lead to a biased effect size 

of dest = 0.40. In sum, to introduce serious meta-analytic effect size bias into the literature, 

publication bias is necessary, but p-hacking is not. However, in combination with publication 

bias p-hacking may exert considerable effect size bias. 

Step 2: Factors of Influence 

Next, we examined the specific effects of each of the five factors of influence and 

how variations in these factors could affect the general conclusions drawn from the 

illustrative example. For ease of interpretation, we only considered the two most extreme 

values of p-hacking probability for the following analyses (0% and 80%). 

Danger zone. The illustrative example was based on a danger zone of p = .050 to 

.400 (larger, more precise studies) to p = .050 to .600 (smaller, less precise studies). It is 

possible that p-hacking is less or more feasible, and, consequently, fewer or more studies are 
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in danger of being p-hacked. Figure 2B depicts the results when the danger zone was set to 

.2/.4 (blue line), .4/.6 (black line), and .6/.8 (red line). Reducing the danger zone decreased 

the impact of p-hacking slightly; expanding the danger zone increased the impact of p-

hacking slightly. However, even under the most severe circumstances (danger zone .6/.8, p-

hacking probability = 0.8, red dashed line), the additional bias due to p-hacking (and its 

interaction with publication bias) remained smaller than Δdhack = 0.10 (difference between 

solid black and dashed red line, see also Figure S3). Overall, strongly varying the size of the 

danger zone from .2/.4 to .6/.8 had a modest impact on the effect size bias. Obviously, in the 

absence of p-hacking (solid line), the size of the danger zones did not impact the estimated 

effect size. 

True effect size. Figure 2C illustrates that in literatures with a true effect size of d = 

0, the exponential relationship between publication bias and the estimated effect size was 

greatly amplified (Figure 2C, blue lines). At a publication bias of 90% and in the absence of 

p-hacking, the estimated biased effect size was dest = dbias = 0.21; at a publication bias of 

95%, it was already dest = 0.31. In addition, publication bias and p-hacking interacted more 

strongly than when the true effect was d = 0.2 as in the default example: The additional 

biasing effect of p-hacking was much stronger at high degrees of publication bias (e.g., 80% 

or 90%) than at low degrees of publication bias (e.g., 0% or 10%; difference between the 

solid and dashed blue lines; see also Figure S4).   

By contrast, in literatures with a true effect size of d = 0.5, the exponential 

relationship between publication bias and the estimated effect size was greatly dampened (red 

lines). In the absence of p-hacking, extreme levels of publication bias (e.g., 90 or 95%) still 

biased the effect size by approximately dbias » 0.15, but the distortion was much smaller than 

at lower true effect sizes. At high levels of publication bias (e.g., 90 or 95%), severe p-
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hacking even had a slightly dampening influence on the estimated effect size, effectively 

leading to less biased effect size estimates.  

A true effect size of d = 0 may be regarded as deserving special attention because in 

this case, publication bias and p-hacking may “produce” an effect out of thin air. Figure 2C 

illustrates that the overall level of bias may be particularly large when d = 0. Therefore, we 

additionally explored the effects of all factors of influence specifically for the case of d = 0 

(Figure S5). Results revealed that the particularly pronounced interaction between p-hacking 

and publication bias at d = 0 remained intact and the factors of influence exerted similar 

influences as in our illustrative example with d = 0.2. As before, the bias introduced by p-

hacking alone was small, but the relative amount of bias attributable to p-hacking and its 

interaction with publication bias was noticeably increased for d = 0 compared to d = 0.2. 

Heterogeneity. Lower heterogeneity (i.e., τ = 0.10, 25% quantile) slightly reduced the 

effect size bias at high levels of publication bias (Figure 2D, blue lines). Higher heterogeneity 

(i.e., τ = 0.32, 75% quantile) slightly increased the effect size bias at high levels of 

publication bias (red lines). Both effects were rather modest.  

Typical sample size. Entering smaller (Mdn = 29 participants per condition, Figure 

2E, blue lines) rather than standard sample sizes (Mdn = 39 participants per condition, black 

lines) into the simulation led to slightly stronger biasing effects of p-hacking and publication 

bias, especially at high levels of publication bias (> 80%). This was plausible because smaller 

samples require larger effect sizes to achieve statistical significance. Conversely, larger 

sample sizes (Mdn = 69 participants per condition, red lines) were associated with smaller 

effect size biases, especially at high levels of publication bias.  

Probability of publishing significant studies. The assumption that 80% or 100% 

rather than 90% of all studies that “worked” would be published had only negligible effects 

on the estimated effect size (Figure 2F).  
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Supplemental analyses. We additionally explored the effects of publication bias and 

p-hacking on the number of studies in the meta-analysis (k, see Figure S6) and the precision 

of the summary effect (standard error, see Figure S7). Besides the switch of outcomes, 

Figures S6 and S7 are identical to Figure 2. The results for k are straightforward. The number 

of studies decreased linearly with increasing levels of publication bias, from 1,000 studies at 

0% publication bias to about 200 studies at 100% publication bias in the default 

configuration. This effect was attenuated by p-hacking because studies were “saved” from 

ending up in the file drawer. At 80% p-hacking and 100% publication bias, about 500 studies 

remained, depending on the configuration.  

When standard errors were set as outcomes, an interesting pattern emerged. With 

increasing publication bias and no p-hacking, standard errors also increased. This is intuitive, 

because publication bias removes studies from the meta-analysis and smaller meta-analyses 

are less precise. However, when p-hacking was added, this effect was effectively canceled 

out. When p-hacking was at 80%, increasing publication bias ded not decrease precision. 

Rather, precision remained approximately stable across the range of publication bias (0% - 

100%). The cancellation effect occured because p-hacking shifts effect sizes to a relatively 

narrow corridor outside the border of the funnel, thus creating a tightly-packed cluster of 

effects that results in a high-precision estimate.  

When the true effect was zero (Figure S7C, solid, blue line) the impact of publication 

bias on precision was especially pronounced, because with no true effect, only 2.5 percent of 

studies reach significance by chance. Even here, adding p-hacking to the mix increased 

precision notably. By this way, publication bias and p-hacking were working in concert to 

create the illusion of a precise non-zero effect that was in truth zero.  

Discussion 
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 Single studies are rarely conclusive. Therefore, scholars rely on meta-analyses that 

shift the focus from single studies to aggregated evidence: Different researchers contribute to 

the same research question through replication and extension. This collaborative approach to 

science holds great promise for the advancement of knowledge, but it is sensitive to 

distortions. If the cumulative evidence base is severely biased, researchers run the risk of 

drawing false conclusions. With the present simulations, we examined how a broad range of 

levels of severity with respect to p-hacking and publication bias could distort cumulative 

science as indicated by meta-analytic effect size estimates, considering broad variation in 

various factors of influence that are likely to exist in realistic research literatures. This study 

provides several key insights: First, p-hacking and publication bias interact: A high level of 

publication bias can greatly distort the available evidence base. At relatively low and high 

levels of publication bias, even severe p-hacking contributes little additional bias. At medium 

levels of publication bias, however, p-hacking can contribute considerable additional bias, 

especially when true effects are negligible or even approach zero.  

The reason underlying this interaction is simple: When publication bias is low, there 

are so many studies that contribute to a valid estimation of effect sizes that p-hacking is not 

able to seriously distort such a robust body of evidence. When publication bias is high, effect 

sizes are already considerably distorted. Hacking some of the few remaining nonsignificant 

studies to significance only adds to the body of significant studies that already dominate the 

meta-analytic effect size estimate, but such p-hacking does not necessarily change the already 

biased mean estimate. When publication bias is not particularly low or high, however, 

considerable p-hacking will inflate the effect sizes of the originally nonsignificant studies so 

much that the overall effect size estimate will be more affected than under other 

circumstances. This is particularly the case when there is only a negligible or no true effect.  
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Second, the factors of influence we considered impact the interplay of p-hacking and 

publication bias to varying degrees. No factor of influence fundamentally changes the general 

interaction pattern, but larger sample sizes, lower heterogeneity, and particularly larger true 

effects protect against the biasing influence of p-hacking and publication bias. We briefly 

elaborate on why this is the case.  

Smaller sample sizes are associated with stronger effect size biases because, in small 

samples, large effect sizes are needed to achieve statistical significance, leading to greater 

deviations from the true effect. Everything else being equal, p-hacking therefore contributes 

particularly much effect size bias in studies with small samples. By contrast, in larger 

samples, smaller effect sizes can achieve statistical significance, which is usually the critical 

threshold for publication.  

When heterogeneity is high, effect sizes are more widely dispersed around the mean 

effect. This implies that more results will achieve statistical significance (see interactive 

online application 1 for a graphical illustration). Of these, the ones that are significant in the 

expected directions will not be affected by publication bias. Instead, they will likely be 

published as evidence in support of the expected phenomenon. This leads to a greater effect 

size bias. Put differently, low heterogeneity offers partial protection against extreme effect 

size biases.  

By far, the strongest protective role against effect size bias emerged for larger true 

effects. Both the maximum level of bias introduced by publication bias alone and the 

maximum additional bias from p-hacking and its interaction with publication bias were 

strongly reduced as the true effects increased. The reason for this is simple: The stronger the 

true effect, the greater the number of studies that will achieve (high levels of) statistical 

significance even without any p-hacking (Simonsohn et al., 2014b). In this case, p-hacked 

studies contribute to this pool of significant studies without seriously changing the effect size 
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(see interactive online applications). The large numbers of significant studies with substantial 

true effects offer another beneficial consequence: Even when nonsignificant studies are sent 

to the file drawer, this will not have as severe an impact on the overall effect size estimate 

because the large number of significant studies attests to the real effect size.  

These observations about large true effects have a flip side: Maximum bias is greatest 

when there is no true effect at all (d = 0). In this case, publication bias has the most leverage 

to distort meta-analytic effect size estimates, and p-hacking can add considerable additional 

bias when publication bias is high (e.g., higher than 50%). In other words, p-hacking and 

publication bias may produce seemingly robust meta-analytic effects out of thin air when in 

reality the effect is zero.  

Taken together, the observations relating to variations in true effect sizes lead to a 

central and reassuring insight offered by the present simulations: Researchers working in 

areas involving phenomena with healthy, robust true effects need to worry much less about p-

hacking and publication bias compared with those investigating small effects. In the case of 

strong effects, meta-analytic effect size bias will remain modest even under unfortunate 

conditions. Unfortunately, in many cases, researchers will not know with certainty whether or 

not an effect of interest has a robust or a negligible true effect before conducting a meta-

analysis. 

In supplemental analyses, we investigated how p-hacking and publication bias affect 

the precision of a summary effect. This analysis revealed that p-hacking can make meta-

analytic estimates appear more precise than they actually are, because effect sizes are shifted 

into a narrow corridor just outside the significance border. 

The Role of p-Hacking 

Some researchers have intensively argued that p-hacking—not publication bias—is 

the major threat to psychological science (e.g., Nelson et al., 2018; Simmons et al., 2011). 
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Why do our simulations paint a more nuanced picture? The major difference between 

previous work on p-hacking and the present approach is that previous work focused on how 

dramatically p-hacking increased the rate of false positives, whereas, with the latter, we 

focused on the distortion of meta-analytic effect sizes. We argue that considering distortions 

of meta-analytic effect size estimates is important because not only false positives, but also 

substantial distortions in such estimates can impede scientific progress, lead researchers and 

practitioners astray, and result in a waste of resources if research is based on invalid 

inferences.  

Is this meant to imply that researchers should not worry about p-hacking and false 

positives? Not at all. False positives are a major concern and can exert detrimental influences: 

For example, in small, emerging literatures, a few prominently published false positives may 

prematurely lead to the impression of a robust phenomenon. Likely, the more abundant a 

research literature, the less influence will a handful of prominent studies exert on the 

researchers in a field (provided there is no extreme publication bias). However, if—for 

whatever reason—a literature never develops to a substantial size, the detrimental influence 

of a few prominent false positive findings may remain strong for a long time.  

One reason why a literature might never develop to a substantial size is when the true 

effect is zero, and there is no p-hacking in that particular literature. In this case, researchers 

would not be likely to produce a large number of studies because it would quickly become 

clear that there is nothing to find. This would consequently affect the number of studies 

included in any meta-analysis of this literature or would even determine whether a meta-

analysis gets conducted in the first place. If, however, there is p-hacking in a literature with a 

true null or a negligible effect then p-hacking may make this literature appear as if there is 

something there. This may encourage other researchers to conduct further studies on this 

effect – a lamentable waste of resources. Preventing p-hacking would be an important 
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prophylactic against the risk of contributing further confidence in a potentially non-existing 

effect and ultimately against conducting meta-analyses of many false-positive studies, 

because the literature would never develop to a substantial size if researchers gave up on 

effects that would rather consistently spread around null. Precluding p-hacking is therefore 

also important to avoid a literature to accumulate when there is no interesting effect.  

We emphasize that with the present work, we did not aim to question previous 

assertions about p-hacking and its deleterious effect on the rate of false positives. In fact, our 

work corroborates them: In our illustrative example (Figure 2A), p-hacking added a large 

number of false positives: About 55% (!) of all significant studies were false positives due to 

p-hacking. Nevertheless, in the absence of publication bias, p-hacking biased the effect size 

estimate only by dbias = 0.04. This demonstrates that the “rate of false positives” and “effect 

size bias” are two different ways to examine the consequences of p-hacking and publication 

bias. Both are important, but a high rate of false positives does not necessarily imply a strong 

bias in cumulative effect sizes.  

Implications 

The importance of preventing p-hacking has rightfully received considerable attention 

in recent years (Nelson et al., 2018), but the prevention of publication bias has not received as 

much attention. This needs to change. Both need to become top priorities in psychological 

research. Both an increase in false positives (the most tangible consequence of p-hacking) 

and distortions of meta-analytic effect sizes (the most tangible consequence of publication 

bias) have potentially deleterious consequences for psychological science.   

Estimates of the prevalence of p-hacking vary widely (Fiedler & Schwarz, 2016; 

Hartgerink, 2017; Head et al., 2015; John et al., 2012; Nelson et al., 2018). The severity of 

publication bias likely varies considerably by research area, but evidence suggests it may be 

high in general in Psychology (and higher than in many other sciences; Bakker et al., 2012; 
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Fanelli, 2010; Fanelli, 2012; Fanelli et al., 2017; Ferguson & Brannick, 2012). Therefore, the 

field may want to take a conservative position, assume drastic severities, and consider what 

should be done to curtail the consequences. The good news is: Even moderate reductions of a 

potentially strong publication bias will greatly reduce its biasing effects (see Figure 2). How 

can this be accomplished? We suggest four easy and cost-efficient solutions.  

First, funding institutions have a strong interest in their money being used in the most 

efficient way to foster scientific progress. Therefore, they may enforce the transparent 

reporting of data and the results of all studies that have been paid for by a grant. In the case 

that not all studies end up being published, the remaining studies could mandatorily be placed 

in repositories such as the Open Science Framework and made public after a certain period of 

time. Funding institutions could even go so far as to make the allocation of future grants 

partly contingent on such transparent reporting for studies paid for by past grants. Second, 

more journals should require authors to clarify whether they have conducted any additional 

studies that addressed the same research question. These should be reported, and the results 

and data should be made available (e.g., in a supplement, via a link to a data repository). 

Journals could introduce standardized tables in which authors report all studies that have been 

conducted and identify them as pilot studies, actual tests of the hypotheses, and so forth. 

Even if not all authors responded truthfully to these requirements, this measure alone would 

unearth a considerable share of otherwise hidden studies and thereby considerably improve 

the robustness and validity of meta-analytic findings. Third, registered reports lessen both p-

hacking and publication bias (Chambers, Dienes, McIntosh, Rotshtein, & Willmes, 2015; 

Jonas & Cesario, 2016). To the extent that more journals give this format ample journal 

space, publication bias will be reduced. Fourth, not only should preregistrations of studies 

(Nosek, Ebersole, DeHaven, & Mellor, 2018; van 't Veer & Giner-Sorolla, 2016) incentivize 

and regularly entail information about the study design, outcome variables, and analysis 
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plans, but they should also encourage or even mandate to make the data public, even if the 

study remains unpublished. In this way, not only will preregistrations reduce p-hacking, but 

they will also make research discoverable for meta-analysts, even if the data are never 

published in a journal. More generally, preregistration and adherence to open science 

standards that emphasize the unbiased access to materials, data and code will improve the 

replicability not only of individual studies but also of meta-analyses in the long run 

(Gurevitch et al., 2018; Nosek et al., 2018). In sum, the field needs a shift in culture. 

Researchers need to be aware not only of the detrimental consequences of p-hacking, but also 

publication bias, and they also need to be incentivized as well as required to minimize it. 

Minimizing publication bias comes with an extra premium: If all well-conducted studies are 

published independent of the outcome, incentives to p-hack will be drastically reduced. 

Preventing publication bias will indirectly reduce p-hacking as well.  

The present simulations reveal how strikingly a strong severity of publication bias 

may distort meta-analytic effect size estimates even in the (albeit unrealistic) absence of p-

hacking. One implication of these findings is that the field needs techniques that validly and 

reliably correct for the effects of publication bias under realistic circumstances (e.g., varying 

true effects, heterogeneity, scarcity of nonsignificant studies).  

Various techniques have been proposed to correct for publication bias (e.g., trim and 

fill, Duval & Tweedie, 2000; p-curve, Simonsohn et al., 2014; p-uniform, van Assen, van 

Aert, & Wicherts, 2015; PET-PEESE, Stanley & Doucouliagos, 2014; selection models, 

Iyengar & Greenhouse, 1988). Two recent large-scale simulation studies compared the 

performance of several methods in correcting for publication bias under conditions that were 

realistic in various psychological research literatures (Carter, Schönbrodt, Gervais, & 

Hilgard, 2019; Renkewitz & Keiner, 2018). Using slightly different approaches, both studies 

concluded that no single method consistently performed well under diverse circumstances 
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and no method consistently outperformed the others (but see van Aert & van Assen, 2018, for 

an advancement of the p-uniform method). Ideally, future versions of these techniques will 

also be suited for modern meta-analytic methods, such as robust variance estimation (Hedges, 

Tipton, & Johnson, 2010) or multilevel meta-analysis (Van den Noortgate & Onghena, 

2003), which can account for effect size dependencies. These meta-analysis techniques are 

increasingly used with data sets that include more than one effect size from the same study, 

but as yet researchers using these methods have to resort to bias correction methods 

developed for traditional meta-analysis that only allows the inclusion of one effect size per 

study (e.g., Coles, Larsen, & Lench, 2019; Friese, Frankenbach, Job, & Loschelder, 2017). 

For researchers who rely on meta-analyses, our findings provide a starting point from 

which to estimate the combinations of p-hacking, publication bias severity, and factors of 

influence that could produce a given meta-analytic effect size estimate. An expert in a given 

literature may be able to make informed guesses about realistic values of the factors of 

influence. Using interactive online application 2, a researcher may run sensitivity analyses of 

various values of the factors of influence to check which combinations of p-hacking and 

publication bias may realistically produce a given meta-analytic estimate.  

Potential Objections to the Simulations 

In this section, we address some arguments against some assumptions underlying the 

present study and the conclusions than can be drawn from it.  

The severity of p-hacking was overestimated. Critics may argue that it is unrealistic 

to p-hack initial p-values of .8 to significance without deliberately manipulating the data and 

that assuming a prevalence rate of .8 for p-hacking—80% of all studies in danger are  in fact 

hacked—is far too pessimistic. In this case, the impact of p-hacking in our simulations would 

be overstated. In response, we refer to Figure 2, which illustrates that we simulated the 

impact of p-hacking across a broad range of severities in terms of both the probability of p-
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hacking and the size of the danger zone. Our simulations are thus informative with respect to 

a broad range of potential realities in different research areas.   

The severity of p-hacking was underestimated. One potential objection is that p-

hacking was not modeled severely enough because researchers will basically do everything to 

avoid losing a study (and the resources they invested in it) to the file drawer (Nelson et al., 

2018). Had p-hacking been modeled severely enough, the effects on meta-analytic effect size 

estimates would have been much stronger. The “severity of p-hacking” may refer to different 

aspects, either in isolation or together: (a) How many studies of those in danger of being p-

hacked will in fact be p-hacked? (b) How large is the “danger zone” of studies that can be p-

hacked? (c) If researchers p-hack, how far below the .05 threshold do they p-hack their 

studies? The smaller the final p-value, the more strongly the effect size of this particular 

study will be biased (given a constant sample size).  

In response to the concern that p-hacking might not been modeled severely enough, 

we refer to Figure 2B, which (also) illustrates the effects of very severe p-hacking: 80% of 

studies with original p-values of up to .800 will be p-hacked to significance. The results (red 

line) reveal considerable distortions caused by this very severe p-hacking, but much less than 

that caused by severe degrees of publication bias. Interactive online application 2 allows 

interested researchers to simulate the effects of even more severe p-hacking.  

A critic may go further and object that researchers will even p-hack studies to 

significance when they originally showed mean differences in the unexpected direction. We 

argue that it is unlikely that this happens on a large scale. There will be both statistical and 

moral boundaries that prevent researchers from going this far. Even if it is technically 

possible in some cases, such behavior would more adequately be labeled fraud and data 

fabrication rather than p-hacking, and even pessimistic estimates have identified such 

misdeeds as very rare (John et al., 2012).  
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Alternatively, might researchers p-hack original findings that went in the “wrong” 

direction so that they become significant in this unexpected direction and later claim this 

result was expected (Nelson et al., 2018)? On the basis of individual studies, this may be 

possible. However, in taking the broader perspective of a cumulative literature, we deem this 

unlikely. Take studies on the contested stereotype threat effect as an example (Flore & 

Wicherts, 2015; Spencer, Logel, & Davies, 2016; Stoet & Geary, 2012). Any description of a 

study that was originally planned to examine stereotype threat will be identified as such with 

a decent probability. Any dependent variable included to indicate a stereotype threat effect 

will be difficult to defend as consistent with a priori assumptions if the result ends up going 

in the other direction. Dependent variables are selected for a purpose. We believe that in the 

long run, it is unlikely that just any effect on a dependent variable could be argued to be in 

line with a priori assumptions about a given phenomenon under investigation. After all, 

researchers do not only need to tell a coherent story across (potentially) several studies in a 

single manuscript, but their findings also have to be coherent over time with the authors’ 

other publications and the respective literature more generally.3    

Perhaps researchers regularly p-hack original findings that went in the “wrong” 

direction to force them to achieve significance and then come up with a new post hoc 

explanation that is void of any reference to the literature that was the starting point for the 

study (e.g., stereotype threat). Again, on the level of individual studies, this could 

conceivably happen (Kerr, 1998). However, on the level of a cumulative literature, this is 

more difficult to envision. If this process were to happen on a large scale, this would lead to 

highly diverse publication lists of researchers in terms of topics. According to this argument, 

(almost) every study that “did not work” would be used to tell a completely different story to 

                                                
3 Note that we have no stakes in the debate about stereotype threat and do not take any position here. This is 
only one of many examples for which this argument could be made.  
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avoid making reference to the initial research question. In reality, most researchers conduct 

research on a few focused areas rather than a wide variety of different research areas. This is 

an indirect indication that studies that “did not work” often end up in the file drawer rather 

than being p-hacked to just any publishable finding for addressing a randomly and a 

posteriori fitted research question.  

Finally, a critic may be concerned that if researchers p-hack, they will bring the p-

value down to even smaller levels than modeled here. Remember that in the present studies, 

p-hacked p-values lay between .049 and a minimum of .001 (a triangular distribution with the 

mode at .049). According to this distribution, the p-values are three times more likely to fall 

between .05 and .025 than between .025 and .001. The general notion that hacked p-values 

are more likely to fall just below p = .05 is generally accepted and engrained in common bias 

detection methods such as a p-curve analysis (Simonsohn et al., 2014a, 2014b). To examine 

the consequences of this particular distribution of p-hacked p-values, we ran sensitivity 

analyses. First, we re-ran the simulations with the same triangular distribution, but we set the 

lower end of the p-values to .000001 instead of .001. The results were nearly identical. 

Second, we changed the distribution of p-hacked p-values from a triangular distribution to 

two uniform distributions ranging from .05 to .025 and from .025 to .000001, and we made 

the first uniform distribution twice as prevalent as the second. Even under these very 

conservative assumptions, the changes in the results were practically negligible and did not 

affect the conclusions in any way. Taken together, the presented results are remarkably robust 

even when assuming that p-hacked studies are very often p-hacked to excessively low p-

values.  

Limitations 

In our simulations, we considered the effects of several different factors of influence 

that plausibly could have seriously affected the results of the study. This approach resulted in 
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a comprehensive set of findings. However, it is impossible to map every facet of reality. 

Modeling inevitably requires a reduction in complexity compared with reality. In the 

following, we discuss some plausible deviations from reality.  

One limitation of the present work was that it was based on the assumption that all 

studies are valid observations of real (null) effects. In reality, low-quality study designs and 

executions may lead to systematically or unsystematically biased estimates of true effects. 

The possibility of unsystematic bias was partially captured by heterogeneity as one factor of 

influence that introduced the possibility of more than one true effect in a given literature, but 

we did not explicitly model systematic bias (e.g., high-quality studies are more likely to 

reveal true effects). In a similar vein, some studies that we modeled as independent might in 

fact be partly dependent in reality, for example, because they were conducted in the same lab 

or drew participants from the same participant pool. As we explained in the discussion 

section on p-hacking, social factors more generally may contribute to the emergence of 

literatures with partly dependent studies. For example, if p-hacked studies appeared to 

elucidate an effect that in fact may not exist this may promote further studies on the effect 

that would likely not have been conducted had there been no p-hacking in the literature. 

These observations might not question the insights about the interplay of p-hacking and 

publication bias revealed by the present study, but they highlight that some literatures 

plagued by p-hacked false positives might never accumulate and be meta-analyzed if p-

hacking could be effectively prevented.  

A second limitation is that our results may be contingent on the assumption that the 

probability that “failed” studies will be published is independent of effect size. This 

assumption could be challenged. For example, it is reasonable to expect that studies that are 

significant in the opposite direction from what was predicted may be easier to publish than 

studies that found no difference whatsoever between conditions (Ioannidis & Trikalinos, 
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2005). The solutions to this problem mentioned earlier, such as registered reports or editors 

asking for additional studies, are focused on decoupling the probability of publication from 

the results, thereby ameliorating this problem. 

Third, we assumed that the probability that nonsignificant studies will be published is 

independent of sample size. This assumption may be challenged on the basis of the argument 

that large nonsignificant studies may have a higher probability of getting published than 

small nonsignificant studies because researchers have greater incentives to publish studies in 

which they invested many (as compared with little) resources.  

Finally, we operationalized p-hacking essentially as lowering an originally non-

significant p-value to significance. However, how exactly researchers may end up with 

polished results that initially did not look as promising is not fully understood and could also 

entail processes not captured by our operationalization of p-hacking. For example, if multiple 

outcomes are assessed in a study, but only a subset of these is reported this does not fit our 

operationalization of p-hacking.  

Mild forms of outcome selection, say, some researchers selecting from two or three 

outcomes, may be covered by the more extreme settings of the “danger zone” influence 

factor. With these settings, p-values shift from up to 0.8 to below 0.05. We may 

conceptualize the initial p-value as some average of multiple outcomes, while the final p-

value stems only from a subset of outcomes. When outcome switching is more extreme, say, 

a substantial percentage of researchers consistently selected a small number of outcomes 

from an originally large number of outcomes, this go beyond the conceptual boundaries of 

our simulation. In this case, suppression of evidence in a literature would be so widespread 

that we would be hesitant to place the phenomenon under the conceptual umbrella of p-

hacking. In fact, it would rather be a form of publication bias on the level of outcomes: Some 

outcomes are lost to the file drawer, others are reported. In a possible next step, should the 
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selected original p-values not be significant, they may undergo one or several treatments that 

let it drop under p = .05 as is assumed in the current study (e.g, by transformation of 

variables, recoding or exclusion of outliers etc.). Future studies may want to add selective 

reporting of outcomes as an additional separate step in the simulations that determines which 

outcomes (and their p-values) then undergo p-hacking in the way operationalized here and 

examine the consequences on meta-analytic effect size biases as a function of the number of 

assessed and selected outcomes. 

Conclusion  

Meta-analysis is an essential tool for scientific progress that is considered more 

trustworthy and robust against various biasing influences than individual studies (Gurevitch 

et al., 2018). However, the validity of meta-analyses is threatened by systematic sources of 

error. The present study highlighted how p-hacking and publication bias can interact to bias 

meta-analytic effect size estimates under a large number of circumstances. In recent years, 

the increase in false-positive findings due to p-hacking and, in turn, ways to prevent p-

hacking have rightfully received considerable attention. The present results highlight that in 

order to increase the trustworthiness of psychological science, the reduction of publication 

bias also needs to become a primary objective. Otherwise researchers would run the risk of 

drawing vastly incorrect conclusions from bodies of evidence. Such a trend would have 

significant implications for theories, the robustness of practical interventions, the allocation 

of resources in both research and practice, and, last but not least, trust in our discipline.  
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Figure 1. Funnel plots of 1,000 hypothetical studies with a true underlying effect size of zero. 

The outer dotted lines indicate the triangular region within which 95% of studies are expected 

to fall in the absence of p-hacking, publication bias, and heterogeneity. Effect sizes (Cohen’s 

d) are represented on the x-axis. Precision (SEd) is represented on the y-axis. The dashed red 

line indicates the left border of the p-hacking danger zone. Studies that fall between the 

dashed red line and the right border of the funnel are “in danger of being p-hacked.” The 

probability that a study that is in danger of being p-hacked is indeed p-hacked is indicated by 

color, such that the yellow colored studies are hacked with a probability of 0.3 and the red 

colored studies are hacked with a probability of 0.7. In Panel A, the probability of p-hacking 

is depicted for illustrative purposes only. In Panel B, the studies that are in danger have 

actually been hacked according to their assigned probability. Thus, most of the red studies 

but only a few of the yellow studies have been hacked. 
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A – Default Settings B - Danger Zone 

   
C - True Effect Size D - Heterogeneity 

   
E – Typical Sample Size F – Publication Probability 
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Figure 2. Results of the full simulation. Figure 2A displays the results of the default 

configuration. The settings for this configuration are d = 0.2, τ = 0.2, and danger zone = .4/.6. 

Typical sample sizes per condition were drawn from the standard distribution. The default 

probability of the publication of significant studies was .9. The thin horizontal black line 

represents the null effect. The dotted black line represents the true effect. The curved solid 

line represents the estimated biased effect dest at a p-hacking probability of 0. The curved 

dashed/dotted line represents the estimated biased effect dest at a p-hacking probability of 0.4. 

The curved dashed line represents the estimated biased effect dest at a p-hacking probability 

of 0.8. Figures 2B-2F display results when the five factors of influence were systematically 

varied. For these figures, all default settings were used and only the respective factor was 

varied. Different colors indicate different levels of the factors as described in the legend 

below each figure. Solid lines always indicate a p-hacking probability of zero, whereas 

dashed lines always indicate a p-hacking probability of 0.8. Hacking probabilities of 0.4 are 

not depicted. 
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Figure S1. Density estimators of the sample size distributions (factor of influence 4, typical 

sample sizes). Per-cell sample sizes for the simulation of each study were drawn from one of 

the depicted distributions. Measures of central tendency are M = 32.6, Mdn = 29 for Small, M 

= 42.6, Mdn = 39 for Standard, and M = 72.6, Mdn = 69 for Large.
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Figure S2. Additional bias due to p-hacking and its interaction with publication bias at 

different levels of publication bias. The y-axis depicts the change in the estimated effect size 

when the average nominal p-hacking probability is raised from 0 to 0.8. The x-axis depicts 

levels of publication bias, indicated by the percentage of non-significant or negative studies 

removed from the simulated set of studies. All influence factors are set to the default values.  
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Figure S3. Additional bias due to p-hacking and its interaction with publication bias at 

different levels of publication bias. The y-axis depicts the change in the estimated effect size 

when the average nominal p-hacking probability is raised from 0 to 0.8. The x-axis depicts 

levels of publication bias, indicated by the percentage of non-significant or negative studies 

removed from the simulated set of studies. All influence factors are set to the default values, 

except that the danger zone is set to .6/.8 instead of .4/.6 (see Figure S1).  
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Figure S4. Additional bias due to p-hacking and its interaction with publication bias at 

different levels of publication bias. The y-axis depicts the change in the estimated effect size 

when the average nominal p-hacking probability is raised from 0 to 0.8. The x-axis depicts 

levels of publication bias, indicated by the percentage of non-significant or negative studies 

removed from the simulated set of studies. All influence factors are set to the default values, 

except that the true effect size is set to d = 0 instead of d = 0.20 (see Figure S1).  
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Figure S5. Results of the full simulation for default settings with true effect size d = 0.2 (left 

column, taken from Figure 2) and d = 0 (right column). The thin horizontal black line 

represents the null effect. The dotted black line represents the true effect (only left column). 

The curved solid lines represent the estimated biased effect dest at a p-hacking probability of 

0. The curved dashed lines represent the estimated biased effect dest at a p-hacking probability 

of 0.8. Figures S5A-D display results when the remaining four influence factors are 

systematically varied. For these figures, all default settings were used, the respective factor 

was varied, and the true effect was either set to d = 0.2 (left column) or d = 0 (right column). 

Different colors indicate different levels of the factors, as described in the legend below each 

figure.  
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A – Default Settings B - Danger Zone 

   
C - True Effect Size D - Heterogeneity 

   
E – Typical Sample Size F – Publication Probability 

   
 

Figure S6. Results of the full simulation for the number of studies as main outcome variable. 

Figure S6A displays the results of the default configuration. The settings are identical to 
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Figure 2. The thin horizontal black line represents the null effect. The dotted black line 

represents the true effect. The curved solid line represents the number of studies k at a p-

hacking probability of 0. The curved dashed line represents the number of studies k at a p-

hacking probability of 0.8. Figures S6B-S6F display results when the five factors of influence 

are systematically varied. For these figures, all default settings were used and only the 

respective factor was varied. Different colors indicate different levels of the factors, as 

described in the legend below each figure. Solid lines always indicate a p-hacking probability 

of zero, dashed lines indicate a p-hacking probability of 0.8. 
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A – Default Settings B - Danger Zone 

   
C - True Effect Size D - Heterogeneity 

   
E – Typical Sample Size F – Publication Probability 
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Figure S7. Results of the full simulation for standard errors as the main outcome variable. 

Figure S7A displays the results of the default configuration. The settings are identical to 

Figure 2. The thin horizontal black line represents the null effect. The dotted black line 

represents the true effect. The curved solid line represents the number of studies k at a p-

hacking probability of 0. The curved dashed line represents the number of studies k at a p-

hacking probability of 0.8. Figures S7B-S7F display results when the five factors of influence 

are systematically varied. For these figures, all default settings were used and only the 

respective factor was varied. Different colors indicate different levels of the factors, as 

described in the legend below each figure. Solid lines always indicate a p-hacking probability 

of zero, dashed lines indicate a p-hacking probability of 0.8. 

 


