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Introduction Janus-Modification Iin Pickering emulsions

> Janus particles (in reference to the roman god Janus: god of duality) are anisotropic particles whose

hemispheres are composed of different materials or differ in their chemical or physical properties!]

» The particles can be classified/according to their composition (organic-organic, inorganic-inorganic,

Inorganic-organic)

» Janus particles reveal high interfacial activity and pronounced self-assembly behaviour

> A variety of application exists for Janus particles: catalysis, biomedical imaging, non-molecular

surfactants, nanomotors, display devices and functional textiles!’ ]

> The synthesis of these particulate systems must usually occur at interfaces that allow chemical 3 | pickering emulsions, the emulsified droplets get stabilized by micro- or nanoparticles located at

discrimination of the hemispheres

the liquid-liquid boundary

. : : » By choosing coupling agents that bind quickly to the surface, particle rotation is prevented
Titania nanoparticles ! I FOHPING 29 e P
» Separation of hydrophilic and hydrophobic reaction compartment allows a differentiating reaction
» Synthesis of surfactant-free titania nanoparticles by an acidic between the surface areas Various Janus balances:

) SR idl4]
o, sol-gel process, using either ag. HCl or aq. HNO; as acid > Both particle hemispheres can be modified simultaneously

> Synthesis at different pH values (1,5 or 2,5) to obtain different

» Concept can be applied to metal and metal oxide particles
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Table 1: Amount of phosphonic acid at the particles surface in

$——— e mmol*g™' for isotropic modified particles by TGA and CHN.

Carbon content [wt. %]
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> Synthesis of titania nanoparticles and phosphonic acids with apolar and ionic functional groups
> (-Potential titrations show pH stable ionic charges at the particles surface

> The ionic particles were successfully deposit on silicon substrates depending on the modification
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of the substrate’s surface

» Changing wettability of glass substrates after deposition of the particles provide first evidence of

their Janus-character



