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Preface

These notes are based on my course in the Summer Semester 2014 at the University
of Bonn.

The notes will grow non-linearly during the course. That means two things: first,
I will try and update the material weekly as the course goes on, but the material
will not be in 1-1 correspondence with what is actually said in the course. Second,
it is quite possible that chapters will simultaneously grow. I try to be pedagogical,
and introduce new concepts only when/if needed.

Many thanks to Nikolaos Tsakanikas for reading these notes carefully and for
making many useful suggestions.






Chapter 1

The Minimal Model Program

In this chapter I will first introduce the classification procedure of algebraic varieties.
I try to convince you that the classification criterion is natural and I give several
motivations which lead to the same goal. From this point of view, it turns out that
the classification criterion is necessarily the one explained in these notes — in other
words, even if you try to come up with a different criterion, it will likely not be
giving you anything better.

I always work over the field C of complex numbers; however everything in this
course holds for any algebraically closed field k.

1.1 Motivation

1.1.1 Curves and surfaces

The classification of curves is classical and was done in the 19th century. The rough
classification is according to the genus of a smooth projective curve.

The situation with surfaces is already more complicated. If we start with a
smooth projective surface, and want our classification procedure to simplify it in
tangible ways, we would therefore want some basic invariants, like the Picard num-
ber, to be as minimal as possible. To this end, recall that if 7: Y — X is a blow up of
a point on a smooth surface X, then the exceptional divisor £ C Y is a (—1)-curve,
that is £ ~ P! and E? = —1. The starting point of the classification of surfaces is
if we start with a (—1)-curve on Y, we can invert the blowup construction:

Theorem 1.1 (Castelnuovo contraction, [Har77, Theorem V.5.7]). Let Y be a non-
singular projective surface containing a (—1)-curve E. Then there exists a birational
morphism f:Y — X to a smooth projective surface X such that E is contracted to
a point, and moreover, f is a blowup of X at f(E).
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Now it is easy to see how the classification works in dimension 2. Once we have
resolved singularities of our surface, we ask whether the surface obtained has a (—1)-
curve. If not, we have our relatively minimal model. If yes, then we use Castelnuovo
contraction to contract a (—1)-curve. We repeat the process for the new surface.
The process is finite since after each step, the rank of the Néron-Severi group drops,
as well as the second Betti number.

Note however, that the criterion ”does X have a (—1)-curve” does not have a
meaningful generalisation to higher dimensions. Also, it is not clear that it gives
the right notion — in other words, it is not obvious that this is an intrinsic notion
of X with special implications on the geometry of X. However, note that, by the
adjunction formula, E is a (—1)-curve on X if and only if £ ~ P! and Kx - F < 0.
Therefore, if X has a (—1)-curve, then its canonical class cannot be nef.

There are three cases for the relatively minimal model X. First, if Kx is nef,
then a further fine classification gives that it is actually semiample, hence it defines
a fibration X — Z, and we can further analyse X with the aid of this map. In this
case, we also say that X is the (absolute) minimal model. If Kx is not nef, then
one can show that either there exists a morphism ¢: X — Z to a smooth projective
curve Z such that X is a P-bundle over Z via ¢, or X ~ P2, In these last two cases,
one says that X is a Mori fibre space. This gives the following hard dichotomy for
surfaces: the end product of the classification is either a minimal model (unique up
to isomorphism) if kK(X) > 0 or a Mori fibre space if k(X) = —cc.

1.1.2 Higher dimensions

One of the ingenious insights of Mori was introducing a new criterion for determining
whether a variety X is a minimal model:

Is Kx nef?

There are many reasons why this is a meaningful question to pose. First, it
makes sense by analogy with surfaces. Second, on a random (smooth, projective)
variety X it is usually very hard to find any useful divisors, especially those which
carry essential information about the geometry of X — the only obvious candidate
is Kx, by its very construction.

Further, in an ideal situation we would have that Kx is ample — indeed, this
would mean that some multiple of Kx itself gives an embedding into a projective
space, and that it enjoys many nice numerical and cohomological properties. There-
fore, assume that Ky is pseudoeffective. Then, a reasonable question to pose is:

Is there a birational map f: X --+Y such that the divisor f,Kx is ample?
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Here the map f should not be just any birational map, but a birational contraction
— in other words, f~! should not contract divisors. This is an important condition
since the variety Y should be in almost every way simpler than X; in particular, some
of its main invariants, such as the Picard number, should not increase. Likewise,
we would like to have Ky = f,Kx, and this will almost never happen if f extracts
divisors (take, for instance, an inverse of almost any blowup).

Further, we impose that f should preserve sections of all positive multiples of
K. This is also important, since global sections are something we definitely want
to keep track of, if we want the divisor Ky = f,Kx to bear any connection with
Kx. Another way to state this is as follows. Consider the canonical ring of X:

R(X,Kx) = P H°(X,mKx).

meN

Then we require that f induces an isomorphism between R(X, Kx) and R(Y, Ky).
We immediately see that the answer to the question above is in general “no”
the condition would imply that Kx is a big divisor. In fact, and perhaps surprisingly,

the converse is true by the following theorem of Reid [Rei8(0, Proposition 1.2]:

Theorem 1.2. Let X be a smooth variety of general type, and assume that the
canonical ring R(X, Kx) is finitely generated. Denote Y = Proj R(X, Kx), and let
p: X --» Y be the associated map. Then ¢ is a birational contraction and Ky 1is
ample.

Proof. To start with, recall that by [Bou89, I11.1.2], there exists a positive integer
d such that R(X,dKx) is generated by H*(X, Ox(dKx)). Let (p,q): W - X x Y
be the resolution of the linear system |dKx|: in other words, W is smooth, and the
movable part of the linear system p*|dK x| is basepoint free. To obtain this, we first
apply [Har77, Example 11.7.17.3], and then Hironaka’s resolution of singularities.

W
pl\
X--f-_y

For each positive integer m, denote by M,, and F,, the movable part and the fixed
part of p*(mdKx), respectively. Then the fact that R(X,dKx) is generated by
H°(X,Ox(dKx)) implies that M,, = mM; and F,, = mF; for all m, and it is easy
to see that the map ¢ is just the semiample (Ilitaka) fibration associated to M.
Moreover, by passing to a multiple, we may assume without loss of generality that
the map ¢ is actually the morphism associated to the linear system |M;|. Then
Ow (M) = ¢*Oy (1) for a very ample line bundle Oy (1) on Y.
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Denote n = dim X, and let ' be a component of F;. To show that ¢ is
a contraction, we need to show that I' is contracted by ¢, or equivalently, that
R(a(T), Oyry(m)) < O(mn=2).
Since Ow (M,,) = ¢*Oy(m) and the natural map Oyry — ¢.Or is injective, we
have
h*(q(T), Oyry(m)) < h°(q(T), Oy (m) ® ¢.0r) = h(T, Op(M;n)).  (1.1)

There exists effective Cartier divisors GT and G~ on I such that Op(T") ~ Op(G* —
G~). Consider the exact sequences
0— H(T, My|r — G™) = HYT, My,|r) — H°(G™, My|a-) (1.2)
and
0— H'(W, M,,) = H' (W, M,, +T) — H*(T, (M,, +T)|r) = H* (W, M,,). (1.3)

Since F,, = mFy, the divisor I' is a component of F,,, hence the first map in (1.3])
is an isomorphism and the last map in (1.3 is an injection. Therefore, from (|1.1J),

and we have
ho(q(l—‘), Oq(F)(m)) S hO(Fa Mm|F) S ho(ra Mm|F - G_) + hO(G_a Mm|G*)
< RKUT, (M, +)|p) + h°(G~, Myn|e-) < YW, M,,) + hY(G™, My, |6-).

As dim G~ = n—2, we have h°(G~, M,,|¢-) < O(m™ %), hence it is enough to show
that h!'(W, M,,) < O(m™2). To this end, from the Leray spectral sequence

HP(Y, R'?q, 0w (M,,)) = H'(W, Ox(M,,))

we have
B, M) < BO(Y, RAq, O (M) + b (Y, 0.0 (M,0).

The terms h'(Y, ¢.Ow (M,,)) = h*(Y, Oy (m)) vanish for m > 0 by Serre vanishing,
so we need to prove

R(Y, R'q,Ow (M,,)) < O(m"?). (1.4)
Let U C Y be the maximal open subset over which ¢ is an isomorphism. By
[Har77, T11.11.2], for each m the sheaf R'q.Oy (M,,) is supported on the set Y \ U
of dimension at most n — 2, hence x(Y, R'q.Ow (M,,)) < O(m™2?). But by Serre
vanishing again,

vanish for m > 0 and all 7 > 0, and this implies .

Finally, to see that Ky is ample, let Xy be an open subset of X and let Y, be
an open subset of Y such that codimy (Y \ Yy) > 2 such that Y, is smooth and
©|x,: Xo — Yp is an isomorphism. Then it is clear that Kx, = (¢|x,)"(Ky,), and
since Ox, (dKx,) = (¢|x,) Oy, (1), the divisor Ky is ample by Hartogs principle. [
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We now return to the question we posed above, and see if we can modify it to
something more probable. We can settle for something weaker, but still sufficient for
our purposes: we require that the divisor Ky is semiample. This then still produces
an litaka fibration g: ¥ — Z and an ample divisor A such that Ky = ¢g*A, and
the composite map X --» Z, which is now not necessarily birational, gives an
isomorphism of section rings R(X, Kx) and R(Z,A). In particular, this would
imply that the canonical ring R(X, Kx) is finitely generated. This would clearly be
astonishing: we would be able to construct a projective variety Z = Proj R(X, Kx).
In fact, the wish that the canonical ring is finitely generated predates the modern
Minimal Model Program, and goes back to the seminal work of Zariski [Zar62]:

Conjecture 1.3. Let X be a smooth projective variety. Then the canonical ring
R(X, Kx) is finitely generated.

This conjecture gives another justification for the abovementioned wishful think-
ing. It was proved by Mumford on surfaces (in the appendix to the same paper of
Zariski), and in general in [BCHM10, [CL12].

Historically, by the influence of the classification of surfaces on the way we think
about higher dimensional classification, this splits into two problems: finding a bi-
rational map f: X --» Y such that the divisor Ky = f,Kx is nef; and then proving
that the nef divisor Ky is semiample. This last part — the Abundance conjecture —
is one of main open problems in higher dimensional geometry, in dimensions at least
4. We know it holds in dimensions up to 3 [Miy88b, Miy88al [Kaw92|, and when the
canonical divisor is big [Kaw84], but very little is known in general.

Thus, hopefully by now it is clear that the main classification criterion is whether
the canonical divisor Ky is nef. If Kx is nef, we are done, at least with the first part
of the programme above. Life gets much tougher, but also much more interesting
when the answer is no.

1.1.3 The Cone and Contraction theorems

Indeed, let NE(X) € N;(X)g denote the closure of the cone spanned by the numer-
ical classes of effective curves; note that the nef cone Nef(X) is dual to NE(X) by
Nakai’s criterion, with respect to the intersection pairing. Since Ky is not nef, the
hyperplane

Ky ={CeN(X)r|Kx-C=0} CN(X)g

must cut the cone NE(X) into two parts; let us denote the two pieces by NE(X ), >0
and I\E(X Jkx<0- Then the celebrated Cone theorem of Mori tells that the negative
part NE(X) g, <o is locally rational polyhedral. More precisely:



Theorem 1.4. Let X be a smooth projective variety. Then there exist countably
many extremal rays R; of the cone NE(X) such that Kx - R; <0 and

NE(X) = NE(X)g, >0+ Y _ Ri.

Moreover, for every ample Q-divisor H on X, there exist finitely many such rays R
with . .
NE(X) = NE(X)sey 150 + 3 R

In particular, the rays R; are discrete in the half-space NE(X) gy <o-

Recall that an extremal ray R of a closed convex cone C, in the sense of convex
geometry, is a linear subset of C satisfying the following condition: if u +v € R for
u,v € C, then necessarily u,v € R. Note that in the theorem, the second statement
implies the first, by letting H — 0, and it implies that the rays R; can accumulate
only on the hyperplane K5. This is the standard formulation, and the proof can be
found in any treatise of the subject. We will prove an analogue of this statement a
bit later in the course.

There is an additional statement that we can contract any of the extremal rays
R; — this is the Contraction theorem of Kawamata and Shokurov.

Theorem 1.5. With the notation from Theorem fix any of the rays R = R;.
Then there exists a morphism with connected fibres

contg: X =Y

to a normal projective variety Y such that a curve is contracted by contg if and only
if its class lies in R.

The importance of the Contraction theorem is two-fold. First, it is clear that
such a contraction has to be defined by a basepoint free divisor L with L - R = 0;
in general, it is very difficult to show the existence of a single non-trivial non-ample
basepoint free divisor on a variety — the conclusion that there are many of them is
clearly astonishing.

Second, we want to eventually end up with a variety on which the canonical
divisor is nef, i.e. it has no extremal rays as above. We therefore hope that by
contracting some of the rays we can make the situation better. We will see below
that this is not necessarily the case, at least not immediately. However, I will argue
that life indeed gets better, at least if we choose carefully which rays to contract.

1.1.4 Contractions in the MMP

Let us go back to the procedure in the Minimal Model Program. The Cone and
Contraction theorems tell us that that if we pick a K x-negative extremal ray R, we



can contract it to obtain another normal projective variety Y, and we hope that it
shares many of the properties of X that we started with, for instance Q-factoriality.
Here the situation branches into three distinct cases.

Assume first that dimY < dim X. Then it can be shown that Y is Q-factorial,
that its singularities are manageable in a sense which I will define later, and note
that the general fibre of conty is a Fano variety. Then we declare our procedure
finished — varieties of this form can then be studied via the general fibre and the
base Y, and indeed they form a well studied class called Mori fibre spaces, like in
the surface case.

Assume next that the map contg is birational, and that the exceptional set of
the map contg contains a prime divisor E. Then, in fact, we will prove later that
we have Exc(contg) = E, and moreover, Y is also Q-factorial. In this case, we say
that contg is a divisorial contraction. A drawback is that Y is no longer necessarily
smooth, but still it has singularities which are very close to the smooth case, and we
can continue our programme on Y. However, something changed for the better: the
Picard number dropped by 1 since we contracted the divisor F; our variety became
simpler.

Assume next that the exceptional set of the map contg does not contain a prime
divisor, i.e. that we have codimyx Exc(contg) > 2. In this case, we say that contg
is a flipping contraction. This situation is bad: not only do we have that Y is not
Q-factorial, but even Ky = (contg).Ky is not a Q-Cartier divisor. Indeed, since
contp is an isomorphism in codimension 1, we have Kx = conty Ky. If C'is a curve
contracted by contg, then Kx - C < 0, and by the projection formula this equals
Ky - (contg).C' = 0, a contradiction.

The great insight of Mori, Reid and others is this. Note that the divisor Kx is
anti-ample with respect to the map contg, and the result that we want to end up
with in the end should give the canonical divisor which is nef. Thus, it is a natural
thing to try to construct at least a birational map X+ — Y which “turns the sign”
of all curves contracted by contg; in other words, it “flips” them. Therefore, we
would like to have a diagram:

X---f_ Xt
COIA A;
Y

such that X is Q-factorial and Kx+ is ample with respect to cont}.

This diagram, or just the map ¢, is called the flip of contg. Since, by our
requirements, the map ¢ should not extract divisors, the morphism cont} is also an
isomorphism in codimension 1. It is then not too difficult, but crucial, to show that



the existence of the diagram is equivalent to the fact that the relative canonical ring

R(X/Y,Kx) = P (conty),Ox (nKx)

neN

is finitely generated as a sheaf of algebras over (contg).Ox = Oy, and moreover,
then X = Projy, R(X/Y, Kx); this is proved in exactly the same way as Theorem
[1.2] Tt immediately follows from the Cone theorem that X* is Q-factorial and that
the Picard number of X is the same as that of X.

Figure 1.1: Minimal Model Programme in higher dimensions

The flip as above is by now proved to exist in any dimension. The first proof for
threefolds was given by Mori in [Mor8§|, and in general in [BCHMI0].

Thus, the variety X has all the desired features similar to X, so we continue
the procedure with X T instead of X (again, as in the case of divisorial contractions,
we lose smoothness, but we are all right if we slightly enlarge our category). Un-
fortunately, it is not easy to find an invariant of varieties which behaves well under
flips; the only such example currently exists on threefolds. It is, therefore, a crucial
problem to find a sequence of divisorial contractions and flips which terminates.

To summarise, our classification procedure — the Minimal Model Program — looks
like the algorithm in Figure (1.1

1.1.5 Pairs and their singularities

It has become clear in the last several decades that sometimes varieties are not the
right objects to look at — often, it is much more convenient to look at pairs (X, A),
where X is a normal projective variety and A is a Weil Q-divisor on X such that
Kx + A is Q-Cartier. There are plenty of reasons for looking at these objects: they
obviously generalise the concept of a (Q-Gorenstein) variety (by taking A = 0),
they are closely related to open varieties X \ Supp A. For us, there are other, more
practical reasons why it seems essential to consider this enlarged setting: it is logical
that the proofs should go by induction on the dimension, and if one wants to use
adjunction formula, one has to consider pairs. Finally, consider a minimal model X
and a morphism ¢: X — Z given as the litaka fibration of the semiample divisor
Kx. When Ky is not big, it is in general hopeless to expect that Kx ~q ¢* Ky as
in Theorem [I.2] However, it can be shown that there exists an effective Q-divisor
A on Z such that the pair has nice properties (in the sense explained a bit below)
and such that Kx ~g ¢*(Kz + A), cf. [Amb05].
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Valuations. Before we see what a good notion of a pair is, we make a brief detour
to define geometric valuations on the field of rational functions k(X) of a normal
projective variety X.

Let X be a variety. A prime divisor over X is any prime divisor F on a proper
birational model f: Y — X, where Y is a normal variety. If n € Y is the generic
point of £, the local ring Oy, C k(X) is a discrete valuation ring which corresponds
to the valuation multy given by the order of vanishing of an element ¢ € k(X). We
call such a valuation on k(X) a geometric valuation. Note that the transcendence
degree of the residue field k(n) over C is dim X — 1. This gives a valuation on
the set Divg(X) of R-Cartier divisors on X by setting multy D := multg f*D for
D € Divg(X). Similarly, if we have a linear system |D|, then

multg |D| = inf{multg D' | D’ € |D|}.

If bpj € k(X) is the ideal sheaf of the base locus of |D|, we set multgbp =
inf{multg f | f € bp}; it is clear that multy bjp| = multg |D|. It is easy to see that
multy bjp| = multg @, where the last ideal is the integral closure of the base ideal
inside of k(X).

Let f: Y — X be another birational morphism and let £ C Y’ be a prime
divisor. Then we have multgy = multg if and only if the induced birational map
Y --» Y’ is an isomorphism at the generic points of £ and E’. Therefore, the
discrepancies a(F, X, A) (defined below) depend only on the valuation multz and
not on the choice of the birational model f. We often do not distinguish between
the valuation multg and a particular choice of the divisor E. And similarly for the
set cx(E) = f(E) C X, the centre of the valuation E on X.

Given a valuation F, it is an important question whether E can be reached from
X by a sequence of blowups. The following result of Zariski shows precisely that.

Lemma 1.6. Let X be a proper variety over a field k. Let R be a DVR of k(X) with
the maximal ideal m, and such that trdeg(R/m : k) = dim X — 1. Let Y = Spec R,
let y € Y be its unique closed point and let f: Y — X be the birational morphism
given by the valuative criterion of properness. Define a sequence of varieties and
maps as follows: set Xo =X, fo=f. If f;: Y — X, is already defined, let Z; C X;
be the closure of the point x; = fi(y), let X;11 be the blowup of X; at Z;, and
let fiv1:Y — X;11 be the birational morphism given by the valuative criterion of
properness. Then f, induces an isomorphism Ox, 5. ~ R for some n > 0.

Recall that a valuation v on R is given by v(g) = max{s € Z | g € m*} for
g € k(X)\ {0}. In our case, R = Oy,, and Z, = cx(F). Hence, the lemma says
that we can reach a valuation by repeatedly blowing up its centre. The proof can
be found in [KM98, Lemma 2.45].
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When working with questions where finite generation of rings is involved, it
is necessary to think about not only the linear system associated to a divisor D,
but also to that of all of its multiples. Hence, fix a geometric valuation I' over an
algebraic variety X. If D is an effective Q-Cartier divisor, then the asymptotic order
of vanishing of D along I is

or(D) = inf{multyr D' | D ~g D" > 0},

or equivalently,
1
or(D) = inf % multr |k D)|

over all k sufficiently divisible. It is straightforward to see that each or is a homo-
geneous function of degree 1, that

OF(D + D/) S 0F<D) + OF(D,)
for every two effective Q-divisors D and D’, and that
or (A) =0

for every semiample divisor A.

Singularities of pairs. Now assume we are given a pair (X, A), andlet f: Y — X
be a log resolution of the pair, i.e. f is a projective birational morphism such that
Y is smooth, the set Exc f is a divisor, and the support of the divisor Exc f U f*A
has simple normal crossings. Then it is easy to see that there exists a Q-divisor R
on Y such that

Ky = f"(Kx +A)+ R.

The divisor R is supported on the proper transform of A and on the exceptional
divisors of f. For every prime divisor E on Y, we denote the coefficient of £ in R
by a(E, X, A), called the discrepancy of E with respect to the pair (X,A), and set
d(X,A) = inf{a(E, X,A)}, where the infimum is over all prime divisors lying on
some birational model Y — X. It is easy to see that d(X,A) < 1.

We want to see how one can effectively calculate the divisor R. We claim that
there is the following dichotomy: either d(X,A) > —1, or d(X,A) = —oo. To see
this, we first need a preparatory lemma, the proof is an exercise.

Lemma 1.7. Let X be a smooth variety and let A = > 6;A; be a Q-divisor on X.
Let Z be a closed subvariety of X of codimension k. Let m:Y — X be the blow up
of Z and let E C'Y be the irreducible component of the exceptional divisor which
dominates Z. Then

a(B, X, A)=k—1-— Z(gimultZAi.
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Now, to see the claim, let E be a divisor on a birational model Y — X such that
a(E, X,A) = —1 — ¢ for some ¢ > 0. By taking a log resolution, we may assume
that Y is smooth, and that the divisor Ay = f*(Ky + A) — Ky has simple normal
crossings. Then it is easy to see that a(F, X, A) = a(F,Y,Ay) for every prime
divisor on a birational model over X. Let Zy C Y be a closed set of codimension 2
which is contained in E but not in any other f-exceptional divisor or in f_!A, and let
71 : Y1 — Y be the blowup of Zy with exceptional divisor Fy. Then a(Fy, X, A) = —¢
by the previous lemma. Now for every m > 2, let Z,,_1 C Y,,,_1 be the intersection
of E,,_1 and the proper transform of £ on Y,, 1, and let =m,,: Y,, — Y,,_1 be the
blowup of Y, ; along Z,, ;. Then again the discrepancy calculation shows that
a(Ep,, X, A) = —me, hence 7711_:5%0 a(Ep, X, A) = —o0.

This shows that there is a clear cut between pairs which satisfy d(X,A) > —1
and other pairs. It is possible to write down an example of a pair with d(X, A) < —1
such that the canonical ring is not finitely generated, hence no reasonable definition
of the Minimal Model Program can run for (X,A). Hence, we have to restrict
ourselves to pairs with d(X,A) > —1, in which case we say that the pair (X, A) has
log canonical singularities, or just that it is log canonical. This is the largest class
where the Minimal Model Program can be possibly expected to work. However, we
are in good company here: we can view smooth varieties X as pairs (X,0), and
they are definitely log canonical — moreover, we have d(X,0) > 0 by the classical
ramification formula.

However, in this course, we will restrict ourselves to a subclass of pairs with kit
singularities: they are precisely pairs with d(X,A) > —1. The reason is purely
practical — the experience in the Minimal Model Program shows that these varieties
behave much better than pairs with d(X, A) = —1, and we simply know many more
results for klt pairs than for log canonical pairs in general. It is also useful to note
that it can be shown the klt condition can be shown on only one log resolution
Y — X and not on all - this is an easy consequence of Lemma [1.6| and is left as an
exercise.

A good way to think about klt pairs is to assume from the start that X is smooth,
that Supp A has simple normal crossings, and that all coefficients of A lie in the
open interval (0,1). It is a fun exercise to prove that such a pair indeed has klt
singularities.

Also of importance for us is that this is an open condition, in the following sense.
Say you have at hand a klt pair (X, A) with X being Q-factorial, and that you have
an effective Q-divisor D on X. Then for all rational 0 < ¢ < 1, the pair (X, A+¢eD)
is again klt. This is easy to see from the definition.

Therefore, divisors of the form Ky + A are of special importance for us, and they
are called adjoint divisors. Now we set up the Minimal Model Program in the case
of pairs in exactly the same way as before, replacing Kx by Kx + A everywhere.

13



We will below construct the special version of this procedure when the pair (X, A)
is klt and the divisor A is big.

Generalisations of Zariski’s conjecture. The generalised Zariski’s conjecture
says that the (log) canonical ring

R(X,Kx +A) = @ H (X, m(Kx + A))

meN

of a log canonical pair (X, A) is finitely generated. When the pair at hand is klt,
this is now a theorem [BCHMIO, [CL12].

A note on the notation above. If X is a normal projective variety with the field
of rational functions k(X), and D is a Q-divisor on X, then we define the global
sections of D by

H(X,D)={f € k(X) |divf+ D >0}

Note that, even though D might not be an integral divisor, this makes perfect sense,
and that H°(X, D) = H°(X, | D|), where the latter H" is the vector space of global
sections of the standard divisorial sheaf Ox(|D]). This is compatible with taking
sums: in other words, there is a well-defined multiplication map

HY(X, D) ® H*(X, Dy) = H°(X, Dy + Dy).

Now, if we are given a bunch of Q-divisors Dq,..., D, on X, we can define the
corresponding N"-graded divisorial ring as

R=RX;Dy,....D,)= P H(X,mDi+-+n,D,).

When r = 1, this generalises the standard notion of the section ring R(X, D;). A
special case of the divisorial ring above is when all D; are (multiples of) adjoint
divisors — we then say that the ring R is an adjoint ring.

The following lemma summarises the main tools when operating with finite gen-
eration of divisorial rings. The proof can be found in [ADHLI10].

Lemma 1.8. Let X be a Q-factorial projective variety, and let Dy, ..., D, be Q-
divisors on X.

(1) If p1,...,pr € Q, then the ring R(X;p1D1,...,p.D,) is finitely generated if
and only if the ring R(X; Dy, ..., D,) is finitely generated.

(2) Let Gy,...,Gy be Q-divisors such that G; € Y R, D; for all i. If the ring
R(X; Dy, ..., D,) is finitely generated, then the ring R(X; Gy, ..., Gy) is finitely
generated.
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Now we are ready to state the most important example of a finitely generated
divisorial ring.

Theorem 1.9. Let X be a Q-factorial projective variety, and let Ay, ..., A, be big
Q-divisors such that all pairs (X, A;) are klt.
Then the adjoint ring

R(X;Kx +Ay,...,Kx +A,)
is finitely generated.

This was first proved in [BCHM10] by employing the full machinery of the classi-
cal MMP: the idea is to prove that a certain version of the Minimal Model Program
works, and then to deduce the finite generation as a consequence of the generalised
Zariski’s conjecture above. The rough sketch is as follows. By taking a log reso-
lution, we may assume that X is smooth and the support of the divisor »_ A; has
simple normal crossings. Let m be a positive integer such that D; = m(Kx + A;) is
integral for every i, let &€ = @;_, Ox(D;), and let Y = P(E). Then it is easy to see
that for every nonnegative integer k we have

H(Y,Oy(k)) = H'(X,8"¢)= & H(X,mDi+ - +n,D,),

ni+--+nr==k

hence the divisorial ring above is isomorphic to R(Y, Oy (1)). Now a bit more work
shows that there is a divisor Ay on Y such that (Y, Ay) is klt, and we are done by
Lemma [.8

However, of importance for us in this course is that Theorem can be proved
without the Minimal Model Program, and this was done in [Laz09, [CL12]. We will
prove it later in the course. In this chapter, we will see how Theorem implies all
the known results in the Minimal Model Program in a rather quick way.

1.2 Proof of the Cone and Contraction theorems

We will derive the Cone and Contraction theorems for klt pairs from Theorem [I.9
We first need some preparation.

1.2.1 Valuations and divisorial rings

Let X be a normal projective variety and let Dq,..., D, be Q-Cartier Q-divisors
on X. Consider the divisorial ring R = R(X; Ds,...,D,) as above. Then we have
a corresponding cone C = Y R, D; which sits in the space of R-divisors Divg(X).
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Inside C, there is another, much more important cone — the support of . This
cone, Supp R, is defined as the convex hull of all integral divisors D € C which have
sections, i.e. H°(X, D) # 0.

Now we have all the theory needed to state the result which gives us the main
relation between finite generation and the behaviour of linear systems.

Theorem 1.10. Let X be a normal projective variety, and let Dy, ..., D, be Q-
Cartier Q-divisors on X. Assume that the ring R = R(X;Dy,...,D,) is finitely
generated. Then:

(1) SuppfR is a rational polyhedral cone,

(2) if SuppR contains a big divisor, then all pseudo-effective divisors in > R, D;
are in fact effective,

(3) there is a finite rational polyhedral subdivision SuppR = |JC; into cones of
mazimal dimension, such that or is linear on C; for every geometric valuation
I' over X,

(4) there exists a positive integer k such that op(kD) = multy |kD| for every inte-
gral divisor D € Supp R and every geometric valuation I' over D.

Proof. For (1), pick generators f; of R, and let E; € > R, D; be the divisors such
that f; € H°(X, E;). Then clearly SuppR = > R, F;.

For (2), fix a big divisor B in Supp R, and let D € Y R, D; be a pseudoeffective
divisor. Observe that every divisor in the interval (D, B] is big, hence (D, B] C
Supp R. But then [D, B] C Supp R since Supp R is closed by (1).

We extract the proofs of (3) and (4) verbatim from the proof of [ELM™06, The-
orem 4.1]. Consider the system of ideals (bn)n=(n1,....n,)enr, Where by, is the base
ideal of the linear system |nyD; + ...n,.D,|. This is a finitely generated system of
ideals, so by [ELMT06, Proposition 4.7] there is a rational polyhedral subdivision
R’, = |JD; and a positive integer d such that for every i, if €!, ..., ¢’ are generators
of N"ND;, then

R Dj
bde pj€; Hj bdeé-

for every (p1,...,ps) € N®. Since a valuation of an ideal is equal to that of its
integral closure, we deduce that for every geometric valuation I' of X, or is linear
on each of the cones C; = Supp RN D;, and we can take k = d. O

A simple, but as we will see important consequence is the following.

Lemma 1.11. Let X be a normal projective variety and let D be an effective Q-
Cartier Q-divisor on X. Then D is semiample if and only if R(X, D) is finitely
generated and or(D) = 0 for all geometric valuations I' over X.
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The proof is very simple: if D is semiample, then the statement is classical.
Conversely, for every point x € X, Theorem [1.10] implies that x does not belong to
the base locus of the linear system |mD| for m sufficiently divisible.

As a demonstration of the previous two results, we will see immediately how
inside the cone Supp fR, all the cones that we can imagine behave nicely. As we will
see, the following is effectively the proof of Mori’s Cone theorem [CL13| [KKLI12].

Proposition 1.12. Let X be a normal projective variety, and let D+, ..., D, be Q-
Cartier Q-divisors on X. Assume that the ring R = R(X;Dy,...,D,) is finitely
generated, and denote by m: Divg(X) — NY(X)r the natural projection. Assume
that Supp R contains an ample divisor. Then the cone SuppR N 7! (Nef(X)) 18
rational polyhedral, and every element of this cone is semiample.

Proof. Let SuppR = |JC; be a finite rational polyhedral subdivision as in Theo-
rem [1.10] and let I" be a prime divisor over X. If the relative interior of C, contains
an ample divisor, then or|¢, = 0 for every I since or is a linear non-negative function
on C;. Hence, every element of C; is semiample by Lemmas and and so
C, C SuppR N7~ (Nef(X)). Therefore, the cone Supp R N7~ (Nef(X)) is equal
to the union of some C;, which suffices. O]

I next state the result which contains both the Cone and Contraction theorems.
The new statement lives in N'(X)r and, by duality, involves the nef cone. This
formulation has been known for a long time, and origins go back at least to [Kaw88].
However, it has only recently been realised [CL13, Theorem 4.2] that this statement
is much easier to prove than Theorems|1.4]and once we have right tools at hand.

Theorem 1.13. Let (X, A) be a projective kit pair such that Kx + A is not nef.
Let V' be the visible boundary of Nef(X) from the class k = [Kx + A] € NY(X)g:

V = {6 € ONef(X) | [1,0] N Nef(X) = {5} }.
Then:

(1) every compact subset F' which belongs to the relative interior of V', is contained
in a union of finitely many supporting rational hyperplanes of Nef(X),

(2) every Cartier divisor on X whose class belongs to the relative interior of V' is
semiample.
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Proof. The proof is almost by picture. Note first that since Kx + A is not nef, the
class k is not in Nef(X). The set V is then precisely the points that x “sees” on
Nef(X).

Since F' is compact, we can pick finitely many rational points wy,...,w, €
N1(X)g very close to F, such that F is contained in the convex hull of these points.
Then it is obvious that F' belongs to the boundary of the cone Nef(X) N> R, w;,
hence it is enough to show that this cone is rational polyhedral.

Note that since each w; is very close to F', and F' belongs to the relative interior
of V, the line containing x and w; will intersect the ample cone. Therefore, there
are rational ample classes «; and rational numbers ¢; € (0, 1) such that

U)j = tjfi + (1 — tj)Oéj.

For each j, choose an ample Q-divisor A; which represents the class 1;tj a; such

that the pair (X, A+ A;) is klt (use Bertini’s theorem). Then w; is the class of the
divisor ¢;(Kx + A + A;). By Theorem [1.9] the adjoint ring

R=R(X;Kx+A+A,....,Kx+A+A,)

is finitely generated. Denote by 7: Divg(X) — N!(X)r the natural projection.
Then
Nef(X) N ZReri C 7(Supp R)

by Theorem [I.10{2), and the conclusion follows by Proposition [L.12] O

It is an exercise(!) to show that the statement of this result is precisely dual
to the statement of the Cone theorem we saw before. It is now convenient to state
the following immediate corollary of Theorem the proof is analogous but easier
than that of the Cone and Contraction theorems.

Corollary 1.14. Let (X,A) be a projective klt pair where A is big. If Kx + A is
pseudoeffective, then it is effective. If Kx + A is nef, then it is semiample.

Proof. Let A be an ample Q-divisor on X such that the pair (X, A + A) is klt. By
Theorem [I.9] the ring

R=R(X;Kx+A Kx+A+A)

is finitely generated, and SuppR = Ry (Kx + A) + R, (Kx + A + A) by parts (1)
and (2) of Theorem [1.10] This immediately implies the first statement.

If Kx + A is nef, the divisor Ky + A + ¢A is ample for each ¢ > 0, thus
or(Kx + A+ cA) = 0 for every geometric valuation I' of X. Therefore, all or are
identically zero on Supp R by Theorem M(B), and thus Kx + A is semiample by
Lemmas [[.8 and [[.T11 O
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1.3 Properties of contractions and the existence
of flips

In this section, we keep the notation from the proof of Theorem [1.13] By that proof,
the cone N = Supp R N 7~ ( Nef(X)) is rational polyhedral, and every element of
this cone is semiample. We pick any of its codimension 1 faces F. Then any line
bundle L in the relative interior of F gives a birational contraction f = fr: X — Y.
This map contracts the curves contained in the extremal ray R = 7(F)* C NE(X),
and only them. The next simple but very useful lemma tells us that the morphism
f does not depend on the choice of L.

Lemma 1.15. Let X, Y and Y’ be varieties and let m: X =Y and 7': X — Y’ be
proper morphisms. Assume that m,Ox = Oy and that @ contracts each fibre of .
Then there exists a morphism £:'Y — Y such that 7’ = o .

In particular, if T contracts every curve contracted by 7, then 7' factors through
.

Proof. Let Z be the image of the proper morphism ¢ = (7w, 7'): X — Y x Y’ and
let p: Z — Y and p': Z — Y’ be the two projections; note that 7 = p o 1) and
7’ = p’o1), and that p is proper. For any point y € Y, the fibre 77!(y) is contracted
by v by assumption, hence p~(y) = (7 '(y)) is a point. We have

Oy C p.0Oz C p,.Ox = m.0x = Oy,

which implies p,Oz = Oy, and hence p is an isomorphism. We set £ = p/ o p~L.
For the second statement, it is enough to show that every two points = and y in
a fibre F' of m can be connected by a curve lying in F'. To see this, note that F' is
connected. By first blowing up x and y in F', and taking a resolution of singularities,
we obtain a birational morphism f: F’ — F from a smooth projective scheme F’
and two prime divisors F and E’ on F’ such that f(FE) = {z} and f(E') = {y}.
If H is an irreducible very ample divisor on F’, then H intersects £ and E’, hence
f(H) is a connected prime divisor in F' containing x and y. We finish by induction
on the dimension. O

We start our analysis of the map f. First we note the following important
property, which says that over Y, the numerical and the linear equivalence of divisors
coincide.

Lemma 1.16. Let M be a Q-divisor on X such that M =; 0. Then M ~q f*My
for some Q-Cartier Q-divisor My on'Y .

Proof. First, note that for t = p(X) — 1, we can find Q-divisors B; = Kx + A+ A;,
i =1,...,t, in the relative interior of F such that M = >  \;B; for some nonzero
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rational numbers \;: indeed, by assumption, the set 7(F) spans the hyperplane in
N'(X)g which is orthogonal to R, hence the class of M belongs to this hyperplane,
and we pick B; so that their classes are suitable generators of that hyperplane. Note
that all B; are semiample by Theorem [1.13| Denote

1
Bi = >\_1(M - Zz‘22 )‘ZBZ')‘

Then B{ = Bj, hence B = Kx + A + A} for some ample Q-divisor A}, and

therefore Bj is semiample by Corollary Then by Lemma [1.15] the morphism

X — Proj R(X, BY) is, up to isomorphism, equal to f. By the definition of f, there

are ample Q-divisors A} and A; on Y such that B} ~q f*A)] and B; ~q f*A; for all

1. Therefore M ~Q f*My for My = )\1A/1 + 2222 >\1Az ]
The following is the main result of this section.

Theorem 1.17. Let the notation and assumptions be as above. Then:

(1) if dimY < dim X, then Y is Q-factorial,

(2) if f is birational and if the exceptional locus of f contains a divisor, then this
locus is a single prime divisor, and Y is Q-factorial,

(8) if f is an isomorphism in codimension 1, then there exists a diagram

such that ¢ is an isomorphism in codimension 1 which is not an isomorphism,
and Xt is Q-factorial. The divisor Kx+ + @, A is fT-ample.

We need the following important result in the proof of Theorem [I.17
Lemma 1.18 (Negativity lemma). Let f: X — Y be a proper birational morphism
between normal varieties. Let —D be an f-nef Q-Cartier Q-diwisor on X. Then D
18 effective if and only if f.D is.
Proof. The lemma is reduced to the surface case by cutting by dim X — 2 general

hyperplanes, and then it follows from the Hodge index theorem. The details are in
[KM98|, Lemma 3.39] or [Deb01, Lemma 7.19]. O

20



Proof of Theorem[1.17. We first show (1). Let P be a Weil divisor on Y and let
Yy C Y be the smooth locus. Let P’ C X be the closure of f~!(Pl|y,). Then P’ is
disjoint from the general fibre of f, hence P'-C = 0 for every curve contracted by f.
By Lemma [I.16] there exists a Q-Cartier Q-divisor D on Y such that P' ~q f*D,
and therefore P ~qg D.

To show (2), let E be an f-exceptional prime divisor on X. If £ - C > 0 for
some curve C' contracted by f, then E is f-nef since all curves contracted by f are
numerically proportional, but this contradicts Lemma Therefore, £ - C' < 0
for every curve C contracted by f, thus C' C E, and so the exceptional locus of f
equals F.

Let P be any Weil divisor on Y, and let P’ be its proper transform on X. Then
P’ is Q-Cartier, and since all the curves contracted by f belong to the extremal ray
R C NE(X), there exists a rational number « such that P’ =; aF. By Lemma[1.1]
there exists a Q-Cartier Q-divisor D on Y such that P’ ~qg aF + f*D. Pushing
forward this relation by f, we obtain that the divisor P ~q D is Q-Cartier.

Now we show (3). Let SuppR = | JC; be the decomposition as in the proof of
Theorem . Then there is a cone C; € W‘l(Nef (X )) of dimension dim Supp fR,
such that F is a face of C;. Let G be any Cartier divisor in the interior of Cj,
and let p: X --» X* = Proj R(X, @) be the birational map associated to G. We
claim that ¢ does not depend on the choice of G, and that there exists a morphism
ft: XT = Y asin (3). Assuming the claim, let us show how it completes the proof
of the theorem.

Supp R

To this end, note first that ¢ is a birational contraction by Theorem Since f
is an isomorphism in codimension 1, then so are ¢ and f*. Consider a Weil divisor
P on X, and let P’ be its proper transform on X. Since X is Q-factorial, the
divisor P’ is Q-Cartier. Since all the curves contracted by f belong to R, there
exists a rational number a such that P’ =; aG. By Lemma , there exists a
Q-Cartier Q-divisor D on Y such that P’ ~g aG' + f*D. By the definition of ¢, the
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divisor ¢,G is ample, hence Q-Cartier. Therefore, pushing forward this relation by
©, we obtain that the divisor

P ~g ap. G+ (f7)'D

is Q-Cartier. The fact that the divisor Kx+ + ¢,A is fT-ample follows similarly,
from the fact that ¢,G is an ample divisor and that Kx+ + ¢,A and ¢.G lie on the
same side of the plane supporting ¢.F (exercise!).

Finally, we prove the claim stated above. Theorem implies that we can find
a resolution §: X — X and a positive integer d such that Mob 6*(dD) is basepoint
free for every Cartier divisor D € Supp R. Denote M = Mob 6#*(dG). Then we have
the induced birational morphism : X 5 X *. which is just the Iitaka fibration
associated to M. We only show that the definition of ¢ does not depend on the
choice of G the existence of the diagram as in (3) follows similarly.

X
|

0
X--F---Xxt

Pick any other Cartier divisor G’ in the interior of the cone C;, and let ": X —
Proj R(X,G’) be the corresponding map. There exists a Cartier divisor G” in the
interior of C;, together with positive integers r, ', 7" such that

rG =r'G +r"'G".
Denoting M' = Mob 6*(dG") and M"” = Mob 6*(dG"), then we have
rM ="M +r"M" (1.5)

(since all functions or are linear on C;), and the divisors M, M’, M" are basepoint
free. For any curve C' on X contracted by ¥ we have M - C' = 0, hence equation
(1.5) implies M- C = 0, and so C'is contracted by . Reversing the roles of G and
G', we obtain that ¢ and v’ contract the same curves, therefore they are the same
map up to isomorphism. O]

Recall that in the case (1) of the theorem, the map f is a Mori fibre space; in
the case (2), the map f is a divisorial contraction; and in the case (3), the map ¢
or the corresponding diagram is the flip of f.

Finally, when the map f is birational, then the resulting variety also has klt sin-
gularities — this shows that we stay in the same category of pairs in our programme:

Lemma 1.19. Let the notation and assumptions be as in Theorem[1.17. Then:
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(1) if f is a divisorial contraction, then the pair (Y, f.A) is klt,
(2) if f is an isomorphism in codimension 1, then the pair (X1, ¢, A) is kit.

Proof. We only show (2), the proof of (1) is completely analogous. It suffices to prove
that for every geometric valuation E over X we have a(E, X, A) < a(E, X, A™),
where A1 = p,A.

Let (g,97): Z — X x X be the resolution of the rational map ¢ such that F is
a divisor on Z — apply [Har77, Example 11.7.17.3] and Lemma[l.6] Set h = fog =
ftogt. From the relations

Kz ~gg (Kx+A)+ Y a(B,X,A)- B

and
Kz ~g (97) (Kx+ + AN+ a(E, X, AY) - E

we obtain that the divisor H = > (a(E, X,A) — a(E,X*,AT)) - E is h-nef. Note
also that H is h-exceptional, since every prime divisor in its support is g-exceptional
or gT-exceptional. Then Lemma implies that —H is effective, which is what we
needed. O]

1.4 Termination of the MMP

The variety X, thus, has all the desired features similar to X, so we continue the
procedure with X instead of X. Unfortunately, it is not easy to find an invariant
of varieties which behaves well under flips; the only such example currently exists
on threefolds. It is, therefore, the crucial problem to find a sequence of divisorial
contractions and flips which terminates.

We know how to do this for a klt pair (X, A), where A is a big divisor, and this
was proved first in [BCHMI10]. Here, I give an argument from [CL13| — I hope to
convince you that it is not too difficult to deduce it as a consequence of Theorem
.9

Lemma 1.20. Let X and Y be Q-factorial projective varieties and let f: X --»Y
be a birational map which is an isomorphism in codimension one. Let C C Divg(X)
be a cone spanned by effective divisors and fix a geometric valuation I' of X. Then

the asymptotic order of vanishing or is linear on C if and only if it is linear on

Proof. For every rational D € C, write

VD = {DX —D ‘ D ~Q DX and DX 2 O} g DIVR<X)
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and
Wp ={Dy — f.D | f.D ~g Dy and Dy > 0} C Diva(Y).

Note that the elements of Vp and W are Q-linear combinations of principal divisors,
and we have the isomorphism f.|v,: Vp o~ Wp: indeed, let U C X and V C Y be
open subsets such that fiy: U — V is an isomorphism and codimy (Y \ V) > 2.
Then it is enough to show the claim by restricting to U and V', where it is obvious.
Similarly multr Px = multr f, Px for every Px € Vp. Therefore

or(D) —multr D = inf multyr Py = inf multr f,Px = op(f«D) — multr f, D,
PxeVp PxeVp

hence the function or(-) — or(fi(+)): C — R is equal to the linear map multp(-) —
multr f,(-). The claim now follows. ]

Theorem 1.21. Let (X, A) be a projective Q-factorial klt pair with A big. Then:

(1) if Kx + A is pseudoeffecive, there exists a sequence of (Kx + A)-divisorial
contractions and (Kx + A)-flips which terminates with a variety on which the
proper transform of Kx + A is semiample,

(2) if Kx+A is not pseudoeffective, there exists a sequence of (Kx +A)-divisorial
contractions and (Kx + A)-flips which terminates with a Mori fibre space.

Proof. Note that we may assume to start with that any sequence of birational con-
tractions starting from (X, A) is a sequence of flips, since in divisorial contractions
the Picard rank drops by one.

Denote by 7: Divg(X) — N'(X)g the natural projection. Similarly as in the
proof of Theorem [1.13] we choose ample Q-divisors Ay, ..., A,, such that all the
pairs (X, A+ A;) are klt, such that the cone 7( Y Ry (Kx + A+ 4;)) has dimension
p(X), and that this cone contains an ample class.

By Theorem [I.9] the ring

m:R(X;Kx+A,KX+A+A1,...,KX—|—A+Am)

is finitely generated, and denote C = SuppR. Let C = |J,;C; be the rational
polyhedral decomposition as in Theorem [1.10] Fix an ample divisor A such that if
the line ¢ passing through Ky + A and A intersects some codimension 1 face of a
cone C;, then ¢ intersects the relative interior of that face. Set

A=min{t e R| Kx + A +tAis nef }.

Then by construction, Kx + A + AA belongs to the relative interior of F.
As in Theorems and[L.17|we can construct a flip p: X --» X+ corresponding
to a birational contraction f: X — Y, which is an isomorphism in codimension 1,
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which in turn comes from a codimension 1 face F of the cone CN7w ! (Nef(X)) which
intersects the line £. By the proof of the cone theorem, we can assume that F is
also a face of some cone C;.

The map ¢ is an isomorphism in codimension 1, hence it induces isomorphisms
Divg(X) ~ Divg(X™) and

R~ RXT Kxr + 0 Kxv + @A+ @ AL Kxr + 0.0 + 0, AL).

The cone C* = ¢,C C Divg(X™) has a decomposition C* = J,;,+ C; as in Theorem
Lemma shows that we can assume that [ = It and CZ»+ = p,C;.

Recall that by Lemma [1.16], every L € F is the pullback of a Q-Cartier Q-divisor
on Y, hence ¢, L € Divg(X ™) is also the pullback of a Q-Cartier Q-divisor on Y.
In particular, the divisor ¢,L is again nef, but not ample. In other words, the
set . F belongs to the boundary of the cone Nef(X™). Note that the interiors of
the cones ¢, Nef(X) and Nef(X™) do not intersect, since otherwise ¢ would be an
isomorphism. Setting

M =min{t € R | Kx+ + ¢.A + tp. A is nef },

it is clear from the construction that AT < A and that Kx+ 4+ @.A + Ap,. A belongs
to the relative interior of a codimension 1 face of some cone C;r. Since there are only
finitely many such faces, this process must terminate.

There are two cases. When Kx + A is not pseudoeffecive, the process necessarily
stops with a Mori fibre space. If Kx + A is pseudoeffective, the process stops when
its proper transform becomes nef, and hence semiample by Corollary [I.14] ]

We finish by noting that this allows us to finish the MMP for all pairs of log
general type and for pairs which are not pseudoeffective:

Corollary 1.22. Let (X, A) be a projective Q-factorial klt pair such that Kx + A is
big. Then there exists a sequence of (Kx + A)-divisorial contractions and (Kx +A)-
flips which terminates with a variety on which the proper transform of Kx + A 1is
semiample.

Proof. By Kodaira’s trick, there exist an ample Q-divisor A and an effective Q-
divisor E such that Kx + A ~g A+ E. Setting A’ = A+e¢(A+ FE) for 0 < e < 1,
we have that A’ is a big divisor such that the pair (X, A’) is klt, and

Kx + A ~g (1+¢e)(Kx + A).

Therefore all (Kx + A)-extremal contractions are (K y + A’)-extremal contractions.
We conclude by Theorem [1.21] O
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Corollary 1.23. Let (X, A) be a projective Q-factorial klt pair such that Kx + A is
not pseudoeffective. Then there ezists a sequence of (K x +A)-divisorial contractions
and (Kx + A)-flips which terminates with a Mori fibre space.

Proof. Fix an ample divisor A on X. Then there exists 0 < p < 1 such that
Kx + A+ pA is also not pseudoeffective, thus all (Kx 4+ A)-extremal contractions
are (Kx 4+ A + pA)-extremal contractions. We conclude by Theorem [1.21] [
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Chapter 2

Finite generation of adjoint rings

2.1 The induction scheme

This chapter is devoted to the proof of Theorem The proof is very technical,
but as before, I try to convince you that the main idea is very natural.

We say that a pair (X, A) is log smooth is X is smooth and the support of A has
simple normal crossings. Our first observation is that in order to prove Theorem
[1.9] we can freely assume that everything in sight is log smooth. More precisely, we
concentrate on proving the following statement.

Theorem A. Let X be a smooth projective variety, and let Aq, ..., A, be Q-divisors
on X such that (X, 24;) is a log smooth pair and |A;] =0 for everyi=1,...,r. If
A is an ample Q-divisor on X, then the adjoint ring

RIX;Kx +A14+A, ..., Kx+A,+A)
is finitely generated.
Lemma 2.1. Theorem is equivalent to Theorem [A]

Proof. 1t is clear that Theorem implies Theorem [A] For the converse, by Ko-
daira’s trick there exist an ample Q-divisor H > 0 on X and effective divisors E;
such that A; ~¢ E; + H. Pick a rational number 0 < ¢ < 1, and set A = ¢H and
Al =(1—¢)A;+eE;. Then Kx + A; ~g Kx + A} + A, and the pair (X, A} + A) is
klt for every i since (X, A;) is kit and ¢ < 1. Let f: Y — X be a log resolution of
the pair (X, > A;). For each i, let T';; G; > 0 be Q-divisors on Y without common
components such that G; is f-exceptional and Ky +I'; = f*(Kx + A;) + G;. By
Hironaka’s theorem, we can find an f-exceptional Q-divisor F' > 0 on Y with arbi-
trarily small coefficients such that A’ = f*A — F' is ample, and therefore we may
assume that |I'; + F'| = 0 for all i. Then the ring

RY;Ky+T1+F+A,... ., Kx+T,+F+ A4
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is finitely generated by Theorem [A] hence the ring R(X; Kx + Ay, ..., Kx + A,) is
finitely generated by Lemma [1.8| [

At this point, it is convenient to define several polytopes in the space Divg(X).
Before we proceed, we make a small detour into stable base loci and real linear
systems. During a course of the proof, we will see that we cannot avoid working
with R-divisors.

Definition 2.2. Let X be a smooth projective variety. If D is an R-divisor on X,
we denote

Dlg ={D'>0|D~g D'} and B(D)= () SuppD,

D,E‘Dl]R
and we call B(D) the stable base locus of D. We set B(D) = X if |D|g = 0.
Lemma 2.3. Let X be a smooth projective variety.

(a) Let D be a Q-divisor on X. Then B(D) = (,Bs|qD| for all q sufficiently
divisible.

(b) Let Dy, ..., D, be Q-divisors on X such that the ring R = R(X; Dy, ..., D,) is
finitely generated and let D be an R-divisor in the cone Y R, D; C Divg(X).
Then D € SuppfR if and only if |D|g # 0.

Proof. To show (a), note that we have B(D) C () Bs[¢D|. To show the reverse
inclusion, fix a point x € X \ B(D). Then there exist an R-divisor F' > 0, real
numbers 71, ..., and rational functions fi,..., fr € k(X) such that F' = D +
Zle ri(fi) and x ¢ Supp F. Let W C Divg(X) be the subspace spanned by the
components of D and all (f;). Let Wy C W be the subspace of divisors R-linearly
equivalent to zero, and note that W, is a rational subspace of W. Consider the
quotient map m: W — W/W. Then the set {G € 7~ }(7(D)) | G > 0} is not empty
as it contains F', and it is cut out from W by rational hyperplanes. Thus, it contains
a Q-divisor D' > 0 such that D ~g D" and = ¢ Supp D'.

For (b), as above let F' > 0 be an R-divisor such that F' ~g D. Then there
exist real numbers 7q,...,7; and rational functions fi,..., fr € k(X) such that
F =D+ ridivf, and let W C Divg(X) be the finite dimensional subspace
based by the components of D, Dq,..., D, and all div f;. Let Wy C W be the
subspace of divisors R-linearly equivalent to zero, and consider the quotient map
m: W — W/W,. Then the set G = 7 1({G € W | G > 0})N>_RD; is nonempty as
it contains D, and it is cut out in Y RD; by rational hyperplanes. If D ¢ Supp R,
then since SuppfR is closed by Theorem M(l), there exists a rational divisor
D' ¢ SuppfR such that |D’|g # 0, which is a contradiction with (a). O
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Definition 2.4. Let (X, S+>_"_,S;) be a log smooth projective pair, where S and
all S; are distinct prime divisors, let V' = Y"F | RS; C Divg(X), and let A be a
Q-divisor on X. We define

LV)={B=68€V|0<b; <1 forall i},
EaV)={BeL(V)||Kx+ A+ Blg # 0},
BS(V)={BeL(V)|S¢B(Kx+S+A+B)}.

Several comments are in order. Note that the set £(V) is a rational polytope by
definition — indeed, it is just a hypercube in V. One of the principal inputs in the
proof of Theorem [1.9| will be to show that £4(V) and B5(V) are rational polytopes
when A is ample. The importance of B (V) will be discussed shortly. First we note
that Theorem [A| immediately implies that £4(V') is a rational polytope: indeed,
let Al to be the vertices of L(V), set A; = Al —¢|Al] for 0 < ¢ < 1, and let
A; = A+ ¢|Al]. Then the ring R = R(X;Kx + A1+ Ay,...,Kx + A, + A,) is
finitely generated by Theorem and SuppR =R, (Kx + A+ E4(V)). Hence we
have:

Theorem B. Let (X, " | S;) be a log smooth projective pair of dimension n, where
Si, ..., S, are distinct prime divisors. Let V ="  RS; C Divg(X), and let A be
an ample Q-divisor on X. Then E4(V') is a rational polytope.

We will, actually, in the course of the proof use Theorem B to derive Theorem
A. More precisely, we use Theorem A, to denote Theorem A in dimension n, and
similarly for other theorems. Then a rough scheme of the proof looks like this:

A, 1 +B,=A,, A, 1+B,.1=B,.

We will refine this induction scheme a little bit later. First we need the following
simple, but crucial example.

Definition 2.5. Let X be a smooth projective variety, let S be a smooth prime
divisor on X and let D be a Q-divisor on X. Fix n € H°(X,Ox(S)) such that
divn = 5. From the exact sequence

0 H(X,0x(LD] - 5)) % H(X,0x(|D))) = H(S,05(LD)))

we define resg H°(X, Ox (D)) = im(pg), and for 0 € H*(X,Ox(D)), denote o5 =
ps(o). Note that
ker(ps) = H'(X,Ox(D — S5)) -,

and that ress H°(X, Ox(D)) = 0 if and only if S C Bs || D]|.
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For Q-divisors Dy, ..., Dy, the restriction of R(X; D1,...,Dy) to S is the ring

ress R(X; Dy,...,Dy) = @ reSSHO(X,OX(n1D1+...+WD£)).

Note that resg R(X, D) = 0 if and only if S C B(D).

Example 2.6. Let (X,S + B) be a log smooth pair, where |[B| = 0 and S is a
prime divisor, and assume that there exists a positive rational number r such that
Kx +S+ B ~g rS. Then R(X,Kx + S + B) is finitely generated if and only if
resg R(X/Z, Kx + S + B) is finitely generated.

Indeed, the harder part is sufficiency, and by Lemma [1.8] it is enough to prove
that the ring R(X,S) is finitely generated. Again by Lemma we have that
ress R(X, S) is finitely generated, and let 64, . . ., 6, be some homogeneous generators
of resg R(X,S). Choose ©4,...,0, € R(X,S) such that ©;|s = §,. Let o5 €
HY(X,S) be a section such that diveg = S and let H = {0,,01,...,0,}. Then H
is the set of generators of R(X,S): indeed, let ¢ € R(X,S) be any homogeneous
section, say ¢ € HY(X,dS) for some d > 1. Then there exists a polynomial p €
C[Xq, ..., X,] such that ¢|s = p(bs,...,0,). From the exact sequence

0— H°X,(d—1)S) 2% H°(X,dS) — ress H*(X,dS) — 0

we get ¢ —p(O1,...,0,) = 0g-¢ for some ¢’ € H*(X, (d—1)S), hence we conclude
by descending induction on d.

Note that in this example, ress R(X, Kx + S + B) C R(S, Kg + Bls). If we
had equality instead of inclusion, we would conclude by induction that the ring
R(X.Kx + S + B) is finitely generated; however, this is almost never the case. The
second problem that we have to deal with in our proof of Theorem is that the
above condition Kx + S + B ~qg 7S also almost never happens; however, in the
context of the MMP, it occurs in a special situation called pl flips, which was used
to give the first proof of the existence of kit flips. This condition was useful for us
for two reasons: (a) the section og was immediately an element of R(X,S), and
(b) by “dividing by og¢” we again landed in R(X,S). We will have to deal with
both of these issues in the next section. However, the main idea is contained in this
example: in favourable circumstances, we do not have to know what the kernel of
the restriction map is — rather, it is enough to know the generators of the restriction,
and then we can chase the generators of the original ring by hand.

This example suggests the following result, whose role will be apparent from the
proof in the following section.

Theorem C. Let (X, S+ > " | S;) be a log smooth projective pair of dimension n,
where S and all S; are distinct prime divisors. Let V = Y7 RS; C Divg(X), let
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A be an ample Q-divisor on X, and let By, ..., By, € Es14(V) be Q-divisors. Then
the ring
ress RIX;Kx+S+Bi+A,..., Kx+S+ B, + A)

18 finitely generated.

Now, this result implies that the set B5 (V) is a rational polytope, in exactly the
same way as we showed above that Theorem A implies Theorem B. Therefore:

Theorem D. Let (X, S+ > " | S;) be a log smooth projective pair of dimension n,
where S and all S; are distinct prime divisors. Let V- =>""_  RS; C Divg(X) and
let A be an ample Q-divisor on X. Then B5(V) is a rational polytope.

Now we can give a refined version of the induction procedure in the proof. In
the next section we will show:

Theorem 2.7. Theorem B, and Theorem C,, imply Theorem A,,.

Then we concentrate on proving Theorems C,, and D,, — indeed, we will prove a
more general result which will yield both results almost at once. The induction step
here is:

Theorem 2.8. Theorem A,_1, Theorem B,,_1 and Theorem D,, imply Theorem C,,.
Theorem 2.9. Theorem A,_1 and Theorem B, _1 imply Theorem D,.
Finally, the last step is to show

Theorem 2.10. Theorem D,, implies Theorem B,,.

2.2 Proof of Theorem 2.7

In order to prove Theorem [2.7 we first need some additional definitions. The fol-
lowing generalises our previous definition of divisorial and adjoint rings.

Definition 2.11. Let X be a smooth projective variety and let S C Divg(X) be a
finitely generated monoid. Then

R(X,S8) = H'(X,0x(D))

DeS

is a divisorial S-graded ring. If Dy, ..., Dy are generators of §, then there is a natural
projection map R(X; Dy,...,Dy) — R(X,S). If D; ~q ki(Kx+A;), where A; >0
and k; € Q for every i, the algebra R(X,S) is an adjoint ring associated to S.

If C C Divg(X) is a rational polyhedral cone, we define the algebra R(X,C), an
adjoint ring associated to C, to be R(X,C N Div(X)).
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Note that here we used that by Gordan’s lemma [Ful93, Section 1.2, Proposition
1], the monoid C N Div(X) is finitely generated. The following lemma summarises
the basic properties of preservation of finite generation under natural operations on
the monoid S.

Definition 2.12. Let S C Z" be a finitely generated monoid and let R = @, ¢ R
be an S-graded algebra. If &’ C S is a finitely generated submonoid, then R’ =
D,cs Bs is a Veronese subring of R. If there exists a subgroup . C Z" of finite
index such that &' = SN L, then R’ is a Veronese subring of finite index of R.

Lemma 2.13. Let S C Z" be a finitely generated monoid and let R = @, s Ry be
an S-graded algebra. Let S8 C S be a finitely generated submonoid and let R =

69568’ RS'

(i) If R is finitely generated over Ry, then R’ is finitely generated over Ry.

(ii) If Ry is Noetherian, R' is a Veronese subring of finite index of R, and R’ is
finitely generated over Ry, then R is finitely generated over Ry.

(iii) Let s1,...,s, be generators of S, and consider the free monoid M = @;_, Ns;
with the natural projection m: M — S. Let M be the M-graded ring with
My, = Rymy for m € M. Then M s finitely generated if and only if R is
finitely generated.

Proof. See [ADHL10, Propositions 1.2.2, 1.2.4, 1.2.6]. H
Now we can prove Theorem [2.7]

Proof of Theorem[2.7].
Step 1. We first assume that there exist Q-divisors F; > 0 such that

(X, > (B + E)) is log smooth and Ky + A+ B; ~q F; for every i. (2.1)
We reduce the general case to this one at the end of the proof.

Let W be the subspace of Divg(X) spanned by the components of all B; and Fj},
and let Si,...,5, be the prime divisors in W. Denote by

the standard simplex, and for each 7 = (t1,...,tx) € T, set
k k
B,=> tB; and F,=)Y t;F;~p Kx+A+ B, (2.2)
i=1 i=1
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Denote
B={F,+B|7€T,0<BeW,B,+BecL(W)}CW,

and for every j =1,...,p, let
Bi={F.+B|7e€T,0<BeW,B,+BeL(W),S; C|B.-+B|]} CW.

Then B and B; are rational polytopes, and thus C = R B and C; = R, B, are rational
polyhedral cones. Denote S = CNDiv(X) and S; = C;NDiv(X). Then it is enough
to show that the ring R(X,S) is finitely generated: indeed, let d be a positive integer
such that F} = dF; are integral divisors for 7 = 1,... k. Pick divisors F ,..., F},
such that Fj, ..., F are generators of S. Then R(X;Fy,...,F!) is finitely gen-
erated by Lemma [2.13(iii), and so is R(X; F},...,F}) by Lemma [2.13(i). Finally,
Lemma [2.13(ii) implies that R(X; Fy, ..., Fy) is finitely generated, and therefore so
is RX;Kx+ A+ By,...,Kx + B+ Ag) by and by Lemma[1.§|

We prove that the ring R(X,S) is finitely generated in Step 3, but first we need
a claim.

Step 2. We claim that:

(i) C= U?:l Cja

(ii) there exists M > 0 such that the “width” of the cones C; in the half-plane
{d xS | Y@ > M} is bigger than 1; more precisely, there exists M > 0
such that, if ) a;5; € C; for some j and some «; € N with > «o; > M, then
Z OéiSi - Sj S C7

(iii) the ring resg, R(X,S;) is finitely generated for every j =1,...,p.

Note that (i) and (ii) are true by “looking at the picture”, and (iii) follows from
Theorem C,. Note that the picture shows the situation when we only have two
components S; and S5, and where our ring has rank 1, but in general the picture is
similar, just more complicated. We now give more details.

To see (i), fix G € C\{0}. Then, by definition of C, there exist 7 € 7,0 < B W
and r > 0 such that B, + B € L(W) and G = r(F; + B). Setting

A=max{t >1| B, +tB+ (t—1)F, € LIW)}
and B' = AB + (A — 1)F,, we have
AG =r(F, + B'),

and there exists jo such that S;, C | B, + B’|. Therefore G € Cj,, which proves (i).
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For (ii), denote by || - || the sup-norm on V. There exists ¢ > 0 such that
| Bi|]| <1 — ¢ for all i, and thus

|B-|| <1—¢ foranyTeT. (2.3)

Since the polytopes B; C W are compact, there is a positive constant C' such that
W] < C for any ¥ € |J}_, Bj, and denote M = pC'/e. For some j € {1,...,p}, let
G =Y a;S; € §; be such that > a; > M. Since p||G|| > > o, we have

M C

Gl = —=—.

D €
By definition of C; and of C', we may write G = rG’ with G’ € B;, ||G’|| < C and
r > 0. In particular,

Gl
G =

Furthermore, G' = F.+ B for some 7 € 7 and 0 < B € W such that B, +B € L(W)
and S; C | B, + B]. Therefore, by (2.3) and (2.4) we have

r

m | =

(2.4)

—_

mults;, B =1—multg, B, > ¢ > —,

<

and thus
G—Sj:T’(FT—i‘B—%Sj) EC.

Finally, to show (iii), fix j € {1,...,p}, and let { £y, ..., Ey} be aset of generators
of §;. Then, by definition of S; and by (2.2)), for every i = 1,...,¢, there exist
ki€ Qy, 7 € TNQ" and 0 < B; € W such that B,, + B; € L(W), S; C | B,, + Bi]
and

Denote B} = Kx + A+ B, + B;. Then the ring ress, R(X; EY, ..., E}) is finitely
generated by Theorem , and thus so is resg; R(X; E, ..., Ey) by Lemma . Since
there is the natural projection ress, R(X; E, ..., Ey) — resg; R(X,S;), this proves
the claim.

Step 3. Now we show how the claim shows that the ring R(X,S) is finitely generated.
The proof is similar to that from Example [2.6]

For every i = 1,...,p, let 0; € H°(X, Ox(S;)) be a section such that diveo; = S;.
Let R C R(X; S,...,Sp) be the ring spanned by R(X,S) and o4, ..., 0,, and note
that R is graded by > | NS;. By Lemma (i), it is enough to show that fR is
finitely generated.
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For any a = (a1, ...,a,) € N, denote D, = > «;S; and deg(a) = > «;, and for
a section ¢ € HY(X,Ox(D,)), set deg(c) = deg(a). By (ii), for each j = 1,...,p
there exists a finite set H; C R(X,S;) such that

resg; R(X,S;) is generated by the set {oys, | 0 € H;}. (2.5)

Since the vector space H*(X, Ox(D,,)) is finite-dimensional for every o € NP, there
is a finite set H C R such that

{o1,...,0p} UH U---UH, CH, (2.6)
and
H°(X,0x(D,)) CC[H] for every a € N’ with D, € S and deg(a) < M, (2.7)

where C[H] is the C-algebra generated by the elements of . Observe that C[H] C
R, and it suffices to show that R C C[H].

Let x € M. By definition of R, we may write x = ), O'i\l’i . ..a;,""ixi, where
xi € H'(X,0x(D,,)) for some D,, € S and \;; € N. Thus, it is enough to show
that x; € C[H], and after replacing y by x; we may assume that

x € H'(X,0x(D,)) forsome D,€S.

The proof is by induction on degy. If degx < M, then y € C[H] by (2.7). Now
assume deg x > M. Then there exists 1 < j < p such that D, € §;, and so by
and there are 6y,...,0, € H and a polynomial ¢ € C[Xy,...,X,] such that
Xis; = ¢(0uys;, - - -, 02s;). Therefore, from the exact sequence

0 — H(X,0x(Dy — Sj)) —% H(X,Ox(Dy)) — H°(S;,Os,(Ds))
we obtain
X —¢(0,...,0,)=0;-x forsome Y € H°(X,Ox(D,—S;)).

Note that D, — S; € S by (i), and since degy’ < degy, by induction we have
X' € C[H]. Therefore x =0, - X' + ¢(b1,...,0,) € C[H], and we are done.

This completes the proof under the additional assumption that (2.1)) holds.

Step 4. We finally prove the general case of the theorem — the goal is to reduce to the
case covered above. This is easy, but technical; we want to use Theorem B to reduce
to the case where the support of our ring is the whole cone Y R, (Kx+ A+ B;), and
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we also need to pass to a log resolution to make everything in sight simple normal
crossings. If you find this believable, I suggest you skip it in the first reading.

Let V' be the subspace of Divg(X) spanned by the components of all B;, let
P C V be the convex hull of all B;, and denote R = R (Kx + A+ P). Then, by
Lemma [2.13[(iii) it suffices to show that R(X,R) is finitely generated. By Theorem
B, Pe = PN Ea(V) is a rational polytope, and denote Rg = Ry (Kx + A+ Pe).
Since H°(X,Ox (D)) = 0 for every integral divisor D € R \ Reg, the ring R(X,R)
is finitely generated if and only if R(X,R¢) is.

By Gordan’s lemma, the monoid R¢ NDiv(X) is finitely generated, and let R; be
its generators for i = 1,...,¢. Then there exist p; € Q4 and P; € PN Divgy(X) such
that R; = p;(Kx + A+ P;). By construction, |P;] = 0 and there exist Q-divisors
G; > 0 such that

Kx +A+ P ~qG;
for all i. Let f: Y — X be a log resolution of (X7 > (P + GZ)) For every i,
there are Q-divisors C;, E; > 0 on Y with no common components such that E; is
f-exceptional and
Ky +C; = f*(Kx + P) + E..
Note that |C;] = 0, and denote FY = p;(f*G; + E;) > 0. Let H > 0 be an f-

exceptional Q-divisor on Y such that A° is ample and [C7] = 0 for all i, where
A° = f*A— H is ample and C; = C; + H, and denote D} = Ky + A° + C7. Then

piD; ~q f*R; + pi B ~q F.

This last relation implies two things: first, it follows from Steps 1-3 and by Lemma
that the adjoint ring R(Y; DY, ..., Dy) is finitely generated. Second, the ring
R(X;Ry,...,Ry) is then finitely generated by Lemma . Since there is the nat-
ural projection map R(X; Ry,...,R;)) — R(X,Rg), the ring R(X,R¢) is finitely
generated, and we are done. O]

2.3 Nakayama functions

We need several definitions and results from [Nak04]. We would like to find a
meaningful extension of the asymptotic valuations or that we defined before, to the
case of pseudo-effective divisors for which we do not necessarily know that they are
effective. The starting point is the following simple lemma.

Lemma 2.14. Let X be a Q-factorial projective variety, let A be an ample Q-divisor
on X, and let D and D' be two big Q-divisors on X such that D = D’. Let T be a
prime divisor on X. Then op(D) = op(D') and

or(D) = lsiﬂf)l or(D +¢€A).
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Proof. We first prove the second statement. Note that by Kodaira’s trick we can
write D ~qg dA + E for some rational 6 > 0 and an effective Q-divisor £. Therefore

(]_ + €>OF<D) = OF<D + g0 A + €E) S OF(D + 8514) + EOF(E) S OF(D> + €OF<E)7

and we obtain the claim by letting € | 0.
Now, fix an ample divisor A and a rational number € > 0. Since the divisor
D — D' + A is numerically equivalent to €A, and thus ample, we have

O[*(D + 514) = OF(D/ + (D — D/ + 814)) < OF(D/).

Letting € | 0 and applying the claim, we get or(D) < orp(D’). The reverse inequality
is analogous. O]

This motivates the following definition.

Definition 2.15. Let X be a smooth projective variety, let A be an ample Q-divisor,
and let I be a prime divisor. If D € Divg(X) is pseudo-effective, set

or(D) = lgiﬂ)l or(D +¢€A) and N,(D)=> ror(D)-T,

where the sum runs over all prime divisors I' on X.

Lemma 2.16. Let X be a smooth projective variety, let A be an ample R-divisor,
let D be a pseudo-effective R-divisor, and let T' be a prime divisor. Then or(D)
exists as a limit, it is independent of the choice of A, it depends only on the nu-
merical equivalence class of D, and or(D) = or(D) if D is big. The function or
is homogeneous of degree one, convexr and lower semi-continuous on the cone of
pseudo-effective divisors on X, and it is continuous on the cone of big divisors. For
every pseudo-effective R-divisor E we have op(D) = lg&)l or(D +¢E).

Furthermore, Ny(D) is an R-divisor on X, D — N, (D) is pseudo-effective, and
for any R-divisor 0 < F' < N, (D) we have N,(D — F) = N,(D) — F.

Proof. See [Nak04) §IIT.1]. O

Remark 2.17. Let X be a smooth projective variety, let D,, be a sequence of
pseudo-effective R-divisors which converge to an R-divisor D, and let I" be a prime
divisor on X. Then the sequence or(D,,) is bounded. Indeed, pick & > 0 such
that D — kI' is not pseudo-effective, and assume that or(D,,) > k for infinitely
many m. Then D,, — kI" is pseudo-effective for infinitely many m by Lemma [2.16],
a contradiction.
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Remark 2.18. Let X be a smooth projective variety, let D be a pseudo-effective R-
divisor, let A be an ample R-divisor, and let x € X\J..,Bs(D+eA). Let f: Y — X
be the blowup of X along z with the exceptional divisor E. Then og(f*D) = 0. To
see this, observe that E & Bs(f*D +ef*A), and thus og(f*D +cf*A) = 0. Letting
e — 0, we conclude by Lemma [2.16]

Lemma 2.19. Let X be a smooth projective variety, let D be a pseudo-effective R-
divisor, and let A be an ample Q-divisor. If D # N,(D), then there ezist a positive
integer k and a positive rational number 5 such that kA is integral and

RY(X, Ox(mD + kA)) > Bm  for all m > 0.

Proof. Replacing D by D — N,(D), we may assume that N,(D) = 0. Now apply
[Nak04, Theorem V.1.11]. O

Lemma 2.20. Let X be a smooth projective variety, let D be a pseudo-effective R-
divisor on X, and let T'y,..., Ty be distinct prime divisors such that op,(D) > 0 for
all i. Then for any v; € Ry we have UF,L.(Zﬁzl v;L';) =i for every i. In particular,
if D >0 and if or(D) > 0 for every component I' of D, then D = N, (D).

Proof. This is [Nak04, Proposition II1.1.10]. O

Lemma 2.21. Let X be a smooth projective variety and let I' be a prime divisor.
Let D be a pseudo-effective R-divisor and let A be an ample R-divisor.

(i) If or(D) =0, then T € Bs(D + A).
(ii) If or(D) > 0, then I' C Bs(D 4+ cA) for 0 < e < 1.

Proof. For (i), note that op(D + 3A) < or(D) = 0. By Lemma there exists
0< D ~g D+ %A such that v = multy D’ < 1, and in particular %A—Q—*ﬂ’ is ample.
Pick A" ~p %A + ~I" such that A’ > 0 and multr A’ = 0. Then

D+A~g D —AT+ A" >0 and multp(D" — 4T + A") = 0.

This proves the first claim. The second claim follows from 0 < op(D) = liigl or(D +
eA), since then opr(D +eA) > 0 for 0 < e < 1. O

Lemma 2.22. Assume Theorem@. Let (X,S+>""_,5;) be a log smooth projective
pair of dimension n, where S and S; are distinct prime divisors, let A be an ample
Q-divisor on X, and let V ="  RS; C Divg(X). Then

BiV)={BecL(V)|os(Kx+S+A+B)=0}.
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Proof. Let V' C Divg(X) be the vector space spanned by the components of V.
Denoting Q = {B € L(V) | 05(Kx + S + A+ B) = 0}, then clearly Q DO B5(V).

For the reverse inclusion, fix B € O, and let H be a very ample divisor such
that (X, S+ Y7, S; + H) is log smooth and H & Supp(S + >.7_, Si). Let Vi =
RH +V C Divg(X), and note that

OS(Kx—{-S—{—A—FB—l—tH)Sds(Kx+S+A+B):O for t > 0.

Then B + tH € B5(Vy) for any 0 < t < 1 by Lemma [2.21{i), hence B € B5(Vy)
since B5(Vy) is closed. Therefore B € B5(V). O

2.4 Proof of Theorem 2.10

In this section we prove that Theorem [D}, implies Theorem [B},. To this end, let
(X,>P_ | S;) be a log smooth projective pair of dimension n, where S; are distinct
prime divisors, let A be an ample Q-divisor on X, and let V = 3"" | RS; C Divg(X).
Consider the set

Pa(V)={Be L(IV)| Kx + A+ B = D for some R-divisor D > 0}.

The strategy is to show that this set is a rational polytope, and that it equals £4(V).
The moral of the story is that for divisors of the form Ky + B + A, the effectivity
is the numerical property.

2.4.1 Numerical effectivity

We start with the following lemma which makes this more precise.

Lemma 2.23. Let (X, B) be a log smooth pair, where B is a Q-divisor such that
|B| = 0. Let A be a nef and big Q-divisor, and assume that there exists an R-divisor
D >0 such that Kx + A+ B = D. Then there exists a Q-divisor D' > 0 such that
Kx+A+Bn~gD'.

Proof. Let V' C Div(X)gr be the vector space spanned by the components of K, A,
B and D, and let ¢: V — N'(X)g be the linear map sending an R-divisor to its
numerical class. Since ¢! (¢(Kx + A + B)) is a rational affine subspace of V, we
can assume that D > 0 is a Q-divisor.

First assume that (X, B + D) is log smooth. Let m be a positive integer such
that m(A + B) and mD are integral. Denoting F' = (m — 1)D + B, L = m(Kx +
A+ B)— |F| and L' =mD — | F], we have

L=L'=D-B+{F}=Kx+ A+ {F}.
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Thus, Kawamata-Viehweg vanishing implies that h'(X, Ox(L)) = h'(X,Ox (L)) =
0 for all 7 > 0, and since the Euler characteristic is a numerical invariant, this yields

(X, Ox (L)) = h°(X,Ox(L")). As mD is integral and | B] = 0, it follows that
L'=mD—|(m—-1)D+B|=[D-DB] >0,

and thus h°(X,Ox(m(Kx + A+ B))) = h°(X,0x(L + | F])) > h°(X,0x (L)) =
h(X,Ox (L)) > 0.

In the general case, let f: Y — X be a log resolution of (X, B+ D). Then there
exist Q-divisors B’, E > 0 with no common components such that F is f-exceptional
and Ky + B' = f*(Kx + B) + E. Therefore Ky + f*A+ B = f*D+ FE > 0, so
by above there exists a Q-divisor D° > 0 such that Ky + f*A+ B’ ~g D°. Hence
Kx+ A+ B ~q f.D°>0. m

Corollary 2.24. Let (X, " |S;) be a log smooth projective pair of dimension n,
where S; are distinct prime divisors, let A be an ample Q-divisor on X, and let
V =>3" RS; CDivg(X). If Pa(V) is a rational polytope, then E4(V) = Pa(V).

Proof. Let By, ..., B, be the extreme points of P4(V'), and choose € > 0 such that
A+ eB; is ample for every i. Since Kx + A+ B; = Kx + (A+¢B;)+ (1 —¢)B; and
|(1 —¢)B;] =0, Lemma implies that there exist Q-divisors D; > 0 such that
Kx + A+ B; ~qg D;. Thus B; € £4(V) for every i, and therefore P4 (V) C E4(V)
as £4(V) is convex. Since obviously £4(V) C P4(V), the corollary follows. O

Lemma 2.25. Let (X,>"_S;) be a log smooth projective pair of dimension n,
where S; are distinct prime divisors, let A be an ample Q-divisor on X, and let
V =>" RS; CDivg(X). If Pa(V) is a polytope, then it is a rational polytope.

Proof. Let By,..., B, be the extreme points of P4(V'). Then there exist R-divisors
D; > 0 such that Kx + A+ B; = D; for all i. Let W C Divg(X) be the vector
space spanned by V' and by the components of Kx + A and > {_; D;. Note that for
every 7 = (t1,...,t,) € R% such that > ¢; = 1, we have B, = > t;B; € P4(V) and
Kx+ A+ B, =Y t;D; e W. Let ¢: W — N'(X)g be the linear map sending an
R-divisor to its numerical class. Then Wy = ¢~1(0) is a rational subspace of W and

Ps(V)={BeL(V)|B=—-Kx—A+ D+ R, where 0 < D eW,R € Wy}
Therefore, P4(V) is cut out from £(V') C W by finitely many rational half-spaces,

and thus is a rational polytope. O]

2.4.2 Compactness

Hence, until the end of the section we prove that P4(V') is a polytope, which suffices
by Corollary and by Lemma [2.25. We start with a few lemmas, which will first
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enable us to conclude that P4(V) is a closed set. As we will see, this is essentially
equivalent to the statement that if an adjoint divisor K x + A+ B is pseudo-effective,
then it is numerically equivalent to an effective divisor. This statement is usually
referred to as “non-vanishing.”

Lemma 2.26. Let X be a smooth projective variety of dimension n and let x € X.
Let D € Div(X) and assume that s is a positive integer such that h®(X,Ox (D)) >
(*I™). Then there exists D' € |D| such that mult, D' > s.

n

Proof. Let m C Ox be the ideal sheaf of x. Then we have

WO(X, Ox /m™1) = dime Clan, . . ., 0]/ (21, - . ., 20) ) = <S + ”) ,

n
hence h°(X, Ox(D)) > h%(X, Ox/m*™1). Therefore the exact sequence
0= m™ ® Ox(D) = Ox(D) = (Ox/m*™") ® Ox(D) ~ Ox/m*™ =0

yields A% (X, m**' ® Ox (D)) > 0, so there exists a divisor D’ € |D| with multiplicity
at least s + 1 at x. O

Lemma 2.27. Assume Theorem|[D},. Let (X, B) be a log smooth pair of dimension
n, where B is an R-divisor such that |B| = 0. Let A be an ample Q-divisor on X,
and assume that Kx + A+ B is a pseudo-effective R-divisor such that Kx + A+ B #
Ny(Kx+ A+ B). Then there exists an R-divisor F' > 0 such that Kx + A+ B ~g F.

Proof. By Lemma [2.19, we have h%(X, Ox(mk(Kx + A+ B) + kA)) > (") for
any sufficiently divisible positive integers m and k. Fix a point

v € X\ | JBs(Kx + A+ B+cA).

e>0

Then, by Lemma there exists an R-divisor G > 0 such that G ~g mk(Kx +
A+ B) + kA and mult, G > nk, so setting D = ﬁG, we have

1
D~y Kx+A+B+ —A and mult, D > ﬁ (2.8)
m m

For any t € [0,m], define A, = ™LA and ¥, = B +tD, so that
(1+t)(Kx+A+B)~g Kx+A+B+t(D—+A)=Kx+ A+, (29)

Let f: Y — X be a log resolution of (X, B + D) constructed by first blowing up X
at . Then for every t € [0,m], there exist R-divisors C}, E; > 0 with no common
components such that E; is f-exceptional and
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The exceptional divisor of the initial blowup gives a prime divisor P C Y such that
multp(Ky — f*Kx) = n — 1, multp f*¥, = mult, ¥;, and P ¢ Supp N, (f*(Kx +
A+ B)) by Remark [2.18 Since mult, ¥,,, > n by (2.8), it follows from (2.10)) that

multp £, =0 and multpC,, > 1. (2.11)
Note that [Cy| = 0, and denote
Bt - Ct - Ct A\ N0<KY -+ f*At —+ Ct)

Observe that by (2.9) and ([2.10) we have
No(Ky + ffA; + Cy) = Na(f*<KX + Ai + \I’t)) + By
= (1+¢)N,(f*(Kx + A+ B)) + E,,

hence By is a continuous function in t. Moreover P ¢ Supp Ny (Ky + f*A,, + B.,) by
the choice of x and by , and in particular multp B, > 1. Pick 0 < ¢ < 1 such
that multp B,,_. > 1, and let H > 0 be an f-exceptional Q-divisor on Y such that
|Bo+ H|] =0 and f*A,,_. — H is ample. Then there exists a minimal A < m — ¢
such that |By+ H| # 0, and let S C By + H| be a prime divisor. Since |H| = 0,
we have S C Supp By. As ByAN,(Ky + f*Ax+ B,) = 0 by Lemma , we deduce
that S & Supp N,(Ky + f*A\ + B)).

Let A" = f*Ay — H = f*(™==2A) + (f*Ap_. — H). Then A’ is ample, and
since o0g(Ky + A"+ By + H) = 05(Ky + f*A) + By) = 0 by what we proved above,
Lemma implies that S ¢ Bs(Ky + A’ + By + H) = Bs(Ky + f*Ay + By). In
particular, there exists an R-divisor F” > 0 such that Ky + f*Ay, + By ~g F’, and

thus, by (2:9) and (Z10),

1
K A ~g ——Ff (K *A ~p ——
x + R1+/\f( y + [fAN+ C)) R1+)\

This finishes the proof. O

f«(F'+C\ — By) > 0.

Corollary 2.28. Let (X, " | S;) be a log smooth projective pair of dimension n,
where S; are distinct prime divisors, let A be an ample Q-divisor on X, and let

V =>" RS; CDivg(X). Then Pa(V) is a closed set and
Pa(V)={B e L(V) | Kx + A+ B is pseudo-effective}.
Proof. The last claim follows immediately from Lemma [2.27 For compactness, fix

B € Pa(V) and denote A = A+ B. In particular, Kx 4+ A is pseudo-effective. If
Kx+A = N,(Kx+ A), then it follows immediately that B € Pa(V). If Kx + A #
N,(Kx + A), assume first that [B] = 0. Then by Lemma there exists an
R-divisor F' > 0 such that Kx + A ~g F, and in particular B € P4(V). If | B] # 0,
pick a Q-divisor 0 < G € V such that A+ G is ample and |B — G| = 0. Then
B — G € Payq(V) by above, and hence B € P4(V). This implies that Pa(V) is

compact. ]
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2.4.3 Finitely many extremal points

The technique applied in Lemma is often called tie-breaking: the idea is to
“scale-up” the an adjoint divisor until some of divisor contains a component with
coefficient one; the additionally we demand some other properties — in the case of
Lemma[2.27], we demanded that the Nakayama function of the adjoint divisor along
the component is zero.

Tie-breaking in Lemma was a bit involved, since we did not have an ef-
fective representative in the (linear equivalence) class of the divisor to start with.
Once we have such an effective representative, tie-breaking produces some additional
properties. That is the content of the following lemma.

Lemma 2.29. Assume Theorem @L Let (X, B) be a log smooth pair of dimension
n, where B is an R-divisor such that |B| = 0. Let A be an ample Q-divisor on X,
assume that Kx + A+ B # Ny,(Kx + A+ B), and let F > 0 be an R-divisor such
that Kx + A+ B ~g F, ¢f. Lemma[2.27.

Then there exist a positive real number p such that, if we denote

®,=B+uF, A=0, AN, ((1+u)F), Tu=C,—A S=(1+pF—A,
then the coefficients of ®,, are between 0 and 1, we have
Y>>0 and Kx+A+7T,~r 2, (2.12)
and there exists a prime divisor S C |, | such that
os(Kx+A+7,)=0 and multgX > 0.

Proof. For any t > 0, define

so that
1+t)(Kx+A+B)~r Kx+A+B+tF=Kx+A+ 2,
Note that [®o| = 0 and
Ny(Kx + A+ @) =(1+t)N,(Kx + A+ B) = (1 +t)N,(F). (2.14)

Thus, if we denote
T, =& — D, AN (Kx+ A+ D), (2.15)

then T, is a continuous function in ¢.
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Write F' = Zﬁzl fiF;, where Fj are prime divisors and f; > 0 for all j. Since
F # N,(F), Lemma implies that there exists j € {1,...,¢} such that of, (F) =
0. Thus, by (2.13), (219) and (215),

multpj Tt = mUItFj B+ t.fja

so there exists a minimal y > 0 such that [Y,] # 0. Note that [T, | C Supp F', but
F; is not necessarily a component of |T,|. Fixing a prime divisor S C [T, ], we

immediately have
O'S(KX +A+TH) = 0

by (2.15)). Moreover,

US((l + N)F) =o0g(Kx + A+ ®,) = multg ¢, —multg T,
= multg B 4+ pmultg F' — 1 < pmultg F

by (2-13), ©:14) and (2.15), hence

mults X > (1 + p) mults F — og((1 + p)F) > multg F > 0.
The relations in (2.12)) are clear from the construction. O

Now we have all the tools to show that P4(V') is a polytope. We do it in the
following way: Assume for contradiction that P4(V') is not a polytope. Then there
exists an infinite sequence of distinct extreme points B, € P4(V'). By compactness
and by passing to a subsequence we can assume that there is a point B € P4(V') such
that lim B,, = B. We will show that for infinitely many m there exist B!, € P4(V)

m—r0o0
such that B, € (B, B!,), so that in particular, no such B,, can be an extreme point

of P4(V). We do it in Lemmas and [2.33] depending on the properties of the
point B.

But first we need a simple lemma from convex geometry which characterises
polytopes.

Lemma 2.30. Let P be a compact convez set in RN and fix any norm || - || on RY.
Then P is a polytope if and only if for every point x € P there exists a real number
§ = d(x, P) > 0, such that for every y € RN with 0 < ||z —y|| < 6, if (z,y) NP # 0,
then y € P.

Proof. Suppose that P is a polytope and let x € P. Let Fi, ..., Fy be the set of all
the faces of P which do not contain x. Then it is enough to define

d(z,P) =min{||x —y|| |y € F; for some i =1,... k}.

Conversely, assume that P is not a polytope, and let x,, be an infinite sequence
of distinct extreme points of P. Since P is compact, by passing to a subsequence
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we may assume that there exists x = lim z,, € P. For any real number § > 0
n—oo

pick £ € N such that 0 < ||z — x| < §, and set 2’ = x + t(xp — x) for some
1 <t<d/||xr—agl]. Then0 < ||z —2'|] < and O # (z,2%) C (z,2)NP, but 2’ ¢ P
since xj, is an extreme point of P. This proves the lemma. O

Remark 2.31. With assumptions from Lemma [2.30] assume additionally that P
does not contain the origin, and let C = R, P. Then the same proof shows that C
is a polyhedral cone if and only if for every point x € C there exists a real number
§ = d(x,C) > 0, such that for every y € RY with 0 < ||z —y|| <6, if (z,y) NC # 0,
then y € C.

Lemma 2.32. Assume Theorem @ Let (X,>°%_,S;) be a log smooth projective
pair of dimension n, where S; are distinct prime divisors, let A be an ample Q-divisor
on X, and let V=32 RS; C Divg(X). Fiz B € Pa(V), and let B,, € Pa(V) be
a sequence of distinct points such that lim B, = B. Assume that |B] =0 and

m— 00

Kx+ A+ B#N,(Kx+ A+ B).
Then for infinitely many m there exist B, € Pa(V) such that B, € (B, By,).

Proof. By Lemmal[2.27] there exists an R-divisor F' > 0 such that Kx + A+ B ~g F.
We first prove the lemma under an additional assumption that F' € V', and treat
the general case at the end of the proof.

Step 1. We use notation from Lemma [2.29 For every m € N, define ®,,, =
By, + p(F + B, — B). Then

lim ®,,, =®, and 1+p)(Kx+A+B,) ~r Kx+A+®,,, (2.16)

m—r0o0

by assumption, and let

A =Pum A Y 0z(Kx + A+ Q) 2.

ZCSupp A

Note that 0 < A,, < N,(Kx + A+ ®,,,). By Lemma [2.16, we have A < liminf A,,,,

m—0o0
and in particular, Supp A,, = Supp A for m > 0. Thus, there exists an increasing

sequence of rational numbers ¢,, > 0 such that lim ¢, =1 and A,, > ¢,,A, and
m—00
define Y, ,,, = @, — emA.
Note that Kx + A+ T, ,,, is pseudo-effective by Lemma [2.16| and

lim Ty =T, (2.17)

m—00
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by (2.16). We claim that by passing to a subsequence, for every m there exist
T €V and 0 < a,, < 1 such that

Kx + A+ 1T, is pseudo-effective and Yym=anT,+ (1—am,)T,,.

This immediately implies the lemma under our additional assumption that F' € V:
indeed, setting B/, = B) we have B = a,B+ (1 —a,,)B,,, and an

easy calculation 1nvolv1ng and (| shows that

(KX+A+T’ LO"”A).

1—a,,

Kx +A+ B ~g

In particular, Kx + A+ B/, is pseudo-effective for m > 0. Since £(V) is a rational
polytope, Lemma yields B], € L(V) for m > 0, hence B], € Pa(V) by
Corollary [2.28|

Step 2. In this step we prove the claim from Step 1. By relabelling if necessary, we
may assume that S = 57 and denote W = >"" ,RS; C Divg(X). Let

Yn=X47, - T~ Kx+A+7,, and T, =%, —o0s(3,)S.

Then TI',, is pseudo-effective by Lemma [2.16| Let

Z= Y S- > S,

multg, T=1 multsj T=0

and pick a rational number 0 < ¢ < 1 such that the Q-divisor A’ = A+¢Z7 is ample.
Setting Y/ =T — S + ¢Z, we have

p
Y€ [S;,(1—2)S] and Kx+ S+ A+ 7 ~p 3. (2.18)

By Theorem @, B5,(V) is a rational polytope, and denote
P=X-Y" +B,(W) and D=R,PCV.
Then P is a rational polytope and D is a rational polyhedral cone. Since
os(Kx+S+ A +7Y)=05(2)=05(Kx+A+7T)=0

by assumption, Lemma implies that Y’ € B, (W), and therefore ¥ € P. By
the definition of P and by (2.18)), for every D € P there exists B € B5,(W) such
that

D=Y-Y+B~p Kx+S+A +B.
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Since multg T/ = multg B = 0, this implies multg D = multg > > 0 and, in partic-
ular, P does not contain the origin. Moreover, by the definition of B3, (V), every
such D is pseudo-effective, hence every element of D is pseudo-effective.

We will show that, after passing to a subsequence, we have

I'yeD forallm>0, and lim I',, =>. (2.19)
m—0o0
This immediately implies the claim from Step 1: indeed, Remark applied to
D and to the point ¥ € D shows that for any m > 0 there exist ¥,, € D and
0 < ptyy < 1 such that Iy, = 2 + (1 — pin) Wy, Then W, is pseudo-effective, and
thus so is the R-divisor

L 5=y = 0, + 25Em) g

o=, +
1—pm 11—t

Let T/, = ﬁ(Tm — iy, Y) € V. Then it is easy to check that Y, € (T, Y] ) and
Kx+ A+ 7, ~g X! is pseudo-effective as desired.
It remains to prove (2.19). Note that

{X+e]ecLV) 6] <e D,

and therefore dimD = dim V. If X belongs to the interior of D, then ¥,, € D for
m > 0 and, in particular, og(%,,) = 0. Therefore, I';, = ¥, and the claim follows.

Otherwise, Y belongs to the boundary of D. Let H; be the supporting hyper-
planes of maximal faces of D containing 3, for i =1,...,/ < dimV — 1. Let W; be
the half-spaces bounded by H; containing D, and denote Q = ﬂle W;. Note that
@ is an unbounded polygon which contains D. If ¥, € Q for infinitely many m,
then X, € D, and again I',, = X,,.

Thus, after taking a subsequence, we may assume that ¥, ¢ Q for all m. Since
multg > > 0, let A, = multg ',/ multg ¥ € R, and for every m choose 0 < 3, < 1
such that 6,, = B Am < 1 and B, ||Ty — AnX|| < €. Denote R,,, = X'+ Bl — 02,
and note that by the choice of 3, and §,, we have multg R,, = 0. Furthermore,
since ||l — 02| < e, by we have R, € L(V), and note that

(1=0)E+ Bl ~r Kx + A+ Ry = Kx + S+ A + Ry, (2.20)
By assumption and by definition of I',,, we have
05((1 = 6)Z + Bnl') < (1= 01n)05(Z) + Bros(Tm) =0, (2.21)
hence Lemma implies that R, € B5,/(V), and in particular

(1 =0,)% + Bl € D. (2.22)
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As ¥ € H; for every i, the convex cone R.o>% + R.ol', intersects W; for every
t. This implies that I',, € W;, and thus I',, € Q. Therefore, after passing to a

subsequence we may assume that there is ig € {1,..., ¢}, such that for all m there
exists Py, € (X, ['n]NH;,. In particular lim P,, = X, and thus P, € D for m > 0.
m—0o0
This implies o5(P,,) = 0, and finally T, = P,, € D and lim I, = X.
m—00

Step 3. To show the general case of the lemma when F' is not necessarily an element
of V,let f: Y — X be a log resolution of (X, B + F'). Then there are R-divisors
C,E > 0onY with no common components and C,,,, F,, > 0 on Y with no common
components such that £ and FE,, are f-exceptional and

Note that lim C,, = C. Let G > 0 be an f-exceptional Q-divisor on Y such that

m— 00

A° is ample, |C°| =0, and |Cr, ] =0 for all m > 0, where
A°=f"A-G, C°=C+G and C;,=0C,+G.
Denoting F° = f*F + E > 0, we have
£.C° =B, f.C° =B, and Ky +A°+C°~g F°.

Let V° C Divg(Y') be the vector space spanned by the components of Y 7 | f15; +
f1F plus all exceptional prime divisors, and note that F° € V°. By what we proved

above, for infinitely many m there exist C! € Pa.(V°) such that C2, € (C°,C)).
Note that Supp C/, is a subset of >0 | f,1S; plus all exceptional prime divisors,
and denote B!, = f.C! € L(V). Then B,, € (B, B!,), and the divisor

Kx+A+ B, = f.(Ky+A°+C))
is numerically equivalent to an effective divisor, hence B!, € Pa(V). O

Lemma 2.33. Let (X,> " | S;) be a log smooth projective pair of dimension n,
where S; are distinct prime divisors, let A be an ample Q-divisor on X, and let
V =3%" | RS; C Divg(X). Fiz B € Pa(V), and let B,, € Pa(V) be a sequence of
distinct points such that lim B, = B. Assume that |B| =0 and

m—r0o0

Kx+ A+ B=N,(Kx+ A+ B).
Then for infinitely many m there exist B,, € Pa(V') such that B, € (B, B},).

Proof. Let D,, > 0 be R-divisors such that Kx+A+ B, = D,,. By Lemma|2.21{ii),
there exists an ample R-divisor H such that

Supp Ny (Kx + A+ B) CBs(Kx + A+ B+ H),
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and as H+(Kx+A+B—D,,) = H+ (B — B,,) is ample for all m > 0, by passing
to a subsequence we may assume that

Supp Ny(Kx + A+ B) € Bs (D, + H + (Kx + A+ B — Dy,)) (2.23)
C Bs(D,,) € Supp Dy,

for all m. For m € N and ¢ > 1, denote C,,,; = B + t(B,,, — B), and observe that

1 t—1

and
Kx+A+Cpi=tD,,—(t—1)(Kx+A+B) =tD,,—(t—1)N,(Kx+A+B). (2.25)

Since L(V) is a polytope and B € L(V), pick 6 = §(B,L(V)) > 0 as in Lemma
2.30] By passing to a subsequence we may assume that || B,, — B|| < 6/2 for every
m, and as ||Cp,y — B|| = t|| By, — B||, Lemma [2.30] gives C,p € L(V) for all m and
1<t<2.

Fix m. By there exists 1 < t,,, < 2 such that t,,,D,, — (t,, — 1) N,(Kx +
A+ B) > 0, and denote B/, = Cy,4,,. Then implies B;, € P4(V), and thus

(2.24)) proves the lemma. ]

Corollary 2.34. Assume Theorem @ Let (X,>°7_|'Si) be a log smooth projective
pair of dimension n, where S; are distinct prime divisors, let A be an ample Q-divisor
on X, and let V = 3" | RS; C Divg(X). Fiz B € P4(V), and let B,, € Pa(V)

be a sequence of distinct points such that lim B,, = B. Then for infinitely many
m—00

m there exist Bl € Pa(V) such that B,, € (B, By,). In particular, Pa(V) is a
polytope.

Proof. Pick 6 = 6(B, L(V)) as in Lemmal[2.30] By passing to a subsequence, we may
choose a Q-divisor 0 < G € V such that A° is ample, |B°| = 0 and all |Bg,| = 0,
where

A"=A+G, B°=B-G and B, =B, —-G.

By Lemmas [2.32 and [2.33] for infinitely many m there exist F,, € Pa-(V) such
that By, € (B°, F,,). In particular, setting B, = F,, + G, we have B,, € (B, B,).
Since B — B, = B° — F,,,, we may assume that |B — B],|| < é for m > 0 by
choosing F;, closer to B° if necessary. Therefore, by Lemma [2.30| applied to the
polytope L£(V') and the point B € L(V'), we have B/, € L(V) for m > 0, and thus
B;, € Pa(V) since Kx + A+ B, = Kx + A° + F,, is numerically equivalent to an
effective divisor. O

This finishes the proof of Theorem [2.10]
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2.5 Proofs of Theorems 2.8 and 2.9

In this section we finally finish the circle of induction, by proving that Theorems
A, 1 and B,,_; imply Theorems C, and D,,. This is the only step which really
involves induction on the dimension, and hence we have to relate global sections of
pluricanonical bundles with the corresponding bundles in dimension one lower. This
is done via so called extension theorems.

2.5.1 Extension theorem

As always, let (X, > | S;) be a log smooth projective pair of dimension n, where
S; are distinct prime divisors, let A be an ample Q-divisor on X, and let V =

P | RS; C Divg(X). Our goal is to analyse what precisely is the vector space
ress HO(X,m(Kx + S + A+ B)) for B € £4(V), at least when m > 0. We know
from before that this space is only interesting when B € B5(V), and in any case, we
know that ress H*(X, m(Kx+S+A+B)) C H(S,m(Ks+ Ajs+Bjs)) by definition.
In practice, this inclusion is almost never an equality. Our goal is to show that the
vector space we are looking for is actually a complete linear system on S, and not
just any linear system — it is a linear system associated to an adjoint line bundle
on S. This is precisely the content of Theorem [2.37 or more precisely, of Corollary
below. We will prove these results later in the course. Their formulations look
(and are) terrifying, but let us first see what they mean.

First we need a few definitions.

Definition 2.35. Let X be a smooth projective variety and let S be a smooth
prime divisor. Let C' and D be Q-divisors on X such that |Clg # 0, |D|g # § and
S ¢ Bs(D). Then |D|s denotes the image of the linear system |D| under restriction
to S, and we define

1 1
Fix(C) = liminf Z Fix |kC| and Fixs(D) = liminf Z Fix |kD|s

for all k£ sufficiently divisible.

If V' is any linear system on X, then Fix(V) denotes the fixed divisor of V| i.e.
the maximal divisor smaller than any divisor in V. Then Mov(V) = {D — Fix(V) |
D € V} is the movable part of V.

Definition 2.36. Let (X, A) be a log pair with [A| = 0. Then (X, A) has canoni-
cal, respectively terminal, singularities if for every log resolution f: Y — X, if we
write

Ky + fi'A=f"(Kx+A)+ E,

we have F > 0, respectively £ > 0 and Supp £ = Exc f. Note that if (X, A) is
terminal, then for every R-divisor G, the pair (X, A 4 &G) is also terminal for every
0<ex .
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A typical example of a terminal pair is a log smooth pair (X, A), where the
components of A are disjoint (exercise!). Starting from a klt pair we can always
reach a terminal pair on a log resolution; we will see a slight generalisation of this
in Lemma below.

Now we can state the extension theorem.

Theorem 2.37. Let (X, S+ B) be a log smooth projective pair of dimension n, where
S is a prime divisor, and B is a Q-divisor such that S ¢ Supp B and |B| = 0. Let
A be an ample Q-divisor on X and denote A = S+ A+ B. Let C > 0 be a Q-divisor
on S such that (S,C') is canonical, and let m be a positive integer such that mA,
mB and mC' are integral.

Assume that for some rational number 0 < € < = we have S € B(Kx + A+cA)
and

C < B|S — B|5 AN FiXS(KX + A+ €A)

Then
Im(Ks + Ajs + C)| +m(Bjs — C) C |m(Kx + A)ls.

In particular, if |m(Ks + Ajg+ C)| # 0, then |m(Kx + A)|s # 0, and
Fix |m(Kg + Ajg+ C)| + m(Bjg — C) > Fix|m(Kx + A)|s > mFixg(Kx + A).
Furthermore, if we assume Theorem A,_1, then
Fix(Ks+ Ais+ C) + (Bjg — C) > Fixg(Kx + A).

The presence of the divisor C' may seem very strange, however we will see that
this precise form of the theorem will be crucial in our proofs below. The following
lemma shows how we can, and will, achieve the condition that the pair (S,C) is
canonical (even terminal).

Lemma 2.38. Let (X, S + B) be a log smooth projective pair, where S is a prime
divisor and B is a Q-divisor such that |B] =0 and S € Supp B. Then there exist
a log resolution f:Y — X of (X,S + B) and Q-divisors C,E > 0 on Y with no
common components, such that the components of C' are disjoint, E is f-exceptional,

and if T = 1S, then
Ky+T+C=f"(Kx+S+B)+E.
In particular, the pair (T, Cir) is terminal.

Proof. By [KMO98| Proposition 2.36], there exist a log resolution f:Y — X which
is a sequence of blow-ups along intersections of components of B, and Q-divisors
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C,E > 0 on Y with no common components, such that the components of C' are
disjoint, F is f-exceptional, and

Ky +C=f"(Kx+B)+E.

Since (X, S + B) is log smooth, it follows that if some components of B intersect,
then no irreducible component of their intersection is contained in .S. Thus T = f*S,
and the lemma follows. O

Corollary 2.39. Let (X, S+ B) be a log smooth projective pair, where S is a prime
divisor, and B is a Q-divisor such that S ¢ SuppB, |B| = 0 and (S, Bs) is
canonical. Let A be an ample Q-divisor on X and denote A = S+ A+ B. Let
m be a positive integer such that mA and mB are integral, and such that S <
Bs|m(Kx + A)|. Denote ®,, = Bis — Bis A = Fix |[m(Kx + A)|s.
Then
|m(Ks + A|S -+ q)m)l —+ m(B|5 — (I)m) = |m(KX -+ A)’g

In other words, if we consider linear systems on S as subsets of k(S), then
ress HO(X,m(Kx + A)) ~ H(S,m(Ks + Ajs + ®.n)).

Proof. Since ®,, < Bjg — Bjg A qu Fix [gm(Kx + A+ %A)|g for any positive integer
¢, the inclusion |m(Kg + Ajg + @,,)| + m(Bjs — ®,,) C |m(Kx + A)lg follows from
Theorem [2.37]

For the reverse inclusion, it suffices to note that m(Bjs — ®,,) < Fix|m(Kx +
A)|s, and hence Mov |m(Kx + A)|s C [m(Kg + Ajs + ,). O

2.5.2 Proof of Theorem D

The following result contains the heart of the proof.

Proposition 2.40. Assume Theorem A,_y and Theorem B,_y. Let (X, S+>"_ S;)
be a log smooth projective pair of dimension n, where S and all S; are distinct prime
divisors. Let V =>"" RS, C Divg(X), let A be an ample Q-divisor on X, and let
W C Divg(S) be the subspace spanned by the components of ) Sys.

(i) Define the set
F={E€&s;(W)| ENFix(Ks+ A5 + E) = 0}.
Then there are finitely many rational polytopes F; such that F = J, F;.
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(ii) Let G be a rational polytope contained in the interior of L(V'), and assume
that (S, Big) is terminal for every B € G. For each i, define

Q) = {(B,C) € Divg(X) x Divg(S) | B€ GnB5(V),C € F,

Then the convex hull of Q. is a rational polytope.
(iii) The set G N B5(V) is a rational polytope.

This result immediately implies Theorem

Proof of Theorem[2.9. Fix B € B3(V), and let B,, € B5(V) be a sequence of
distinct points such that lim B,, = B. It is enough to find a rational polytope

m— 00

G C B5(V) such that the points B and B,, belong to G: indeed, since B is arbitrary,
this implies that B5 (V) is closed, and that around every point there are only finitely
many extreme points of B5(V), hence B5(V) is a polytope. If, in particular, B is
an extremal point of B5(V), this further shows that B is rational.

Let G € V be a Q-divisor such that B — G is contained in the interior of £(V),
and that A + G is ample. Denote

B =B-G, B°=DB,—-G and A% =A+G,

and observe that BY and BS belong to B, (V) for m > 0. By Lemma [2.38] there
exist a log resolution f:Y — X of (X,S + BY) and Q-divisors C,E > 0 on Y
with no common components, such that the components of C' are disjoint, |C'] = 0,
T=f1'5 ¢ SuppC, and

Ky +T+C = f*(Kx+ S+ B% +E.
We may then write
Ky +T+C, = f(Kx +S+B%)+ E,,

where C,, E,, > 0 are Q-divisors on Y with no common components, |C,,| = 0,
T ¢ Supp Cy,, and note that lim C,, = C. Let V° C Divg(Y) be the subspace

m—0o0
spanned by the components of C' and by all f-exceptional prime divisors. Then
there exists an f-exceptional Q-divisor F' > 0 such that f*AY — F is ample, C + F
lies in the interior of £(V°) and (T, (C' + F')|r) is terminal. Denote

A°=f*A° - F C°=C+F and C°, =C,+F,

and observe that C° and C?, belong to B%.(V°) for m > 0.
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Let P be a rational polytope of dimension dim V° contained in the interior of
L(V°) and containing C° in its interior, such that (7, ©|r) is terminal for every © €
P. Then P’ = PNBL,(V°) is a rational polytope by Proposition . In particular,
it is closed, so C° and C?, belong to B, (V°) for m > 0. Therefore, B¢ = f,C° and
BY = f.Cy, belong to B34 (V) for m > 0, and hence B, B,,, € B5(V).

The set f,P' C B54(V) is a polytope, and thus the set

G=L(V)N(G+ f£.P)CB(V)

is also a polytope which contains the points B and B,, for m > 0, which concludes
the proof. O

Proof of Proposition [2.40((i)

The set €4, (W) is a rational polytope by Theorem B, 1, and if E, ..., Ey are its
extreme points, the ring

ERZR(S;KS—|—A‘S+E1,...,K5—|—A‘S—|—Ed)
is finitely generated by Theorem A,_;. Therefore, the function
Fix: SuppR N Divg(X) - R

extends to a rational piecewise linear function on SuppR = Ry (Ks+ Aj5+Ea 4 (W))
by Theorem [1.10f Then F is a subset of €4 (W) defined by finitely many linear
equalities and inequalities. Thus, there are finitely many rational polytopes F; such

that F =, F.

Proof of Proposition [2.40((ii)

We proceed in several steps.

Step 0. We fix some notation until the end of the proof. By abuse of notation, || - ||
denotes the sup-norm on Divg(X), Divg(S) and on Divg(X) x Divg(S). Denote by
Q; the convex hull of @}, and set

®(B) = Bjs — Bjs ANFixg(Kx + S+ A+ B)

for a Q-divisor B € B5(V). By Theorem there exists a positive integer k with
the property that

1
FiX(KS+A|5—|-E) = EFiX‘m(KS—FAw—{—E)l (2.26)

for every rational E' € €4 4(W) and every m € N such that mA/k and mE/k are
integral; note that, in particular, |m(Kg + Ajs + E)| # 0 for every such m.
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Fix a rational number 0 < ¢ < 1 such that D + iA is ample for any D € V with
|D|| <e,and e(Kx + S+ A+ B)+ 1A is ample for any B € L(V).

Step 1. In this step we prove that Q; is dense in Q.
To this end, fix (By, Cy), (B1,C1) € Q;, and for a rational number 0 < ¢ <1 set
(Bi,Cy) = ((1 = t)By + tBy, (1 — t)Cy + tC1) € P x F;.

It suffices to show that (B;, C;) € 9, i.e. that C; < ®(B;) for every t.

Let T" be a prime divisor in W. If multy C; = 0 for some 0 < ¢ < 1, then since
multy Cy > 0 and multy C; > 0 we must have multy Cy = 0 for all rational ¢ € [0, 1],
and in particular multy Cy < multy ®(B;).

Otherwise, we have multry C; > 0 for all 0 < t < 1, and it follows from the
definition of F; and by continuity of the function Fix, cf. the proof of part (i), that

multy Fix(Kg + Ag+ Cy) =0 forall ¢e[0,1]. (2.27)
By Theorem [2.37| we have
Fixg(Kx + S+ A+ B;) < Fix(Kg+ Ais + C;) + (Bjis — Cj),
and therefore multy (Bj|g —Fixg(Kx+ S+ A+ Bj)) > multy C; by . Hence,
multy C; < multy (Bys — Fixs(Kx + S+ A+ By)) < multy ®(B)

for all £ by convexity of the function Fixg.

Step 2. Let
Note that C; is a rational polytope and Q; C C;. Recall the definition of ¢ from Step
0. We claim:

Claim 2.41. Suppose we are given (B,C) € Q; and (I',¥) € face (C;, (B,C)). As-
sume that there exist a positive integer m and a rational number 0 < ¢ < 1 such
that mA/k, mI'/k and mWV/k are integral, that ||(B,C) — (I, V)| < 5)—;, and that
for any prime divisor 7" on S we have

multy(Bg —C) >¢  or multy(Bjs — C) < multp(I'ig — V).

Then (I', V) € Q).

Assumilg the claim, let us see how it implies Proposition M(n) Fix a point
(B,C) € Q;, and let IT be the set of prime divisors 7" on S such that multy(Bjs—C') >
0. If IT # 0, pick a positive rational number

¢ < min{multy(Bjg — C) | T € I1} < 1,
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and set ¢ = 1 if [T = (). By Lemma , there exist finitely many points (I';, ¥;) €
face (CZ-, (B, C’)) and positive integers m; divisible by k, such that m;A/k, m;T;/k
and m;V,/k are integral, (B, C) is a convex linear combination of all (I';, ¥,), and
€
I(5.€) = (0, )] <

Now Claim [2.41] implies (I';, ¥;) € Q} for all j, hence (B,C) € Q;. This shows that
Q; is closed and that all of its extreme points are rational.

Next we show that Q; is a rational polytope. Assume for a contradiction that
Q; is not a polytope. Then there exist infinitely many distinct rational extreme
points v, = (B, C,) of Q;, with n € N. Since Q; is compact and C; is a rational
polytope, by passing to a subsequence there exist v, = (Bx,Cs) € Q; and a
positive dimensional face V of C; such that

Voo = lim v, and face(Ci,v,) =V forallm e N. (2.28)
n—,oo
In particular, v, € V. Let Il be the set of all prime divisors 7" on S such that
multy(Bejs — Coo) > 0. If Il # 0, pick a positive rational number

¢ < min{multy(Byjs — C) | T € T} < 1,

and set ¢ = 1 if II., = (). Then, if k is the positive integer from Step 0, then by
Lemma there exist v/ € face(C;, v ), and a positive integer m divisible by k,
such that 2o/ is integral and [[ve, — vl | < £=. By Claim we have v € Q,.
Pick j > 0 so that

Sl
oo

e

g = viell < llog = vnell + o = vl < £

(2.29)
and that multy(B;s — C;) > ¢ if T' € Il.. Note that v; is contained in the relative
interior of V by (2.28]), and v/ € face(C;, v) C V. Therefore, there exists a positive
integer m’ > 0 divisible by k, such that m*,;m’vj is integral, and such that if we
define

, m+m m
Vi = YT Ve

then v} € V. Note that 5-v’ is integral,

m m
U= U e (2.30)
and )
IS
oG =il = —lloy = il < 5~ (2.31)



by (2.29). Furthermore, if v, = (B, CL), v; = (B}, C}), and if T'is a prime divisor
on S such that T' ¢ Il, then multr (Bl g — C%) = 0 as v, € face(C;, v), hence

(2.30) gives

!/

m
multy(Bjis — C)) = ooy multr(Bjg — C}) < multy(Bjs — C7). (2.32)

Therefore, v} € Q; by (2.31), (2.32) and by Claim [2.41} and since v; belongs to the
interior of the segment [v/, v/_] by (2.30)), the point v; is not an extreme point of Q;.

j? Voo
This is a contradiction which finishes the proof.

Step 3. It remains to prove Claim [2.41] It suffices to show

multy Fixg(Kx + S5+ A+ T + 5= A) < multp(Ds — ¥) (2.33)
for every prime divisor T" C Supp V. Indeed, then it clearly follows that
s AFixg(Kx + S+ A+T+ 3-A) <Tis -7,
hence Theorem [2.37| implies
Im(Ks+ A+ V)| +msg =) C|m(Kx +S+A+T)|s (2.34)

and
Fix(Kg + A|5 + V) + (F‘g — V) >Fixg(Kx + S+ A+T). (2.35)

By the assumption on m from Step 0, (2.34) yields I' € B5(V). Since ¥ € F;, we
have U A Fix(Kg + Ajg + V) = 0, (2.35) shows that

F|S—\IfZF|S/\FIXS(KX—|—S+A+F),

and finally ¥ < ®(T). o
To conclude, we show (2.33)). Since (B,C) € Q;, and Q; is dense in Q; by Step

1, for every 0 < § < £ there exists a point (Bs, Cs) € Q; such that ||B — Bs|| < $

and ||C — Cs|| < &. Since then ||[I'— Bs|| < ||[I' = B||+||B— Bs|| < £, the Q-divisors
H; =T — Bs+ - and  Gs=S(Kx+S+A+B;)+ =4

are ample by the assumptions from Step 0. Then

B(Kx+S+A+T+52A) = B(Kx+S+A+Bs+Hs+ - A) C B(Kx+S+A+By),

hence S € B(Kx + S+ A+T + 5-A). Since
Ky+S+A4+T+524=(1-25)(Kx+ S+ A+ B;)+ (Gs + Hy),
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we have

Fixs(Kx + S+ A+ T+ 5= A) <Fixg (1 — £)(Kx + S+ A+ By))

m

= (1 - £) Fixg(Kx + S+ A+ By)
Since (Bjs, Cs) € Q;, Theorem implies
Fixg(Kx + S+ A+ Bs) < Bsjs — Cs + Fix(Kg + Ajs + Cs),
which together with the previous inequality yields
Fixg(Kx + S+ A+T+5-A) < (1 - £)(Bys — Cs) + Fix(Kg + Ajs + Cs).

If T"is a component of ¥, then 7" is a component of C' as (I, V) € face (Ci, (B, C))
Thus T' C Supp Cj for § < 1, and so multy Fix(Kg + Ajs + C5) = 0 since C5 € F;.
Therefore

multy Fixg(Kx + S+ A+T + 5-A) < (1

< %) multT(Bg|S — Cg)
<(1

)multy(Bjg — C) + 6,

_ £
m
and we obtain

multy Fixg(Kx + 5+ A+ T+ 5= A4) < (1 — £) multy(Bjg — C)

by letting 0 — 0. If multy(Bjs—C) < multy(I'g—¥), then clearly (1—=) multy(B)s—
C) < multp(I'jg— V). Otherwise, by assumption ¢ < multy(Bjg—C) < multy(I'jg—
U) + %, and so

(1— £)multy(Bjs — C) < multy(I)s — V) + £ — £ multy(Bjs — C)
= multy(I)s — V) — £ (multr(Bjs — C) — ¢) < multy(I)s — D).

This proves (2.33)) and finishes the proof of Proposition [2.40}

We used the following result from Diophantine approximation.

Lemma 2.42. Let || - || be a norm on R, let P C RY be a rational polytope and
let x € P. Fix a positive integer k and a positive real number €.

Then there are finitely many x; € P and positive integers k; divisible by k, such
that k;x;/k are integral, ||z —x;|| < €/k;, and x is a convex linear combination of x;.

Proof. This is well known, see for instance [BCHM10, Lemma 3.7.7]. O
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Proof of Proposition [2.40|(iii)

Denote P =GN Bfl(V), and recall the definition of Q; from Step 0 of the proof of
Proposition[2.40{(ii). Let P; C V be the image of Q; through the first projection. Fix
B € PN Divg(X), and for every positive integer m such that mA, mB are integral
and S ¢ Bs|m(Kx + S + A+ B)|, denote

®,, = Bis — Bis A 5 Fix|m(Kx + 5 + A+ B)|s € E4,,(W).

As in the proof of Corollary we have

Im(Ks + Ajs + @) + m(Bjs — @,,,) 2 Im(Kx + S+ A+ B)|s,
SO

Fix|m(Ks + Ajs + @) + m(Bjs — ®,,) < Fix|m(Kx + S+ A+ B)ls. (2.36)

If T"is a component of ®,,, then by definition

multy ®,, = multy Bjs — - multy Fix |m(Kx + S+ A + B)|s,
which together with gives multy Fix |m(Kg + Ajs + ®,,)| = 0, and hence

multy Fix(Kg + Ajg + ®,,) = 0.

This implies (B, ®,,) € U, Q;, thus B € |J; P;. Therefore P N Divg(X) C U; P,
and since P N Divg(X) is dense in P (exercise!), we have P C | J, P;. The reverse
inclusion follows by the definition of the sets Q}, and this finishes the proof.

2.5.3 Proof of Theorem C

The following result contains the heart of the proof.

Proposition 2.43. Assume Theorem A,_y and Theorem B,,_y. Let (X, S+> " | S;)
be a log smooth projective pair of dimension n, where S and all S; are distinct prime
divisors. Let V- =>"" RS; C Divg(X) and let A be an ample Q-divisor on X. Let
G be a rational polytope contained in the interior of L(V'), and assume that (S, Bjs)
is terminal for every B € G. Denote P =GN B5(V).
(1) For each B € PNDivg(X), denote ®(B) = Bjs— BisAFixg(Kx +S5+A+B).
Then ® extends to a rational piecewise affine function on P,

(ii) For every positive integer m such that mA, mB are integral and S € Bs|m(K x+
S+ A+ B)|, denote

Then there exists a positive integer { with the property that ®(B) = &,,(B)
for every B € P N Divg(X) and every positive integer m such that mB/{ is
integral.
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This immediately implies Theorem C:

Proof of Theorem[2.8 We first prove the lemma under additional assumptions, and
then treat the general case in Step 2.

Step 1. In this step we assume that all B; lie in the interior of £(V') and that all
(S, Bjjs) are terminal. We use functions ®,, and ® defined in Proposition m

Let G C Eg14(V) be the convex hull of all B;. Then G is contained in the interior
of L(V'), and (S, G|s) is terminal for every G € G. Denote

D=R (Kx+S+A+G).

Then, by Lemma [2.13(iii) it suffices to prove that resg R(X, D) is finitely generated.

By Theorem D,,, the set P = GNBS5(V) is a rational polytope, and there exists a
finite decomposition P = | JP; into rational polytopes such that ® is rational affine
on each P; by Proposition [2.43] where we assume the notation from Proposition
Denote

C=R (Kx+S+A+P) and C =R, (Kx+S+A+P),

and note that C = |JC;. Since resg H(X, Ox(D)) = 0 for every D € D\ C, and
as C is a rational polyhedral cone, it suffices to show that resg R(X,C) is finitely
generated, and therefore, to prove that resg R(X,C;) is finitely generated for each i.
Hence, after replacing G by P;, we can assume that ® is rational affine on G.

By Gordan’s lemma and by definition of D, there exist G; € G N Divg(X) and
d; € Q,, withi=1,...,q, such that

D;=d;(Kx+ S+ A+ G,;) are generators of D N Div(X).

By Theorem [2.43] there exists a positive integer ¢ such that ®,,(G) = ®(G) for
every G € G N Dive(X) and every m € N such that mG/¢ € Div(X). Pick a
positive integer k such that all kd;/¢ € N and kd;G;/¢ € Div(X). For each nonzero
a=(ag,...,q,) € N9 denote

do =) aid;, Go= d—iZaidiGi, Do =) a;D;=do(Kx + 5+ A+ Ga),

and note that kd,G,/¢ € Div(X) and ®(G,) = i > a;d;®(G;). Then, by Corol-
lary we have

ress H(X, Ox(mkD,)) = H°(S, Os(mkd,(Ks + Ajs + Prnig, (Ga))))
= H°(S, Os(mkdo(Ks + Ajs + (Ga))))

for all @« € N? and m € N, and thus

ress R(X;kDy, ..., kDy) = R(S; kd\ DY, .. kd,D.),
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where D] = Kg + Aig + ®(G;). Since the last ring is a Veronese subring of the
adjoint ring R(S;Dy,...,Dy), it is finitely generated by Theorem A, ; and by
Lemma [2.13(i). Therefore resg R(X; Dy, ..., D,) is finitely generated by Lemma
2.13|(ii), and since there is the natural projection of this ring onto resg R(X, D), this
last ring is also finitely generated.

Step 2. In this step, we show that Step 1 implies the result in general.

For every 7 pick a Q-divisor G; € V such that A — G; is ample and B; + G; is
in the interior of £(V'). Let A’ be an ample Q-divisor such that every A — G; — A’
is also ample, and pick Q-divisors A; > 0 such that A, ~g A —G; — A, |A;] =0,
(X, S+ 3P S+ > A4) is log smooth, and the support of > " A, does not
contain any of the divisors S,S51,...,S5,. Let V' C Divg(X) be the vector space
spanned by V and by the components of > " | A;. Let € > 0 be a rational number
such that

A=A — EXM:A&
i=1

is ample, and such that
BZ{:Bi‘f‘Gi—i-Ai—i-EZAi
i=1

is in the interior of £(V"’) for every i. Note that we have
Kx+S+A+ B, ~gKx+S+ A"+ B; forevery i. (2.37)

Let B > 0 be a Q-divisor such that |B] = 0 and B > B for all i. By Lemma
there exists a log resolution f: Y — X such that

Ky +T+C=f(Kx+S+B)+E,
where the Q-divisors C'; E > 0 have no common components, F is f-exceptional,
|C| =0, the components of C are disjoint, and 7' = f, 1S ¢ Supp C. Then there
are Q-divisors 0 < C; < C and f-exceptional Q-divisors E; > 0 such that

Ky+T+C;=f(Kx+S+ B])+ Ej, (2.38)
and in particular, all pairs (7', C;r) are terminal. Let V° be the subspace of Divg(Y')
spanned by the components of C' and by all f-exceptional prime divisors. There
exists a Q-divisor F' > 0 on Y such that, if we denote

A°=f*A"—F and C;=C;+F, (2.39)
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then A° is ample, every C7 is in the interior of £(V°), and every pair (T,Cj;) is

terminal. It follows from , and that
Ky +T+ A°+ Cf ~q f*(Kx + S+ A+ B;) + E;.
Since the ring
res RY; Ky +T+A°+CY,.... Ky + T+ A+ C})

is finitely generated by Step 1, we conclude by Lemma [2.13((iii). O

Proof of Theorem [2.43|(i)

Step 1. For (i), fix a prime divisor 7" € W, and consider the map ®;: PNDivg(X) —
[0, 1] defined by

®,(B) = multy ®(B) for every B € P N Divg(X).

In order to show that ® extends to a rational piecewise affine function on P, it
suffices to prove that each function ®1 extends to a rational piecewise affine function

on P.
Let Rt be the closure of the set

Rl = {B € PN Divg(X) | ®1(B) # 0} C PN Divg(X).
Note that
(I)T(B) %0 = ¢T<B> = multy (B|S—F1XS(K)(+S+A—|—B)),

and since Fixg is a convex map on P, the set R is convex, and ®7 is concave on
Rr. Now it is clear that ®1 extends to a rational piecewise affine on P if and only
if:

(a) Rr is a rational polytope, and
(b) @7 extends to a rational piecewise affine function on Rr.

Step 2. In this step we show (a). Let Q} be the sets as in Proposition [2.40{(ii), let
Q; be the convex hull of @}, and let P; C V be the image of Q; through the first
projection. Recall from the proof of Proposition [2.40(iii) that each P; is a rational
polytope and P = [JP;.

We show that R is a union of some of the sets P;: this then implies that Ry is
a rational polytope since it is convex.
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Let B be any rational point of R/.. From the proof of Proposition [2.40|(iii) we
have (B , P (B )) € |J Q; for every m sufficiently divisible, hence by compactness,

(B,®(B)) € Q; for some i.

Since multy ®(B) > 0, the image of the polytope Q; through the second projection
is not zero, which implies that mult; C' > 0 for every rational point (B,C) in the
relative interior of Q;. It is enough to show that for every such a point (B,C) we
have multy ®(B) > 0: indeed, by looking at the first projection, this then implies
that every rational point in the relative interior of P; belongs to R, hence P; C R
as the set of such points is dense in P;.

To prove the claim, fix a rational point (B, C) in the relative interior of Q;. Note
that this implies (B, C) € Q}, so Theorem [2.37 gives

Fix(Ks+ As+C) + (Bjs — C) > Fixg(Kx + S+ A+ B).

On the other hand, multy C' > 0 yields multy Fix(Kg+Ajg+C) = 0 by the definition
of the set @}, and thus

multy (Bjs — Fixg(Kx + S+ A+ B)) > multy C > 0.

In particular, ®7(B) = multy (Bjs — Fixs(Kx + S + A + B)), which shows the
claim.

Step 3. In this step we show (b). Let (B;,C;) be the extreme points of all Q; for
which P; € Rr. Since Q; is the convex hull of Q, it follows that (B;,C;) € | Q,,
and in particular

multT Oj S multT @(B]) == @T(B]) (240)

Fix a rational point B € Ry. Then (B, @(B)) € Q; for some ¢ by the proof of
Proposition [2.40((iii), hence there exist r; € Ry such that

> rj=1 and (B,®(B)) =) ri(B;C;).

Thus ®7(B) = multy ®(B) = > r;multy C;, so by concavity of ®; and by ([2.40))

we have
> rj®p(By) < @p(B) = > rymulty C; <> r®r(By).

Therefore
&7 (B;) = multy C; € Q  for any j and ®7(B) = Y r;®(B;).
Now by the following lemma, ® extends to a rational piecewise affine map on R.
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Lemma 2.44. Let P C RY be a rational polytope, and denote Po =P NQN. Let
f:Pg — R be a bounded convex function, and assume that there exist xq,..., x4 €
Pqo such that:

(i) f(z:) € Q for all i,

(i1) for any x € Pg there exists (ry,...,r,) € RL such that

Zﬁzl, x:Zrimi and f(x):an(xz)

Then f can be extended to a rational piecewise affine function on P.

Proof. Pick C' € Q; such that —C' < f(z) < C for all x € Pgy. Let Q C RV™! be
the convex hull of all the points (z;, f(z;)) and (z;,C), and set

Q' ={(z,y) €Po xR | f(z) <y < C}.

We first claim that @ N QN*!' = @' N QN*!, and in particular Q = Q'. Indeed,
since f is convex, and all (z;, f(z;)) and (z;, C) are contained in @', it follows that
QNQN*L C Q. Conversely, fix (u,v) € @' NQN*L. Then there exists t € [0, 1] such
that v =tf(u) + (1 — t)C, and as u € Py, there exist r; € Ry such that > r; =1,
w=">Y_ rx; and f(u) =>_ r;f(x;). Therefore

(u,0) = o tri(wi, f2:) + (1 = t)ri(zi, ©),
and hence (u,v) € Q, which proves the claim. Now, define F': P — [-C,C] as
F(z) = min{y € [-C,C | (z,y) € Q}.
Then F extends f, and it is rational piecewise affine as Q is a rational polytope. [

Proof of Proposition [2.43|(ii)

From Proposition [2.43|(i) we have ®(B) € Divg(S) for every P € PN Divg(X), and
by subdividing P, we may assume that ® extends to a rational affine map on P.
By Theorem there exists a positive integer k£ with the property that

1
Fix(Ks+ As+ E) = p— Fix |m(Kg+ Ajg + E)|
for every rational £ € £44(W) and every m € N such that mA/k and mE/k are
integral. By Gordan’s lemma, the monoid R, (S+P)NDiv(X) is finitely generated,
and let b;(S + B;) be its generators for some b, € Q4 and B; € P N Divg(X). Pick
a positive integer w such that wb;®(B;) € Div(S) for every i, and set £ = wk.

64



Fix B € PNDivg(X) and a positive integer m such that mB/¢ € Div(X). Then
there are non-negative integers «; are such that

m(S+B)/t =Y abi(S+ B).
In particular, we have m/¢ = > a;b;, and therefore
m®(B)/l = a;b;®(B;)

since ® is an affine map. Hence m®(B)/k = > awb;®(B;) € Div(S), so

Fix(Ks + As + ®(B)) = % Fix |m(Ks + Ajs + ®(B))|
by the choice of k. Recall that (B,®(B)) € [J;Q; by the proof of Proposition
[2.40[(iii), hence ®(B) A Fix |m(Kg + Ajs + ®(B))| = 0. In particular,

®(B) NFix|m(Kg + Ajis + ®(B))| = 0. (2.41)
Now Theorem gives
Fix |m(Ks + Ajgs + ®(B))| + m(Bjs — ®(B)) > Fix|m(Kx + S+ A+ B)|s
> m(Bis A L Fix|m(Kx + S + A+ B)|s) = m(Bjs — ®mn(B)).

This together with (2.41]) implies ®,,(B) > ®(B). But, by definition, ®(B) >
®,,(B), and (ii) follows.

2.6 Proof of the Extension theorem

In this section we prove Theorem [2.37]
We will need the following easy consequence of Kawamata-Viehweg vanishing:

Lemma 2.45. Let (X, B) be a log smooth projective pair of dimension n, where B
is a Q-divisor such that | B| = 0. Let A be a nef and big Q-divisor.

(i) Let S be a smooth prime divisor such that S ¢ Supp B. If G € Div(X) is such
that G ~g Kx + S + A+ B, then |Gis| = |Gs.

(ii) Let f: X — Y be a birational morphism to a projective variety Y, and let
U C X be an open set such that fiy is an isomorphism and U intersects at
most one irreducible component of B. Let H' be a very ample divisor on Y
and let H= f*H'. If F € Div(X) s such that F ~g Kx +(n+1)H+ A+ B,
then |F| is basepoint free at every point of U.
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Proof. Considering the exact sequence
0— Ox(G—S8) = O0x(G) - 0s(G) — 0,

Kawamata-Viehweg vanishing implies H*(X,Ox(G — S)) = 0. In particular, the
map H°(X, Ox(G)) — H°(S,0s(G)) is surjective. This proves (i).

We prove (ii) by induction on n. Let x € U be a closed point, and pick a general
element 7' € |H| which contains z. Then by the assumptions on U, it follows that
(X,T + B) is log smooth, and since Fir ~qg K1 +nHp + Ajr + Bjr, by induction
Fir is free at x. Considering the exact sequence

0= Ox(F—-T)— Ox(F)— Or(F)— 0,

Kawamata-Viehweg vanishing implies that H(X, Ox(F — T)) = 0. In particular,
the map H*(X,Ox(F)) — HYT,Or(F)) is surjective, and (ii) follows. O

Lemma 2.46. Let (X, S+ B) be a projective pair, where X is smooth, S is a smooth

prime divisor and B is a Q-divisor such that S € Supp B. Let A be a nef and big

Q-divisor on X. Assume that D € Div(X) is such that D ~o Kx+ S+ A+ B, and

let ¥ € |Dig|. Let ® € Divg(S) be such that the pair (S, ®) is kit and Bjg < X + ®.
Then 3 € |D|s.

Proof. Let f: Y — X be alog resolution of the pair (X, S+ B), and write T' = f1S.
Then there are Q-divisors I' > 0 and £ > 0 on Y with no common components such
that T ¢ Suppl, E is f-exceptional, and

Ky+T+T'=f"(Kx+S+B)+E.
Let C =T — FE and
G=fD-|C|=fD-|T'|+][FE] (2.42)
Then
G—(Ky+T+{C}) ~q f"(Kx+S+A+B)—(Ky+T+C)=f"A
is nef and big, and Lemma [2.45(1) implies that
Gir| = |Glr. (2.43)
Moreover, since E > 0 is f-exceptional, we have
|Gle+ [Dle = [f*D = [T] + [Ellr + [T (2.44)

S D+ [Elr =Dl + [Elr-
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Denote g = fir: T'— S. Then
Kr+Cpr=9"(Ks+ Bjg) and Kp+V =g"(Kg+ ®),
for some Q-divisor ¥ on T, and note that |¥| < 0 since (S, ®) is klt. Therefore
g (Bs —®) =Cip — V. (2.45)

By assumption we have that Bjg < X+ ®, that g*X is integral, and that the support
of C'+ T has normal crossings, so this together with (2.45|) gives

gE>gE+ V] = [gY+ V]| > [g"(Bs — ©) + V]
= Cr] = [Clir = (f*D)ir — Gyr-.

Denote

R=G|r— (f*D)|T + g2

Then R > 0 by the above, and ¢*X € |(f*D)r| implies R € |G 7| = |G|r by (2.43).
Therefore R+ |T'|r € | f*D|r+ [E]jr by (2.44)), and this together with (2.42)) yields

¢S =R+ (f'D)r ~ G = R+ |V~ [Elir € |f Dl
hence the claim follows. O]

Lemma 2.47. Let (X, S + B + D) be a log smooth projective pair, where S is a
prime divisor, B is a Q-divisor such that |B] =0 and S ¢ Supp B, and D > 0 is
a Q-divisor such that D and S + B have no common components. Let P be a nef
Q-divisor and denote A = S + B + P. Assume that

Kx+An~gD.

Let k be a positive integer such that kP and kB are integral, and write Q) = (B+P);s.
Then there is a very ample divisor H such that for all divisors ¥ € |k(Kg + Q)|
and U € |Hs|, and for every positive integer | we have

Proof. For any m > 0, let l,,, = [7*| and r,, = m — I,k € {0,1,...,k — 1}, define
B, = [mB] — [(m —1)B], and set P,, = kP if r,, = 0, and otherwise P,, = 0. Let
Dy, =Y (Kx+S+ P+ B) =m(Kx +S) + 1,kP + [mB],

i=1
and note that D,, is integral and
Dy, =l k(Kx +A)+ D,, . (2.46)

By Serre vanishing, we can pick a very ample divisor H on X such that:
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(i) D;+ H is ample and basepoint free for every 0 < j <k —1,
(i) [Dx + H|s = |(Dx + H)jsl.
We claim that for all divisors ¥ € |k(Ks + Q)| and Uy, € |(D,,, + H)s| we have
(S + Uy, € | Dy + Hs.

The case r,,, = 0 immediately implies the lemma.

We prove the claim by induction on m. The case m = k is covered by (ii). Now
let m > k, and pick a rational number 0 < § < 1 such that D, , + H + 0B, is
ample. Note that 0 < B,, < [B], that (X,S + B + D) is log smooth, and that
D and S + B have no common components. Thus, there exists a rational number
0 < € < 1 such that, if we define

F = (1 —0) By + l1keD, (2.47)

then (X, S + F) is log smooth, |F| =0 and S ¢ Supp F. In particular, if W is a
general element of the free linear system |(D,,,_, + H);s| and

Tm—1

®=Flg+(1—e)W, (2.48)

then (S, ®) is Klt.
By induction, there is a divisor T € |D,,,_1 + H| such that S ¢ Supp T and

T‘S =l X+ W.
Denoting C' = (1 — €)Y + F, by (2.47)) we have

Cr~g (1=¢€)(Dy1+ H)+ (1 —¢26)By, + ly-1keD, (2.49)
and ([2.48) yields
Cis=1—-e)T s+ Fs <l S+ P < (InX + Up) + . (2.50)

By the choice of § and since P, is nef, the Q-divisor

A=¢e(D,, ,+H+0B,)+ P, (2.51)

is ample. Then by ([2.46)), (2.51]) and (2.49) we have

D,+H=Kx+S+D,, 1+B,+P,+H
=Kx+S+(1—-¢)Dp1+ly1ke(Kx+A)+eD,, ,+Bn+P,+H
~o Kx+S+A+(1—¢)Dyy + ln1keD+ (1 —e0)By, + (1 —e)H
~o Kx+S+A+C,

and thus [, + U,, € |D,, + H|s by (2.50) and Lemma m O
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Proof of Theorem[2.37. Let f: Y — X be alog resolution of the pair (X, S+ B) and
of the linear system |gm(Kx + A + %A)L and write T'= f71S. Then there are Q-
divisors B’, E > 0 on Y with no common components, such that E is f-exceptional
and

Ky+T+ B = f"(Kx+S+B)+E.

Note that
KT + BllT == g*(KS + B|S) + E|T,

and since (Y,T + B’ + E) is log smooth and B" and E do not have common com-
ponents, it follows that B|’T and Ejp do not have common components, and in
particular, Ejp is g-exceptional and g*B|’T = Bjg. Let ' =T + f*A+ B’, and define

Fy= L Fixlgm(Ky +T+ . f*A)|, By=B—B'ANF, T,=T+ B+ fA

Since (Y, T + B’ + F,) is log smooth, Mob (qm(Ky +I'+ %f*A)) is basepoint free,
and T ¢ Bs(Ky +T' + = f*A), by Bertini’s theorem there exists a Q-divisor D > 0
such that

Ky +Ty+ - f*A~q D,
the pair (Y, T + B, + D) is log smooth, and D does not contain any component of

T+ B, Let g = fip: T — S. Since (S,C) is canonical, there is a g-exceptional
Q-divisor F' > 0 on T such that

Kr+C =g*(Ks+C)+ F,

where C" = g;1C. We claim that ¢’ < B;lT. Assuming the claim, let us show how
it implies the theorem.

By Lemma [2.47], there exists a very ample divisor H on Y such that for all
divisors X' € |gm(Kr+ (B, + (14 L) f*A);r)| and U € |Hz|, and for every positive
integer p we have

pY + U € [pgm(Ky + Ty + = f*A) + H|r.
Pick an f-exceptional Q-divisor G > 0 such that |B'+ G| = 0 and f*A — G is
ample. In particular, (T, (B' + =G)r) is klt. Let Wi € |q(f*A);r| and Wy € |Hpp|
be general sections. Pick a positive integer & > 0 such that, if we denote | = kq,

W = kW, + Wy and ® = Bl’T + %GIT + %W, then the Q-divisor

1 m—1
Ay = —(f*A — - —H 2.52
o= —(f'A-G) - (2:52)

is ample and the pair (7', @) is klt.
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Fix ¥ € |m(Ks + Ajs + C)|. Since C" < B, by the claim, it is easy to check
that

49" % + gm(F + Byp — C") + Wy € |[gm(Kp + (By + (14 ) f*A)r)].-

Then, by the choice of H, there exists T € [Im(Ky + Iy + = f*A) + H| such that
T ¢ Supp T and
Tir =1g"S +Im(F + Byp — C') + W.

Denoting
Bo="" i m— )T =T+ B +—C (2.53)
O Tl m 4 m ’
relations (2.52) and (2.53|) imply
m(Ky +T) =Ky +T+(m—1)(Ky + T+ 2 A) + LA+ B (2.54)

~o Ky + T+ 22T+ (m—1)(D =Ty + 2 f*A—"1H + B
:Ky+T+A0+BO

Noting that I' = I'y = B’ — By, we have

+ AW+ Bl + G < ¢S+ m(F + Bl — O') + @,

and since ¢*Y + m(F + Bl — C") € [m(Ky + D)pr[, by (2.54), (2.55) and Lemma
[2.46] we obtain

gY+m(F + By — ") € [m(Ky +T)|r.

Pushing forward by g yields X +m(Bjs—C) € |m(Kx +A)|s and the lemma follows.
Now we prove the claim stated above. Since Mob (qm(Ky + I + %f*A)) is
basepoint free and 7" is not a component of F, it follows that qu Fix |gm(Ky + T +

%f*A”T = Fq\T and
By = Bip — (B'NF)r = Blp, — Blp A o2 Fix|gm(Ky +T + o f*A)|r.
Furthermore, we have

gs Fix |gm(Ky + T + %f*A)|T = Fix|gm(Kx + A + %A)Lg,

SO
9.C" = C < Bis — Bjg A = Fix|qm(Kx + A + L A)|s = g.Bp.

Therefore C' < B’ since B;lT >0 and C' = g, 'C. m

q|T>
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Lemma 2.48. Let X be a smooth projective variety and let S be a smooth prime
divisor on X. Let D be a Q-divisor such that S ¢ Bs(D), and let A be an ample
Q-divisor. Then

1
- Fix |¢(D + A)|s < Fixg(D)
q

for any sufficiently divisible positive integer q.

Proof. Let P be a prime divisor on S and let v = multp Fixg(D). It is enough to
show that

1
multp — Fix |¢(D + A)|s < v
q

for some sufficiently divisible positive integer q.
Assume first that v > 0. Let € > 0 be a rational number such that eD + A is
ample, and pick a positive integer m such that

1—¢

multp Fix |mD|s < 7.

Let ¢ be a sufficiently divisible positive integer such that the divisor q(eD + A) is
very ample, and such that m divides ¢(1 — €). Then

1 1
gmultp Fix |¢(D + A)|s = —multp Fix |¢(1 —e)D + q(eD + A)|s
q
1 ) 1—-¢ )
< —multp Fix|¢(1l —e)D|s < —— multp Fix |mD|g < 7.
q m

Now assume that v = 0. Let n = dim X and let H be a very ample divisor on
X. Pick a positive integer ¢ such that ¢A and gD are integral, and such that

C=qA—Kx—S5S—nH (2.56)

is ample. Then there exists a Q-divisor D’ > 0 such that D" ~qg D, S € Supp D’
and multp(Djg) < é. Let f: Y — X be a log resolution of (X, S + D’) which is
obtained as a sequence of blowups along smooth centres. Let T = 1S, and let
E > 0 be the f-exceptional integral divisor such that

Ky+T=f(Kx+S)+E.
Then, denoting F' = qf*(D + A) — |¢f*D’'| + E, by (2.56) we have
Frgaft A+ {qf' D'} + E=Ky + T+ f*(nH + C) + {qf D'},

and in particular |Fip| = |F|p by Lemma [2.45(i). Denote g = fir: T — S and
let P' = g;'P. Since Fjr ~g Kr + ¢g*(nHs) + ¢g*(Cis) + {¢f*D'};r and g is an
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isomorphism at the generic point of P’, Lemma [2.45(ii) implies that the base locus
of |Fir| does not contain P’. In particular, if V' € |F| is a general element, then

P ¢ Supp f.V.
Let U=V + |qf*D'| € |gf*(D+ A)+ E|. Since E is f-exceptional, this implies
that f.U € |¢(D + A)|, and since f.|qf*D’'| < qD’, we have
multp(f.U)s = multp(fV)js +multp(fi[qf"D'])js < multp ¢Djg < 1.

Thus, multp(f.U);s = 0 and the lemma follows. O
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