

Lucas Niedner, Guido Kickelbick*

Saarland University, Inorganic Solid-State Chemistry, Saarbrücken, Germany

Introduction

- > Janus particles (in reference to the roman god Janus: god of duality) are anisotropic particles whose hemispheres are composed of different materials or differ in their chemical or physical properties^[1,2]
- > The particles can be classified according to their composition (organic-organic, inorganic-inorganic, inorganic-organic)
- > Janus particles reveal high interfacial activity and pronounced self-assembly behaviour
- > A variety of application exists for Janus particles: catalysis, biomedical imaging, non-molecular surfactants, nanomotors, display devices and functional textiles^[1,2]
- > The synthesis of these particulate systems must usually occur at interfaces that allow chemical

Janus-Modification in Pickering emulsions

In Pickering emulsions, the emulsified droplets get stabilized by micro- or nanoparticles located at

discrimination of the hemispheres

Titania nanoparticles

- > Synthesis of surfactant-free titania nanoparticles by an acidic sol-gel process, using either aq. HCl or aq. HNO₃ as $acid^{[4]}$
- Synthesis at different pH values (1,5 or 2,5) to obtain different

build stable particles dispersions in water, whereby particles tend to agglomerate

- the shows mainly Brookite (50-60 of (5-Anatase and 35 wt%) phases
- > For particles synthesised at pH 2,5 up to 40 wt% amorphous phase is obtained

titania spectra

- the liquid-liquid boundary
- By choosing coupling agents that bind quickly to the surface, particle rotation is prevented \succ
- > Separation of hydrophilic and hydrophobic reaction compartment allows a differentiating reaction Various Janus balances: between the surface areas
- Both particle hemispheres can be modified simultaneously
- Concept can be applied to metal and metal oxide particles
- > Janus balance is determined by the wettability of the core particle

UNIVERSITÄT

SAARLANDES

DES

Phosphonic acids as surfactants

Fig. 4: FTIR spectra of modified titania.

- \succ The covalent attachment of the phosphonic acids is confirmed by FTIR, CHN, and solid-state NMR
- > For modification with two different phosphonic acids both acids can be identified by FTIR

HNO₃ using aq. reveals remaining NO₃⁺ ions adsorbed to the particles surface

Isotropic ionic modified titania particles

ole	2:	Isoelectric	points	of		
erent modified titania particles.						

	IEP	
TiO ₂ (unmodified)	4,75	
$N(CH_3)_3^+$ @TiO ₂	5,41	
SO_{3}^{-} @ TiO ₂	2,23	
Br@TiO ₂	3,97	

 \succ ζ -potential titrations reveal the ionic character of titania modified with ⁻Br ⁺N(CH₃)₃C₆H₁₂PO₃H₂

and HSO₃C₆H₁₂PO₃H₂ over a wide pH range

> To assembly their invest behaviour particles were deposit various surfaceon functionalized silicon wafers \succ -SO₃@TiO₂ shows poor

CHN after treatment of the particles with NaOH and at various pH values demonstrates a stable HCI attachment over a wide pH range

Table 1: Amount of phosphonic acid at the particles surface in
 mmol*g⁻¹ for isotropic modified particles by TGA and CHN.

	5 nm	78 nm
$N(CH_3)_3^+@TiO_2$	0,4	0,8
SO ₃ ⁻ @TiO ₂	0,4	0,7
Br@TiO ₂	1,2	1,2

Janus evidence by switching contact angle

Fig. 8: Alternated deposition of NMe_3^+ @TiO₂ and $-SO_3$ @TiO₂ on glas substrates as model system.⁽⁶⁾

Fig. 7: Deposition of ionic modified titania on various modified silicon wafers.

unmodified adsorption on wafers, whereby adsorbs it homogeneously on cationic modified wafers

 \succ +NMe₃@TiO₂ shows opposing

behaviour

Fig. 9: Water contact angle on glass slides depending on the immersion cycle in suspensions of ionic Janus-particles.

> Layer-by-Layer deposition of ionic-apolar modified Janus particles on glass substrates

 \succ Changing surface wettability from apolar to polar after 30 dipping cycles demonstrates the Janus character

References

> Synthesis of titania nanoparticles and phosphonic acids with apolar and ionic functional groups

Conclusion

- \succ ζ -Potential titrations show pH stable ionic charges at the particles surface
- > The ionic particles were successfully deposit on silicon substrates depending on the modification of the substrate's surface
- > Changing wettability of glass substrates after deposition of the particles provide first evidence of their Janus-character

[1] A. Walther and A. H. E. Müller, *Chem. Rev.*, 2013, **113**, 5194–5261. [2] N. Müller, C. Heinrich, K. Abersfelder and G. Kickelbick, Chem unserer Zeit, 2016, 50, 392–399. [3] C. Casagrande, P. Fabre, E. Raphaël and M. Veyssié, *Europhys Lett.*, 1989, 9, 251–255. [4] M. Raza, A. Bachinger, N. Zahn and G. Kickelbick, *Materials*, 2014, **7**, 2890–2912. [5] N. Zahn and G. Kickelbick, Colloids Surfaces A Physicochem. Eng. Asp., 2014, 461, 142–150. [6] C. Heinrich, L. Niedner, B. Oberhausen and G. Kickelbick, Langmuir, 2019, 35, 11369–11379.