Mechanochemical activation of metal oxides – Synthesis, modification, and application of manganese oxides

Tobias Benjamin Straub, Guido Kickelbick*

Saarland University, Inorganic Solid State Chemistry, Saarbrücken, Germany

Introduction

Manganese oxides are promising energy storage materials and catalysts.^[1-3] An important representative of this group is α -Mn₃O₄, which crystallizes in the spinel structure (space group 14,1/amd) and exhibits a Jahn-Teller distortion of the Mn³⁺ (d⁴) ions.^[4] Another important manganese oxide is MnO₂ which has a rutile structure ($P4_2/mnm$).^[5] We have already shown that the mechanochemical activation of metal oxides has a strong influence on the crystallite sizes and the defect concentration.^[6] Both properties can lead to changes in the reactivity of the oxides, e.g., their intercalation chemistry for lithium or sodium ions. For example, Li intercalation is drastically enhanced in mechanochemically prepared Mn_3O_4 compared to samples synthesized under conventional high-temperature conditions.^[7] In this study, we

Results and Discussion

Fig.1: Diffraction patterns (a) and crystallite sizes (b) of Mn_3O_4 milled at 400 rpm for different time lengths. The ball to powder ratio hereby was 23:1. The purple lines indicate the hkls of Mn_3O_4 (ICSD) #167411). The crystallite size was determined by Rietveld refinement.

a)

The diffractograms of the mechanochemical activated Mn₃O₄ do not show any phase transitions, only a broadening of the reflections can be observed due to the reduction of the crystallite size during the grinding process.

b) c) d)

Defect Formation in Manganese Oxides through High Energy Ball Milling

$$2Mn_{Mn}^{X} + O_{O}^{X} \xrightarrow{A_{r}} 2Mn_{Mn}^{'} + V_{O}^{\bullet\bullet} + \frac{1}{2}O_{2}^{\uparrow}$$

Fig.4: Pressure and temperature profile during grinding of MnO_2 (a): consisting of 4 cycles of 6 hours of grinding at 400 rpm and 99 minutes pause and Mn_3O_4 (b): 2 cycles consisting of 12 hours of grinding at 400 rpm and 1 minute pause. The temperature-dependent pressure increase was considered.

Grinding of MnO₂ leads to the formation of up to 10% oxygen defects, in contrast to the grinding of Mn_3O_4 .

Effect of Surface Functionalization of Mn₃O₄ on Crystallite Size

Fig.3: Phase portion (a) of lithiated Mn_3O_4 depending on different milling times and time of lithiation. Phase portion (b) of lithiated Mn_3O_4 depending on different rotational speeds at a constant time (10 min) and duration of lithiation. Lithiation was performed with 2.5 equivalents n-butyllithium. The phase portion of $LiMn_3O_4$ was determined by Rietveld refinement.

Hebm can facilitate the lithiation of Mn_3O_4 . Mechanochemical activation of coarse grained Mn₃O₄ with a rotational speed of 400 rpm or more leads to faster lithiation behavior already at short milling times. Long milling times or low rotation speed (200 rpm) lead to a reduced phase fraction of LiMn₃O₄.

Acknowledgment

We would like to thank Mana Abdirahman Mohamed for the SEM images and GradUS global for the financial support.

International Ph.D. Research at Saarland University

Conclusions

amounts of PPA (black curve).

phase transformation or formation of by-products are observed during the No mechanochemical activation of the two manganese oxides, only the reduction of the crystallite size is visible. By pressure and temperature in situ measurements during the grinding of MnO₂, the formation of oxygen vacancies can only be observed. Short mechanochemical activation of Mn_3O_4 produced via high temperature synthesis at sufficient speed facilitates its lithiation. Extended milling times or small rotational speeds lead to less lithium intercalation in Mn_3O_4 .

[1] Dong, R.; Ye, Q.; Kuang, L.; Lu, X.; Zhang, Y.; Zhang, X.; Tan, G.; Wen, Y.; Wang, F. Enhanced Supercapacitor Performance of Mn₃O₄ Nanocrystals by Doping Transition-Metal lons. ACS Appl. Mater. Interfaces. 2013, 5 (19), 9508-9516. DOI: 10.1021/am402257y.

[2] Wang, J.; Du, N.; Wu, H.; Zhang, H.; Yu, J.; Yang, D. Order-aligned Mn₃O₄ nanostructures as super high-rate electrodes for rechargeable lithium-ion batteries. *J. Power Sources* **2013**, 222, 32-37. DOI: 10.1016/j.jpowsour.2012.08.056.

[3] Tompsett, D. A.; Parker, S. C.; Islam, M. S. Rutile (β-)MnO₂ Surfaces and Vacancy Formation for High Electrochemical and Catalytic Performance. Journal of the American Chemical Society 2014, 136 (4), 1418-1426. DOI: 10.1021/ja4092962.

[4] Jarosch, D. Crystal-Structure Refinement and Reflectance Measurements of Hausmannite, Mn₃O₄. *Miner. Petrol.* **1987**, 37 (1), 15-23. DOI: Doi 10.1007/Bf01163155.

[5] Grundy, A. N.; Hallstedt, B.; Gauckler, L. J. Assessment of the Mn-O system. J. Phase Equilib. 2003, 24 (1), 21-39. DOI: 10.1007/s11669-003-0004-6.

[6] Betke, A.; Kickelbick, G. Important reaction parameters in the synthesis of phenylphosphonic acid functionalized titania particles by reactive milling. New J. Chem. 2014, 38, 1264-1270. DOI: 10.1039/C3NJ01291C.

[7] Becker, D.; Klos, M.; Kickelbick, G. Mechanochemical synthesis of Mn₃O₄ nanocrystals and their lithium intercalation capability. *Inorg. Chem.* 2019, 58, 15021-15024. DOI: 10.1021/acs.inorgchem.9b02429.