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Preface

These notes are based on my course in the Summer Semester 2014 at the University
of Bonn.

The notes will grow non-linearly during the course. That means two things: first,
I will try and update the material weekly as the course goes on, but the material
will not be in 1-1 correspondence with what is actually said in the course. Second,
it is quite possible that chapters will simultaneously grow. I try to be pedagogical,
and introduce new concepts only when/if needed.

Many thanks to Nikolaos Tsakanikas for reading these notes carefully and for
making many useful suggestions.
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Chapter 1

The Minimal Model Program

In this chapter I will first introduce the classification procedure of algebraic varieties.
I try to convince you that the classification criterion is natural and I give several
motivations which lead to the same goal. From this point of view, it turns out that
the classification criterion is necessarily the one explained in these notes – in other
words, even if you try to come up with a different criterion, it will likely not be
giving you anything better.

I always work over the field C of complex numbers; however everything in this
course holds for any algebraically closed field k.

1.1 Motivation

1.1.1 Curves and surfaces

The classification of curves is classical and was done in the 19th century. The rough
classification is according to the genus of a smooth projective curve.

The situation with surfaces is already more complicated. If we start with a
smooth projective surface, and want our classification procedure to simplify it in
tangible ways, we would therefore want some basic invariants, like the Picard num-
ber, to be as minimal as possible. To this end, recall that if π : Y → X is a blow up of
a point on a smooth surface X, then the exceptional divisor E ⊆ Y is a (−1)-curve,
that is E ' P1 and E2 = −1. The starting point of the classification of surfaces is
if we start with a (−1)-curve on Y , we can invert the blowup construction:

Theorem 1.1 (Castelnuovo contraction, [Har77, Theorem V.5.7]). Let Y be a non-
singular projective surface containing a (−1)-curve E. Then there exists a birational
morphism f : Y → X to a smooth projective surface X such that E is contracted to
a point, and moreover, f is a blowup of X at f(E).

3



Now it is easy to see how the classification works in dimension 2. Once we have
resolved singularities of our surface, we ask whether the surface obtained has a (−1)-
curve. If not, we have our relatively minimal model. If yes, then we use Castelnuovo
contraction to contract a (−1)-curve. We repeat the process for the new surface.
The process is finite since after each step, the rank of the Néron-Severi group drops,
as well as the second Betti number.

Note however, that the criterion ”does X have a (−1)-curve” does not have a
meaningful generalisation to higher dimensions. Also, it is not clear that it gives
the right notion – in other words, it is not obvious that this is an intrinsic notion
of X with special implications on the geometry of X. However, note that, by the
adjunction formula, E is a (−1)-curve on X if and only if E ' P1 and KX · E < 0.
Therefore, if X has a (−1)-curve, then its canonical class cannot be nef.

There are three cases for the relatively minimal model X. First, if KX is nef,
then a further fine classification gives that it is actually semiample, hence it defines
a fibration X → Z, and we can further analyse X with the aid of this map. In this
case, we also say that X is the (absolute) minimal model. If KX is not nef, then
one can show that either there exists a morphism ϕ : X → Z to a smooth projective
curve Z such that X is a P1-bundle over Z via ϕ, or X ' P2. In these last two cases,
one says that X is a Mori fibre space. This gives the following hard dichotomy for
surfaces: the end product of the classification is either a minimal model (unique up
to isomorphism) if κ(X) ≥ 0 or a Mori fibre space if κ(X) = −∞.

1.1.2 Higher dimensions

One of the ingenious insights of Mori was introducing a new criterion for determining
whether a variety X is a minimal model:

Is KX nef?

There are many reasons why this is a meaningful question to pose. First, it
makes sense by analogy with surfaces. Second, on a random (smooth, projective)
variety X it is usually very hard to find any useful divisors, especially those which
carry essential information about the geometry of X – the only obvious candidate
is KX , by its very construction.

Further, in an ideal situation we would have that KX is ample – indeed, this
would mean that some multiple of KX itself gives an embedding into a projective
space, and that it enjoys many nice numerical and cohomological properties. There-
fore, assume that KX is pseudoeffective. Then, a reasonable question to pose is:

Is there a birational map f : X 99K Y such that the divisor f∗KX is ample?
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Here the map f should not be just any birational map, but a birational contraction
– in other words, f−1 should not contract divisors. This is an important condition
since the variety Y should be in almost every way simpler thanX; in particular, some
of its main invariants, such as the Picard number, should not increase. Likewise,
we would like to have KY = f∗KX , and this will almost never happen if f extracts
divisors (take, for instance, an inverse of almost any blowup).

Further, we impose that f should preserve sections of all positive multiples of
KX . This is also important, since global sections are something we definitely want
to keep track of, if we want the divisor KY = f∗KX to bear any connection with
KX . Another way to state this is as follows. Consider the canonical ring of X:

R(X,KX) =
⊕
m∈N

H0(X,mKX).

Then we require that f induces an isomorphism between R(X,KX) and R(Y,KY ).

We immediately see that the answer to the question above is in general “no” –
the condition would imply that KX is a big divisor. In fact, and perhaps surprisingly,
the converse is true by the following theorem of Reid [Rei80, Proposition 1.2]:

Theorem 1.2. Let X be a smooth variety of general type, and assume that the
canonical ring R(X,KX) is finitely generated. Denote Y = ProjR(X,KX), and let
ϕ : X 99K Y be the associated map. Then ϕ is a birational contraction and KY is
ample.

Proof. To start with, recall that by [Bou89, III.1.2], there exists a positive integer
d such that R(X, dKX) is generated by H0(X,OX(dKX)). Let (p, q) : W → X × Y
be the resolution of the linear system |dKX |: in other words, W is smooth, and the
movable part of the linear system p∗|dKX | is basepoint free. To obtain this, we first
apply [Har77, Example II.7.17.3], and then Hironaka’s resolution of singularities.

W

p
��

q

&&
X

ϕ // Y

For each positive integer m, denote by Mm and Fm the movable part and the fixed
part of p∗(mdKX), respectively. Then the fact that R(X, dKX) is generated by
H0(X,OX(dKX)) implies that Mm = mM1 and Fm = mF1 for all m, and it is easy
to see that the map q is just the semiample (Iitaka) fibration associated to M1.
Moreover, by passing to a multiple, we may assume without loss of generality that
the map q is actually the morphism associated to the linear system |M1|. Then
OW (M1) = q∗OY (1) for a very ample line bundle OY (1) on Y .
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Denote n = dimX, and let Γ be a component of F1. To show that ϕ is
a contraction, we need to show that Γ is contracted by q, or equivalently, that
h0(q(Γ),Oq(Γ)(m)) ≤ O(mn−2).

Since OW (Mm) = q∗OY (m) and the natural map Oq(Γ) → q∗OΓ is injective, we
have

h0(q(Γ),Oq(Γ)(m)) ≤ h0(q(Γ),OY (m)⊗ q∗OΓ) = h0(Γ,OΓ(Mm)). (1.1)

There exists effective Cartier divisors G+ and G− on Γ such that OΓ(Γ) ' OΓ(G+−
G−). Consider the exact sequences

0→ H0(Γ,Mm|Γ −G−)→ H0(Γ,Mm|Γ)→ H0(G−,Mm|G−) (1.2)

and

0→ H0(W,Mm)→ H0(W,Mm + Γ)→ H0(Γ, (Mm + Γ)|Γ)→ H1(W,Mm). (1.3)

Since Fm = mF1, the divisor Γ is a component of Fm, hence the first map in (1.3)
is an isomorphism and the last map in (1.3) is an injection. Therefore, from (1.1),
(1.2) and (1.3) we have

h0(q(Γ),Oq(Γ)(m)) ≤ h0(Γ,Mm|Γ) ≤ h0(Γ,Mm|Γ −G−) + h0(G−,Mm|G−)

≤ h0(Γ, (Mm + Γ)|Γ) + h0(G−,Mm|G−) ≤ h1(W,Mm) + h0(G−,Mm|G−).

As dimG− = n−2, we have h0(G−,Mm|G−) ≤ O(mn−2), hence it is enough to show
that h1(W,Mm) ≤ O(mn−2). To this end, from the Leray spectral sequence

Hp(Y,R1−pq∗OW (Mm))⇒ H1(W,OX(Mm))

we have
h1(W,Mm) ≤ h0(Y,R1q∗OW (Mm)) + h1(Y, q∗OW (Mm)).

The terms h1(Y, q∗OW (Mm)) = h1(Y,OY (m)) vanish for m� 0 by Serre vanishing,
so we need to prove

h0(Y,R1q∗OW (Mm)) ≤ O(mn−2). (1.4)

Let U ⊆ Y be the maximal open subset over which q is an isomorphism. By
[Har77, III.11.2], for each m the sheaf R1q∗OW (Mm) is supported on the set Y \ U
of dimension at most n − 2, hence χ(Y,R1q∗OW (Mm)) ≤ O(mn−2). But by Serre
vanishing again,

hi(Y,R1q∗OW (Mm)) = hi(Y,R1q∗OW ⊗OY (m)) = 0

vanish for m� 0 and all i > 0, and this implies (1.4).
Finally, to see that KY is ample, let X0 be an open subset of X and let Y0 be

an open subset of Y such that codimY (Y \ Y0) ≥ 2 such that Y0 is smooth and
ϕ|X0 : X0 → Y0 is an isomorphism. Then it is clear that KX0 = (ϕ|X0)

∗(KY0), and
since OX0(dKX0) = (ϕ|X0)

∗OY0(1), the divisor KY is ample by Hartogs principle.
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We now return to the question we posed above, and see if we can modify it to
something more probable. We can settle for something weaker, but still sufficient for
our purposes: we require that the divisor KY is semiample. This then still produces
an Iitaka fibration g : Y → Z and an ample divisor A such that KY = g∗A, and
the composite map X 99K Z, which is now not necessarily birational, gives an
isomorphism of section rings R(X,KX) and R(Z,A). In particular, this would
imply that the canonical ring R(X,KX) is finitely generated. This would clearly be
astonishing: we would be able to construct a projective variety Z = ProjR(X,KX).
In fact, the wish that the canonical ring is finitely generated predates the modern
Minimal Model Program, and goes back to the seminal work of Zariski [Zar62]:

Conjecture 1.3. Let X be a smooth projective variety. Then the canonical ring
R(X,KX) is finitely generated.

This conjecture gives another justification for the abovementioned wishful think-
ing. It was proved by Mumford on surfaces (in the appendix to the same paper of
Zariski), and in general in [BCHM10, CL12].

Historically, by the influence of the classification of surfaces on the way we think
about higher dimensional classification, this splits into two problems: finding a bi-
rational map f : X 99K Y such that the divisor KY = f∗KX is nef; and then proving
that the nef divisor KY is semiample. This last part – the Abundance conjecture –
is one of main open problems in higher dimensional geometry, in dimensions at least
4. We know it holds in dimensions up to 3 [Miy88b, Miy88a, Kaw92], and when the
canonical divisor is big [Kaw84], but very little is known in general.

Thus, hopefully by now it is clear that the main classification criterion is whether
the canonical divisor KX is nef. If KX is nef, we are done, at least with the first part
of the programme above. Life gets much tougher, but also much more interesting
when the answer is no.

1.1.3 The Cone and Contraction theorems

Indeed, let NE(X) ⊆ N1(X)R denote the closure of the cone spanned by the numer-
ical classes of effective curves; note that the nef cone Nef(X) is dual to NE(X) by
Nakai’s criterion, with respect to the intersection pairing. Since KX is not nef, the
hyperplane

K⊥X = {C ∈ N1(X)R | KX · C = 0} ⊆ N1(X)R

must cut the cone NE(X) into two parts; let us denote the two pieces by NE(X)KX≥0

and NE(X)KX<0. Then the celebrated Cone theorem of Mori tells that the negative
part NE(X)KX<0 is locally rational polyhedral. More precisely:
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Theorem 1.4. Let X be a smooth projective variety. Then there exist countably
many extremal rays Ri of the cone NE(X) such that KX ·Ri < 0 and

NE(X) = NE(X)KX≥0 +
∑

Ri.

Moreover, for every ample Q-divisor H on X, there exist finitely many such rays R′i
with

NE(X) = NE(X)KX+H≥0 +
∑

R′i.

In particular, the rays Ri are discrete in the half-space NE(X)KX<0.

Recall that an extremal ray R of a closed convex cone C, in the sense of convex
geometry, is a linear subset of C satisfying the following condition: if u+ v ∈ R for
u, v ∈ C, then necessarily u, v ∈ R. Note that in the theorem, the second statement
implies the first, by letting H → 0, and it implies that the rays Ri can accumulate
only on the hyperplane K⊥X . This is the standard formulation, and the proof can be
found in any treatise of the subject. We will prove an analogue of this statement a
bit later in the course.

There is an additional statement that we can contract any of the extremal rays
Ri – this is the Contraction theorem of Kawamata and Shokurov.

Theorem 1.5. With the notation from Theorem 1.4, fix any of the rays R = Ri.
Then there exists a morphism with connected fibres

contR : X → Y

to a normal projective variety Y such that a curve is contracted by contR if and only
if its class lies in R.

The importance of the Contraction theorem is two-fold. First, it is clear that
such a contraction has to be defined by a basepoint free divisor L with L · R = 0;
in general, it is very difficult to show the existence of a single non-trivial non-ample
basepoint free divisor on a variety – the conclusion that there are many of them is
clearly astonishing.

Second, we want to eventually end up with a variety on which the canonical
divisor is nef, i.e. it has no extremal rays as above. We therefore hope that by
contracting some of the rays we can make the situation better. We will see below
that this is not necessarily the case, at least not immediately. However, I will argue
that life indeed gets better, at least if we choose carefully which rays to contract.

1.1.4 Contractions in the MMP

Let us go back to the procedure in the Minimal Model Program. The Cone and
Contraction theorems tell us that that if we pick a KX-negative extremal ray R, we
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can contract it to obtain another normal projective variety Y , and we hope that it
shares many of the properties of X that we started with, for instance Q-factoriality.
Here the situation branches into three distinct cases.

Assume first that dimY < dimX. Then it can be shown that Y is Q-factorial,
that its singularities are manageable in a sense which I will define later, and note
that the general fibre of contR is a Fano variety. Then we declare our procedure
finished – varieties of this form can then be studied via the general fibre and the
base Y , and indeed they form a well studied class called Mori fibre spaces, like in
the surface case.

Assume next that the map contR is birational, and that the exceptional set of
the map contR contains a prime divisor E. Then, in fact, we will prove later that
we have Exc(contR) = E, and moreover, Y is also Q-factorial. In this case, we say
that contR is a divisorial contraction. A drawback is that Y is no longer necessarily
smooth, but still it has singularities which are very close to the smooth case, and we
can continue our programme on Y . However, something changed for the better: the
Picard number dropped by 1 since we contracted the divisor E; our variety became
simpler.

Assume next that the exceptional set of the map contR does not contain a prime
divisor, i.e. that we have codimX Exc(contR) ≥ 2. In this case, we say that contR
is a flipping contraction. This situation is bad: not only do we have that Y is not
Q-factorial, but even KY = (contR)∗KX is not a Q-Cartier divisor. Indeed, since
contR is an isomorphism in codimension 1, we have KX = cont∗RKY . If C is a curve
contracted by contR, then KX · C < 0, and by the projection formula this equals
KY · (contR)∗C = 0, a contradiction.

The great insight of Mori, Reid and others is this. Note that the divisor KX is
anti-ample with respect to the map contR, and the result that we want to end up
with in the end should give the canonical divisor which is nef. Thus, it is a natural
thing to try to construct at least a birational map X+ → Y which “turns the sign”
of all curves contracted by contR; in other words, it “flips” them. Therefore, we
would like to have a diagram:

X
ϕ //

contR   

X+

cont+R}}
Y

such that X+ is Q-factorial and KX+ is ample with respect to cont+
R.

This diagram, or just the map ϕ, is called the flip of contR. Since, by our
requirements, the map ϕ should not extract divisors, the morphism cont+

R is also an
isomorphism in codimension 1. It is then not too difficult, but crucial, to show that
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the existence of the diagram is equivalent to the fact that the relative canonical ring

R(X/Y,KX) =
⊕
n∈N

(contR)∗OX(nKX)

is finitely generated as a sheaf of algebras over (contR)∗OX = OY , and moreover,
then X+ = ProjY R(X/Y,KX); this is proved in exactly the same way as Theorem
1.2. It immediately follows from the Cone theorem that X+ is Q-factorial and that
the Picard number of X+ is the same as that of X.

Figure 1.1: Minimal Model Programme in higher dimensions

The flip as above is by now proved to exist in any dimension. The first proof for
threefolds was given by Mori in [Mor88], and in general in [BCHM10].

Thus, the variety X+ has all the desired features similar to X, so we continue
the procedure with X+ instead of X (again, as in the case of divisorial contractions,
we lose smoothness, but we are all right if we slightly enlarge our category). Un-
fortunately, it is not easy to find an invariant of varieties which behaves well under
flips; the only such example currently exists on threefolds. It is, therefore, a crucial
problem to find a sequence of divisorial contractions and flips which terminates.

To summarise, our classification procedure – the Minimal Model Program – looks
like the algorithm in Figure 1.1.

1.1.5 Pairs and their singularities

It has become clear in the last several decades that sometimes varieties are not the
right objects to look at – often, it is much more convenient to look at pairs (X,∆),
where X is a normal projective variety and ∆ is a Weil Q-divisor on X such that
KX + ∆ is Q-Cartier. There are plenty of reasons for looking at these objects: they
obviously generalise the concept of a (Q-Gorenstein) variety (by taking ∆ = 0),
they are closely related to open varieties X \ Supp ∆. For us, there are other, more
practical reasons why it seems essential to consider this enlarged setting: it is logical
that the proofs should go by induction on the dimension, and if one wants to use
adjunction formula, one has to consider pairs. Finally, consider a minimal model X
and a morphism ϕ : X → Z given as the Iitaka fibration of the semiample divisor
KX . When KX is not big, it is in general hopeless to expect that KX ∼Q ϕ

∗KZ as
in Theorem 1.2. However, it can be shown that there exists an effective Q-divisor
∆ on Z such that the pair has nice properties (in the sense explained a bit below)
and such that KX ∼Q ϕ

∗(KZ + ∆), cf. [Amb05].
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Valuations. Before we see what a good notion of a pair is, we make a brief detour
to define geometric valuations on the field of rational functions k(X) of a normal
projective variety X.

Let X be a variety. A prime divisor over X is any prime divisor E on a proper
birational model f : Y → X, where Y is a normal variety. If η ∈ Y is the generic
point of E, the local ring OY,η ⊆ k(X) is a discrete valuation ring which corresponds
to the valuation multE given by the order of vanishing of an element ϕ ∈ k(X). We
call such a valuation on k(X) a geometric valuation. Note that the transcendence
degree of the residue field k(η) over C is dimX − 1. This gives a valuation on
the set DivR(X) of R-Cartier divisors on X by setting multE D := multE f

∗D for
D ∈ DivR(X). Similarly, if we have a linear system |D|, then

multE |D| = inf{multE D
′ | D′ ∈ |D|}.

If b|D| ⊆ k(X) is the ideal sheaf of the base locus of |D|, we set multE b|D| =
inf{multE f | f ∈ b|D|}; it is clear that multE b|D| = multE |D|. It is easy to see that

multE b|D| = multE b|D|, where the last ideal is the integral closure of the base ideal
inside of k(X).

Let f ′ : Y ′ → X be another birational morphism and let E ′ ⊆ Y ′ be a prime
divisor. Then we have multE = multE′ if and only if the induced birational map
Y 99K Y ′ is an isomorphism at the generic points of E and E ′. Therefore, the
discrepancies a(E,X,∆) (defined below) depend only on the valuation multE and
not on the choice of the birational model f . We often do not distinguish between
the valuation multE and a particular choice of the divisor E. And similarly for the
set cX(E) = f(E) ⊆ X, the centre of the valuation E on X.

Given a valuation E, it is an important question whether E can be reached from
X by a sequence of blowups. The following result of Zariski shows precisely that.

Lemma 1.6. Let X be a proper variety over a field k. Let R be a DVR of k(X) with
the maximal ideal m, and such that trdeg(R/m : k) = dimX − 1. Let Y = SpecR,
let y ∈ Y be its unique closed point and let f : Y → X be the birational morphism
given by the valuative criterion of properness. Define a sequence of varieties and
maps as follows: set X0 = X, f0 = f . If fi : Y → Xi is already defined, let Zi ⊆ Xi

be the closure of the point xi = fi(y), let Xi+1 be the blowup of Xi at Zi, and
let fi+1 : Y → Xi+1 be the birational morphism given by the valuative criterion of
properness. Then fn induces an isomorphism OXn,xn ' R for some n ≥ 0.

Recall that a valuation ν on R is given by ν(g) = max{s ∈ Z | g ∈ ms} for
g ∈ k(X) \ {0}. In our case, R = OY,η and Z0 = cX(E). Hence, the lemma says
that we can reach a valuation by repeatedly blowing up its centre. The proof can
be found in [KM98, Lemma 2.45].
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When working with questions where finite generation of rings is involved, it
is necessary to think about not only the linear system associated to a divisor D,
but also to that of all of its multiples. Hence, fix a geometric valuation Γ over an
algebraic variety X. If D is an effective Q-Cartier divisor, then the asymptotic order
of vanishing of D along Γ is

oΓ(D) = inf{multΓD
′ | D ∼Q D

′ ≥ 0},

or equivalently,

oΓ(D) = inf
1

k
multΓ |kD|

over all k sufficiently divisible. It is straightforward to see that each oΓ is a homo-
geneous function of degree 1, that

oΓ(D +D′) ≤ oΓ(D) + oΓ(D′)

for every two effective Q-divisors D and D′, and that

oΓ(A) = 0

for every semiample divisor A.

Singularities of pairs. Now assume we are given a pair (X,∆), and let f : Y → X
be a log resolution of the pair, i.e. f is a projective birational morphism such that
Y is smooth, the set Exc f is a divisor, and the support of the divisor Exc f ∪ f ∗∆
has simple normal crossings. Then it is easy to see that there exists a Q-divisor R
on Y such that

KY = f ∗(KX + ∆) +R.

The divisor R is supported on the proper transform of ∆ and on the exceptional
divisors of f . For every prime divisor E on Y , we denote the coefficient of E in R
by a(E,X,∆), called the discrepancy of E with respect to the pair (X,∆), and set
d(X,∆) = inf{a(E,X,∆)}, where the infimum is over all prime divisors lying on
some birational model Y → X. It is easy to see that d(X,∆) ≤ 1.

We want to see how one can effectively calculate the divisor R. We claim that
there is the following dichotomy: either d(X,∆) ≥ −1, or d(X,∆) = −∞. To see
this, we first need a preparatory lemma, the proof is an exercise.

Lemma 1.7. Let X be a smooth variety and let ∆ =
∑
δi∆i be a Q-divisor on X.

Let Z be a closed subvariety of X of codimension k. Let π : Y → X be the blow up
of Z and let E ⊆ Y be the irreducible component of the exceptional divisor which
dominates Z. Then

a(E,X,∆) = k − 1−
∑

δi multZ ∆i.
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Now, to see the claim, let E be a divisor on a birational model Y → X such that
a(E,X,∆) = −1 − ε for some ε > 0. By taking a log resolution, we may assume
that Y is smooth, and that the divisor ∆Y = f ∗(KX + ∆)−KY has simple normal
crossings. Then it is easy to see that a(F,X,∆) = a(F, Y,∆Y ) for every prime
divisor on a birational model over X. Let Z0 ⊆ Y be a closed set of codimension 2
which is contained in E but not in any other f -exceptional divisor or in f−1

∗ ∆, and let
π1 : Y1 → Y be the blowup of Z0 with exceptional divisor E1. Then a(E1, X,∆) = −ε
by the previous lemma. Now for every m ≥ 2, let Zm−1 ⊆ Ym−1 be the intersection
of Em−1 and the proper transform of E on Ym−1, and let πm : Ym → Ym−1 be the
blowup of Ym−1 along Zm−1. Then again the discrepancy calculation shows that
a(Em, X,∆) = −mε, hence lim

m→∞
a(Em, X,∆) = −∞.

This shows that there is a clear cut between pairs which satisfy d(X,∆) ≥ −1
and other pairs. It is possible to write down an example of a pair with d(X,∆) < −1
such that the canonical ring is not finitely generated, hence no reasonable definition
of the Minimal Model Program can run for (X,∆). Hence, we have to restrict
ourselves to pairs with d(X,∆) ≥ −1, in which case we say that the pair (X,∆) has
log canonical singularities, or just that it is log canonical. This is the largest class
where the Minimal Model Program can be possibly expected to work. However, we
are in good company here: we can view smooth varieties X as pairs (X, 0), and
they are definitely log canonical – moreover, we have d(X, 0) > 0 by the classical
ramification formula.

However, in this course, we will restrict ourselves to a subclass of pairs with klt
singularities : they are precisely pairs with d(X,∆) > −1. The reason is purely
practical – the experience in the Minimal Model Program shows that these varieties
behave much better than pairs with d(X,∆) = −1, and we simply know many more
results for klt pairs than for log canonical pairs in general. It is also useful to note
that it can be shown the klt condition can be shown on only one log resolution
Y → X and not on all – this is an easy consequence of Lemma 1.6 and is left as an
exercise.

A good way to think about klt pairs is to assume from the start that X is smooth,
that Supp ∆ has simple normal crossings, and that all coefficients of ∆ lie in the
open interval (0, 1). It is a fun exercise to prove that such a pair indeed has klt
singularities.

Also of importance for us is that this is an open condition, in the following sense.
Say you have at hand a klt pair (X,∆) with X being Q-factorial, and that you have
an effective Q-divisor D on X. Then for all rational 0 ≤ ε� 1, the pair (X,∆+εD)
is again klt. This is easy to see from the definition.

Therefore, divisors of the form KX +∆ are of special importance for us, and they
are called adjoint divisors. Now we set up the Minimal Model Program in the case
of pairs in exactly the same way as before, replacing KX by KX + ∆ everywhere.
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We will below construct the special version of this procedure when the pair (X,∆)
is klt and the divisor ∆ is big.

Generalisations of Zariski’s conjecture. The generalised Zariski’s conjecture
says that the (log) canonical ring

R(X,KX + ∆) =
⊕
m∈N

H0(X,m(KX + ∆))

of a log canonical pair (X,∆) is finitely generated. When the pair at hand is klt,
this is now a theorem [BCHM10, CL12].

A note on the notation above. If X is a normal projective variety with the field
of rational functions k(X), and D is a Q-divisor on X, then we define the global
sections of D by

H0(X,D) = {f ∈ k(X) | div f +D ≥ 0}.
Note that, even though D might not be an integral divisor, this makes perfect sense,
and that H0(X,D) = H0(X, bDc), where the latter H0 is the vector space of global
sections of the standard divisorial sheaf OX(bDc). This is compatible with taking
sums: in other words, there is a well-defined multiplication map

H0(X,D1)⊗H0(X,D2)→ H0(X,D1 +D2).

Now, if we are given a bunch of Q-divisors D1, . . . , Dr on X, we can define the
corresponding Nr-graded divisorial ring as

R = R(X;D1, . . . , Dr) =
⊕

(n1,...,nr)∈Nr
H0(X,n1D1 + · · ·+ nrDr).

When r = 1, this generalises the standard notion of the section ring R(X,D1). A
special case of the divisorial ring above is when all Di are (multiples of) adjoint
divisors – we then say that the ring R is an adjoint ring .

The following lemma summarises the main tools when operating with finite gen-
eration of divisorial rings. The proof can be found in [ADHL10].

Lemma 1.8. Let X be a Q-factorial projective variety, and let D1, . . . , Dr be Q-
divisors on X.

(1) If p1, . . . , pr ∈ Q+, then the ring R(X; p1D1, . . . , prDr) is finitely generated if
and only if the ring R(X;D1, . . . , Dr) is finitely generated.

(2) Let G1, . . . , G` be Q-divisors such that Gi ∈
∑

R+Di for all i. If the ring
R(X;D1, . . . , Dr) is finitely generated, then the ring R(X;G1, . . . , G`) is finitely
generated.
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Now we are ready to state the most important example of a finitely generated
divisorial ring.

Theorem 1.9. Let X be a Q-factorial projective variety, and let ∆1, . . . ,∆r be big
Q-divisors such that all pairs (X,∆i) are klt.

Then the adjoint ring

R(X;KX + ∆1, . . . , KX + ∆r)

is finitely generated.

This was first proved in [BCHM10] by employing the full machinery of the classi-
cal MMP: the idea is to prove that a certain version of the Minimal Model Program
works, and then to deduce the finite generation as a consequence of the generalised
Zariski’s conjecture above. The rough sketch is as follows. By taking a log reso-
lution, we may assume that X is smooth and the support of the divisor

∑
∆i has

simple normal crossings. Let m be a positive integer such that Di = m(KX + ∆i) is
integral for every i, let E =

⊕r
i=1OX(Di), and let Y = P(E). Then it is easy to see

that for every nonnegative integer k we have

H0(Y,OY (k)) = H0(X,SkE) =
⊕

n1+···+nr=k

H0(X,n1D1 + · · ·+ nrDr),

hence the divisorial ring above is isomorphic to R(Y,OY (1)). Now a bit more work
shows that there is a divisor ∆Y on Y such that (Y,∆Y ) is klt, and we are done by
Lemma 1.8.

However, of importance for us in this course is that Theorem 1.9 can be proved
without the Minimal Model Program, and this was done in [Laz09, CL12]. We will
prove it later in the course. In this chapter, we will see how Theorem 1.9 implies all
the known results in the Minimal Model Program in a rather quick way.

1.2 Proof of the Cone and Contraction theorems

We will derive the Cone and Contraction theorems for klt pairs from Theorem 1.9.
We first need some preparation.

1.2.1 Valuations and divisorial rings

Let X be a normal projective variety and let D1, . . . , Dr be Q-Cartier Q-divisors
on X. Consider the divisorial ring R = R(X;D1, . . . , Dr) as above. Then we have
a corresponding cone C =

∑
R+Di which sits in the space of R-divisors DivR(X).
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Inside C, there is another, much more important cone – the support of R. This
cone, SuppR, is defined as the convex hull of all integral divisors D ∈ C which have
sections, i.e. H0(X,D) 6= 0.

Now we have all the theory needed to state the result which gives us the main
relation between finite generation and the behaviour of linear systems.

Theorem 1.10. Let X be a normal projective variety, and let D1, . . . , Dr be Q-
Cartier Q-divisors on X. Assume that the ring R = R(X;D1, . . . , Dr) is finitely
generated. Then:

(1) SuppR is a rational polyhedral cone,

(2) if SuppR contains a big divisor, then all pseudo-effective divisors in
∑

R+Di

are in fact effective,

(3) there is a finite rational polyhedral subdivision SuppR =
⋃ Ci into cones of

maximal dimension, such that oΓ is linear on Ci for every geometric valuation
Γ over X,

(4) there exists a positive integer k such that oΓ(kD) = multΓ |kD| for every inte-
gral divisor D ∈ SuppR and every geometric valuation Γ over D.

Proof. For (1), pick generators fi of R, and let Ei ∈
∑

R+Di be the divisors such
that fi ∈ H0(X,Ei). Then clearly SuppR =

∑
R+Ei.

For (2), fix a big divisor B in SuppR, and let D ∈∑R+Di be a pseudoeffective
divisor. Observe that every divisor in the interval (D,B] is big, hence (D,B] ⊆
SuppR. But then [D,B] ⊆ SuppR since SuppR is closed by (1).

We extract the proofs of (3) and (4) verbatim from the proof of [ELM+06, The-
orem 4.1]. Consider the system of ideals (bn)n=(n1,...,nr)∈Nr , where bn is the base
ideal of the linear system |n1D1 + . . . nrDr|. This is a finitely generated system of
ideals, so by [ELM+06, Proposition 4.7] there is a rational polyhedral subdivision
Rr

+ =
⋃Di and a positive integer d such that for every i, if ei1, . . . , e

i
s are generators

of Nr ∩ Di, then

bd
∑
j pje

i
j

=
∏

j b
pj
deij

for every (p1, . . . , ps) ∈ Ns. Since a valuation of an ideal is equal to that of its
integral closure, we deduce that for every geometric valuation Γ of X, oΓ is linear
on each of the cones Ci = SuppR ∩ Di, and we can take k = d.

A simple, but as we will see important consequence is the following.

Lemma 1.11. Let X be a normal projective variety and let D be an effective Q-
Cartier Q-divisor on X. Then D is semiample if and only if R(X,D) is finitely
generated and oΓ(D) = 0 for all geometric valuations Γ over X.
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The proof is very simple: if D is semiample, then the statement is classical.
Conversely, for every point x ∈ X, Theorem 1.10 implies that x does not belong to
the base locus of the linear system |mD| for m sufficiently divisible.

As a demonstration of the previous two results, we will see immediately how
inside the cone SuppR, all the cones that we can imagine behave nicely. As we will
see, the following is effectively the proof of Mori’s Cone theorem [CL13, KKL12].

Proposition 1.12. Let X be a normal projective variety, and let D1, . . . , Dr be Q-
Cartier Q-divisors on X. Assume that the ring R = R(X;D1, . . . , Dr) is finitely
generated, and denote by π : DivR(X) → N1(X)R the natural projection. Assume
that SuppR contains an ample divisor. Then the cone SuppR ∩ π−1

(
Nef(X)

)
is

rational polyhedral, and every element of this cone is semiample.

Proof. Let SuppR =
⋃ Ci be a finite rational polyhedral subdivision as in Theo-

rem 1.10, and let Γ be a prime divisor over X. If the relative interior of C` contains
an ample divisor, then oΓ|C` ≡ 0 for every Γ since oΓ is a linear non-negative function
on C`. Hence, every element of C` is semiample by Lemmas 1.8 and 1.11, and so
C` ⊆ SuppR ∩ π−1

(
Nef(X)

)
. Therefore, the cone SuppR ∩ π−1

(
Nef(X)

)
is equal

to the union of some Ci, which suffices.

I next state the result which contains both the Cone and Contraction theorems.
The new statement lives in N1(X)R and, by duality, involves the nef cone. This
formulation has been known for a long time, and origins go back at least to [Kaw88].
However, it has only recently been realised [CL13, Theorem 4.2] that this statement
is much easier to prove than Theorems 1.4 and 1.5, once we have right tools at hand.

Theorem 1.13. Let (X,∆) be a projective klt pair such that KX + ∆ is not nef.
Let V be the visible boundary of Nef(X) from the class κ = [KX + ∆] ∈ N1(X)R:

V =
{
δ ∈ ∂ Nef(X) | [κ, δ] ∩ Nef(X) = {δ}

}
.

Then:

(1) every compact subset F which belongs to the relative interior of V , is contained
in a union of finitely many supporting rational hyperplanes of Nef(X),

(2) every Cartier divisor on X whose class belongs to the relative interior of V is
semiample.
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Proof. The proof is almost by picture. Note first that since KX + ∆ is not nef, the
class κ is not in Nef(X). The set V is then precisely the points that κ “sees” on
Nef(X).

Since F is compact, we can pick finitely many rational points w1, . . . , wm ∈
N1(X)R very close to F , such that F is contained in the convex hull of these points.
Then it is obvious that F belongs to the boundary of the cone Nef(X) ∩∑R+wi,
hence it is enough to show that this cone is rational polyhedral.

Note that since each wi is very close to F , and F belongs to the relative interior
of V , the line containing κ and wi will intersect the ample cone. Therefore, there
are rational ample classes αj and rational numbers tj ∈ (0, 1) such that

wj = tjκ+ (1− tj)αj.
For each j, choose an ample Q-divisor Aj which represents the class

1−tj
tj
αj such

that the pair (X,∆ +Aj) is klt (use Bertini’s theorem). Then wj is the class of the
divisor tj(KX + ∆ + Aj). By Theorem 1.9, the adjoint ring

R = R(X;KX + ∆ + A1, . . . , KX + ∆ + Am)

is finitely generated. Denote by π : DivR(X) → N1(X)R the natural projection.
Then

Nef(X) ∩
∑

R+wi ⊆ π(SuppR)

by Theorem 1.10(2), and the conclusion follows by Proposition 1.12.

It is an exercise(!) to show that the statement of this result is precisely dual
to the statement of the Cone theorem we saw before. It is now convenient to state
the following immediate corollary of Theorem 1.9; the proof is analogous but easier
than that of the Cone and Contraction theorems.

Corollary 1.14. Let (X,∆) be a projective klt pair where ∆ is big. If KX + ∆ is
pseudoeffective, then it is effective. If KX + ∆ is nef, then it is semiample.

Proof. Let A be an ample Q-divisor on X such that the pair (X,∆ + A) is klt. By
Theorem 1.9, the ring

R = R(X;KX + ∆, KX + ∆ + A)

is finitely generated, and SuppR = R+(KX + ∆) + R+(KX + ∆ + A) by parts (1)
and (2) of Theorem 1.10. This immediately implies the first statement.

If KX + ∆ is nef, the divisor KX + ∆ + εA is ample for each ε > 0, thus
oΓ(KX + ∆ + εA) = 0 for every geometric valuation Γ of X. Therefore, all oΓ are
identically zero on SuppR by Theorem 1.10(3), and thus KX + ∆ is semiample by
Lemmas 1.8 and 1.11.
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1.3 Properties of contractions and the existence

of flips

In this section, we keep the notation from the proof of Theorem 1.13. By that proof,
the cone N = SuppR ∩ π−1

(
Nef(X)

)
is rational polyhedral, and every element of

this cone is semiample. We pick any of its codimension 1 faces F . Then any line
bundle L in the relative interior of F gives a birational contraction f = fF : X → Y .
This map contracts the curves contained in the extremal ray R = π(F)⊥ ⊆ NE(X),
and only them. The next simple but very useful lemma tells us that the morphism
f does not depend on the choice of L.

Lemma 1.15. Let X, Y and Y ′ be varieties and let π : X → Y and π′ : X → Y ′ be
proper morphisms. Assume that π∗OX = OY and that π′ contracts each fibre of π.
Then there exists a morphism ξ : Y → Y ′ such that π′ = ξ ◦ π.

In particular, if π′ contracts every curve contracted by π, then π′ factors through
π.

Proof. Let Z be the image of the proper morphism ψ = (π, π′) : X → Y × Y ′ and
let p : Z → Y and p′ : Z → Y ′ be the two projections; note that π = p ◦ ψ and
π′ = p′ ◦ψ, and that p is proper. For any point y ∈ Y , the fibre π−1(y) is contracted
by ψ by assumption, hence p−1(y) = ψ(π−1(y)) is a point. We have

OY ⊆ p∗OZ ⊆ p∗ψ∗OX = π∗OX = OY ,

which implies p∗OZ = OY , and hence p is an isomorphism. We set ξ = p′ ◦ p−1.
For the second statement, it is enough to show that every two points x and y in

a fibre F of π can be connected by a curve lying in F . To see this, note that F is
connected. By first blowing up x and y in F , and taking a resolution of singularities,
we obtain a birational morphism f : F ′ → F from a smooth projective scheme F ′

and two prime divisors E and E ′ on F ′ such that f(E) = {x} and f(E ′) = {y}.
If H is an irreducible very ample divisor on F ′, then H intersects E and E ′, hence
f(H) is a connected prime divisor in F containing x and y. We finish by induction
on the dimension.

We start our analysis of the map f . First we note the following important
property, which says that over Y , the numerical and the linear equivalence of divisors
coincide.

Lemma 1.16. Let M be a Q-divisor on X such that M ≡f 0. Then M ∼Q f
∗MY

for some Q-Cartier Q-divisor MY on Y .

Proof. First, note that for t = ρ(X)− 1, we can find Q-divisors Bi = KX + ∆ +Ai,
i = 1, . . . , t, in the relative interior of F such that M ≡ ∑λiBi for some nonzero
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rational numbers λi: indeed, by assumption, the set π(F) spans the hyperplane in
N1(X)R which is orthogonal to R, hence the class of M belongs to this hyperplane,
and we pick Bi so that their classes are suitable generators of that hyperplane. Note
that all Bi are semiample by Theorem 1.13. Denote

B′1 =
1

λ1

(
M −∑i≥2 λiBi

)
.

Then B′1 ≡ B1, hence B′1 = KX + ∆ + A′1 for some ample Q-divisor A′1, and
therefore B′1 is semiample by Corollary 1.14. Then by Lemma 1.15, the morphism
X → ProjR(X,B′1) is, up to isomorphism, equal to f . By the definition of f , there
are ample Q-divisors A′1 and Ai on Y such that B′1 ∼Q f

∗A′1 and Bi ∼Q f
∗Ai for all

i. Therefore M ∼Q f
∗MY for MY = λ1A

′
1 +

∑
i≥2 λiAi.

The following is the main result of this section.

Theorem 1.17. Let the notation and assumptions be as above. Then:

(1) if dimY < dimX, then Y is Q-factorial,

(2) if f is birational and if the exceptional locus of f contains a divisor, then this
locus is a single prime divisor, and Y is Q-factorial,

(3) if f is an isomorphism in codimension 1, then there exists a diagram

X
ϕ //

f   

X+

f+}}
Y

such that ϕ is an isomorphism in codimension 1 which is not an isomorphism,
and X+ is Q-factorial. The divisor KX+ + ϕ∗∆ is f+-ample.

We need the following important result in the proof of Theorem 1.17.

Lemma 1.18 (Negativity lemma). Let f : X → Y be a proper birational morphism
between normal varieties. Let −D be an f -nef Q-Cartier Q-divisor on X. Then D
is effective if and only if f∗D is.

Proof. The lemma is reduced to the surface case by cutting by dimX − 2 general
hyperplanes, and then it follows from the Hodge index theorem. The details are in
[KM98, Lemma 3.39] or [Deb01, Lemma 7.19].
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Proof of Theorem 1.17. We first show (1). Let P be a Weil divisor on Y and let
Y0 ⊆ Y be the smooth locus. Let P ′ ⊆ X be the closure of f−1(P |Y0). Then P ′ is
disjoint from the general fibre of f , hence P ′ ·C = 0 for every curve contracted by f .
By Lemma 1.16, there exists a Q-Cartier Q-divisor D on Y such that P ′ ∼Q f ∗D,
and therefore P ∼Q D.

To show (2), let E be an f -exceptional prime divisor on X. If E · C ≥ 0 for
some curve C contracted by f , then E is f -nef since all curves contracted by f are
numerically proportional, but this contradicts Lemma 1.18. Therefore, E · C < 0
for every curve C contracted by f , thus C ⊆ E, and so the exceptional locus of f
equals E.

Let P be any Weil divisor on Y , and let P ′ be its proper transform on X. Then
P ′ is Q-Cartier, and since all the curves contracted by f belong to the extremal ray
R ⊆ NE(X), there exists a rational number α such that P ′ ≡f αE. By Lemma 1.16
there exists a Q-Cartier Q-divisor D on Y such that P ′ ∼Q αE + f ∗D. Pushing
forward this relation by f , we obtain that the divisor P ∼Q D is Q-Cartier.

Now we show (3). Let SuppR =
⋃ Ci be the decomposition as in the proof of

Theorem 1.13. Then there is a cone Cj * π−1
(

Nef(X)
)

of dimension dim SuppR,
such that F is a face of Cj. Let G be any Cartier divisor in the interior of Cj,
and let ϕ : X 99K X+ = ProjR(X,G) be the birational map associated to G. We
claim that ϕ does not depend on the choice of G, and that there exists a morphism
f+ : X+ → Y as in (3). Assuming the claim, let us show how it completes the proof
of the theorem.

Nef(X)

SuppR

Cj

F
G

To this end, note first that ϕ is a birational contraction by Theorem 1.2. Since f
is an isomorphism in codimension 1, then so are ϕ and f+. Consider a Weil divisor
P on X+, and let P ′ be its proper transform on X. Since X is Q-factorial, the
divisor P ′ is Q-Cartier. Since all the curves contracted by f belong to R, there
exists a rational number α such that P ′ ≡f αG. By Lemma 1.16, there exists a
Q-Cartier Q-divisor D on Y such that P ′ ∼Q αG+ f ∗D. By the definition of ϕ, the
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divisor ϕ∗G is ample, hence Q-Cartier. Therefore, pushing forward this relation by
ϕ, we obtain that the divisor

P ∼Q αϕ∗G+ (f+)∗D

is Q-Cartier. The fact that the divisor KX+ + ϕ∗∆ is f+-ample follows similarly,
from the fact that ϕ∗G is an ample divisor and that KX+ +ϕ∗∆ and ϕ∗G lie on the
same side of the plane supporting ϕ∗F (exercise!).

Finally, we prove the claim stated above. Theorem 1.10 implies that we can find
a resolution θ : X̃ → X and a positive integer d such that Mob θ∗(dD) is basepoint
free for every Cartier divisor D ∈ SuppR. Denote M = Mob θ∗(dG). Then we have

the induced birational morphism ψ : X̃ → X+, which is just the Iitaka fibration
associated to M . We only show that the definition of ϕ does not depend on the
choice of G; the existence of the diagram as in (3) follows similarly.

X̃

θ
��

ψ

&&
X

ϕ // X+

Pick any other Cartier divisor G′ in the interior of the cone Cj, and let ψ′ : X̃ →
ProjR(X,G′) be the corresponding map. There exists a Cartier divisor G′′ in the
interior of Cj, together with positive integers r, r′, r′′ such that

rG = r′G′ + r′′G′′.

Denoting M ′ = Mob θ∗(dG′) and M ′′ = Mob θ∗(dG′′), then we have

rM = r′M ′ + r′′M ′′ (1.5)

(since all functions oΓ are linear on Cj), and the divisors M,M ′,M ′′ are basepoint

free. For any curve C on X̃ contracted by ψ we have M · C = 0, hence equation
(1.5) implies M ′ ·C = 0, and so C is contracted by ψ′. Reversing the roles of G and
G′, we obtain that ψ and ψ′ contract the same curves, therefore they are the same
map up to isomorphism.

Recall that in the case (1) of the theorem, the map f is a Mori fibre space; in
the case (2), the map f is a divisorial contraction; and in the case (3), the map ϕ
or the corresponding diagram is the flip of f .

Finally, when the map f is birational, then the resulting variety also has klt sin-
gularities – this shows that we stay in the same category of pairs in our programme:

Lemma 1.19. Let the notation and assumptions be as in Theorem 1.17. Then:
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(1) if f is a divisorial contraction, then the pair (Y, f∗∆) is klt,

(2) if f is an isomorphism in codimension 1, then the pair (X+, ϕ∗∆) is klt.

Proof. We only show (2), the proof of (1) is completely analogous. It suffices to prove
that for every geometric valuation E over X we have a(E,X,∆) ≤ a(E,X+,∆+),
where ∆+ = ϕ∗∆.

Let (g, g+) : Z → X×X+ be the resolution of the rational map ϕ such that E is
a divisor on Z – apply [Har77, Example II.7.17.3] and Lemma 1.6. Set h = f ◦ g =
f+ ◦ g+. From the relations

KZ ∼Q g
∗(KX + ∆) +

∑
a(E,X,∆) · E

and
KZ ∼Q (g+)∗(KX+ + ∆+) +

∑
a(E,X+,∆+) · E

we obtain that the divisor H =
∑

(a(E,X,∆) − a(E,X+,∆+)) · E is h-nef. Note
also that H is h-exceptional, since every prime divisor in its support is g-exceptional
or g+-exceptional. Then Lemma 1.18 implies that −H is effective, which is what we
needed.

1.4 Termination of the MMP

The variety X+, thus, has all the desired features similar to X, so we continue the
procedure with X+ instead of X. Unfortunately, it is not easy to find an invariant
of varieties which behaves well under flips; the only such example currently exists
on threefolds. It is, therefore, the crucial problem to find a sequence of divisorial
contractions and flips which terminates.

We know how to do this for a klt pair (X,∆), where ∆ is a big divisor, and this
was proved first in [BCHM10]. Here, I give an argument from [CL13] – I hope to
convince you that it is not too difficult to deduce it as a consequence of Theorem
1.9.

Lemma 1.20. Let X and Y be Q-factorial projective varieties and let f : X 99K Y
be a birational map which is an isomorphism in codimension one. Let C ⊆ DivR(X)
be a cone spanned by effective divisors and fix a geometric valuation Γ of X. Then
the asymptotic order of vanishing oΓ is linear on C if and only if it is linear on
f∗C ⊆ DivR(Y ).

Proof. For every rational D ∈ C, write

VD = {DX −D | D ∼Q DX and DX ≥ 0} ⊆ DivR(X)
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and
WD = {DY − f∗D | f∗D ∼Q DY and DY ≥ 0} ⊆ DivR(Y ).

Note that the elements of VD and WD are Q-linear combinations of principal divisors,
and we have the isomorphism f∗|VD : VD ' WD: indeed, let U ⊆ X and V ⊆ Y be
open subsets such that f|U : U → V is an isomorphism and codimY (Y \ V ) ≥ 2.
Then it is enough to show the claim by restricting to U and V , where it is obvious.
Similarly multΓ PX = multΓ f∗PX for every PX ∈ VD. Therefore

oΓ(D)−multΓD = inf
PX∈VD

multΓ PX = inf
PX∈VD

multΓ f∗PX = oΓ(f∗D)−multΓ f∗D,

hence the function oΓ(·) − oΓ

(
f∗(·)

)
: C → R is equal to the linear map multΓ(·) −

multΓ f∗(·). The claim now follows.

Theorem 1.21. Let (X,∆) be a projective Q-factorial klt pair with ∆ big. Then:

(1) if KX + ∆ is pseudoeffecive, there exists a sequence of (KX + ∆)-divisorial
contractions and (KX + ∆)-flips which terminates with a variety on which the
proper transform of KX + ∆ is semiample,

(2) if KX +∆ is not pseudoeffective, there exists a sequence of (KX +∆)-divisorial
contractions and (KX + ∆)-flips which terminates with a Mori fibre space.

Proof. Note that we may assume to start with that any sequence of birational con-
tractions starting from (X,∆) is a sequence of flips, since in divisorial contractions
the Picard rank drops by one.

Denote by π : DivR(X) → N1(X)R the natural projection. Similarly as in the
proof of Theorem 1.13, we choose ample Q-divisors A1, . . . , Am such that all the
pairs (X,∆+Ai) are klt, such that the cone π

(∑
R+(KX +∆+Ai)

)
has dimension

ρ(X), and that this cone contains an ample class.
By Theorem 1.9, the ring

R = R(X;KX + ∆, KX + ∆ + A1, . . . , KX + ∆ + Am)

is finitely generated, and denote C = SuppR. Let C =
⋃
i∈I Ci be the rational

polyhedral decomposition as in Theorem 1.10. Fix an ample divisor A such that if
the line ` passing through KX + ∆ and A intersects some codimension 1 face of a
cone Ci, then ` intersects the relative interior of that face. Set

λ = min{t ∈ R | KX + ∆ + tA is nef }.

Then by construction, KX + ∆ + λA belongs to the relative interior of F .
As in Theorems 1.13 and 1.17 we can construct a flip ϕ : X 99K X+ corresponding

to a birational contraction f : X → Y , which is an isomorphism in codimension 1,
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which in turn comes from a codimension 1 face F of the cone C∩π−1(Nef(X)) which
intersects the line `. By the proof of the cone theorem, we can assume that F is
also a face of some cone Cj.

The map ϕ is an isomorphism in codimension 1, hence it induces isomorphisms
DivR(X) ' DivR(X+) and

R ' R(X+;KX+ + ϕ∗∆, KX+ + ϕ∗∆ + ϕ∗A1, . . . , KX+ + ϕ∗∆ + ϕ∗Am).

The cone C+ = ϕ∗C ⊆ DivR(X+) has a decomposition C+ =
⋃
i∈I+ C+

i as in Theorem
1.10. Lemma 1.20 shows that we can assume that I = I+ and C+

i = ϕ∗Ci.
Recall that by Lemma 1.16, every L ∈ F is the pullback of a Q-Cartier Q-divisor

on Y , hence ϕ∗L ∈ DivR(X+) is also the pullback of a Q-Cartier Q-divisor on Y .
In particular, the divisor ϕ∗L is again nef, but not ample. In other words, the
set ϕ∗F belongs to the boundary of the cone Nef(X+). Note that the interiors of
the cones ϕ∗Nef(X) and Nef(X+) do not intersect, since otherwise ϕ would be an
isomorphism. Setting

λ+ = min{t ∈ R | KX+ + ϕ∗∆ + tϕ∗A is nef },

it is clear from the construction that λ+ < λ and that KX+ + ϕ∗∆ + λϕ∗A belongs
to the relative interior of a codimension 1 face of some cone C+

j . Since there are only
finitely many such faces, this process must terminate.

There are two cases. When KX +∆ is not pseudoeffecive, the process necessarily
stops with a Mori fibre space. If KX + ∆ is pseudoeffective, the process stops when
its proper transform becomes nef, and hence semiample by Corollary 1.14.

We finish by noting that this allows us to finish the MMP for all pairs of log
general type and for pairs which are not pseudoeffective:

Corollary 1.22. Let (X,∆) be a projective Q-factorial klt pair such that KX +∆ is
big. Then there exists a sequence of (KX +∆)-divisorial contractions and (KX +∆)-
flips which terminates with a variety on which the proper transform of KX + ∆ is
semiample.

Proof. By Kodaira’s trick, there exist an ample Q-divisor A and an effective Q-
divisor E such that KX + ∆ ∼Q A+ E. Setting ∆′ = ∆ + ε(A+ E) for 0 < ε� 1,
we have that ∆′ is a big divisor such that the pair (X,∆′) is klt, and

KX + ∆′ ∼Q (1 + ε)(KX + ∆).

Therefore all (KX + ∆)-extremal contractions are (KX + ∆′)-extremal contractions.
We conclude by Theorem 1.21.
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Corollary 1.23. Let (X,∆) be a projective Q-factorial klt pair such that KX +∆ is
not pseudoeffective. Then there exists a sequence of (KX+∆)-divisorial contractions
and (KX + ∆)-flips which terminates with a Mori fibre space.

Proof. Fix an ample divisor A on X. Then there exists 0 < µ � 1 such that
KX + ∆ + µA is also not pseudoeffective, thus all (KX + ∆)-extremal contractions
are (KX + ∆ + µA)-extremal contractions. We conclude by Theorem 1.21.
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Chapter 2

Finite generation of adjoint rings

2.1 The induction scheme

This chapter is devoted to the proof of Theorem 1.9. The proof is very technical,
but as before, I try to convince you that the main idea is very natural.

We say that a pair (X,∆) is log smooth is X is smooth and the support of ∆ has
simple normal crossings. Our first observation is that in order to prove Theorem
1.9, we can freely assume that everything in sight is log smooth. More precisely, we
concentrate on proving the following statement.

Theorem A. Let X be a smooth projective variety, and let ∆1, . . . ,∆r be Q-divisors
on X such that (X,∆i) is a log smooth pair and b∆ic = 0 for every i = 1, . . . , r. If
A is an ample Q-divisor on X, then the adjoint ring

R(X;KX + ∆1 + A, . . . ,KX + ∆r + A)

is finitely generated.

Lemma 2.1. Theorem 1.9 is equivalent to Theorem A.

Proof. It is clear that Theorem 1.9 implies Theorem A. For the converse, by Ko-
daira’s trick there exist an ample Q-divisor H ≥ 0 on X and effective divisors Ei
such that ∆i ∼Q Ei + H. Pick a rational number 0 < ε � 1, and set A = εH and
∆′i = (1− ε)∆i + εEi. Then KX + ∆i ∼Q KX + ∆′i +A, and the pair (X,∆′i +A) is
klt for every i since (X,∆i) is klt and ε� 1. Let f : Y → X be a log resolution of
the pair (X,

∑
∆i). For each i, let Γi, Gi ≥ 0 be Q-divisors on Y without common

components such that Gi is f -exceptional and KY + Γi = f ∗(KX + ∆i) + Gi. By
Hironaka’s theorem, we can find an f -exceptional Q-divisor F ≥ 0 on Y with arbi-
trarily small coefficients such that A′ = f ∗A − F is ample, and therefore we may
assume that bΓi + F c = 0 for all i. Then the ring

R(Y ;KY + Γ1 + F + A′, . . . , KX + Γr + F + A′)
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is finitely generated by Theorem A, hence the ring R(X;KX + ∆1, . . . , KX + ∆r) is
finitely generated by Lemma 1.8.

At this point, it is convenient to define several polytopes in the space DivR(X).
Before we proceed, we make a small detour into stable base loci and real linear
systems. During a course of the proof, we will see that we cannot avoid working
with R-divisors.

Definition 2.2. Let X be a smooth projective variety. If D is an R-divisor on X,
we denote

|D|R = {D′ ≥ 0 | D ∼R D
′} and B(D) =

⋂
D′∈|D|R

SuppD′,

and we call B(D) the stable base locus of D. We set B(D) = X if |D|R = ∅.

Lemma 2.3. Let X be a smooth projective variety.

(a) Let D be a Q-divisor on X. Then B(D) =
⋂
q Bs |qD| for all q sufficiently

divisible.

(b) Let D1, . . . , Dr be Q-divisors on X such that the ring R = R(X;D1, . . . , Dr) is
finitely generated and let D be an R-divisor in the cone

∑
R+Di ⊆ DivR(X).

Then D ∈ SuppR if and only if |D|R 6= ∅.

Proof. To show (a), note that we have B(D) ⊆ ⋂q Bs |qD|. To show the reverse
inclusion, fix a point x ∈ X \ B(D). Then there exist an R-divisor F ≥ 0, real
numbers r1, . . . , rk and rational functions f1, . . . , fk ∈ k(X) such that F = D +∑k

i=1 ri(fi) and x /∈ SuppF . Let W ⊆ DivR(X) be the subspace spanned by the
components of D and all (fi). Let W0 ⊆ W be the subspace of divisors R-linearly
equivalent to zero, and note that W0 is a rational subspace of W . Consider the
quotient map π : W → W/W0. Then the set {G ∈ π−1(π(D)) | G ≥ 0} is not empty
as it contains F , and it is cut out from W by rational hyperplanes. Thus, it contains
a Q-divisor D′ ≥ 0 such that D ∼Q D

′ and x /∈ SuppD′.
For (b), as above let F ≥ 0 be an R-divisor such that F ∼R D. Then there

exist real numbers r1, . . . , rk and rational functions f1, . . . , fk ∈ k(X) such that
F = D +

∑k
i=1 ri div fi, and let W ⊆ DivR(X) be the finite dimensional subspace

based by the components of D,D1, . . . , Dr and all div fi. Let W0 ⊂ W be the
subspace of divisors R-linearly equivalent to zero, and consider the quotient map
π : W → W/W0. Then the set G = π−1({G ∈ W | G ≥ 0})∩∑RDi is nonempty as
it contains D, and it is cut out in

∑
RDi by rational hyperplanes. If D /∈ SuppR,

then since SuppR is closed by Theorem 1.10(1), there exists a rational divisor
D′ /∈ SuppR such that |D′|R 6= ∅, which is a contradiction with (a).
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Definition 2.4. Let (X,S+
∑p

i=1 Si) be a log smooth projective pair, where S and
all Si are distinct prime divisors, let V =

∑p
i=1 RSi ⊆ DivR(X), and let A be a

Q-divisor on X. We define

L(V ) = {B =
∑
biSi ∈ V | 0 ≤ bi ≤ 1 for all i},

EA(V ) = {B ∈ L(V ) | |KX + A+B|R 6= ∅},
BSA(V ) = {B ∈ L(V ) | S * B(KX + S + A+B)}.

Several comments are in order. Note that the set L(V ) is a rational polytope by
definition – indeed, it is just a hypercube in V . One of the principal inputs in the
proof of Theorem 1.9 will be to show that EA(V ) and BSA(V ) are rational polytopes
when A is ample. The importance of BSA(V ) will be discussed shortly. First we note
that Theorem A immediately implies that EA(V ) is a rational polytope: indeed,
let ∆′i to be the vertices of L(V ), set ∆i = ∆′i − εb∆′ic for 0 < ε � 1, and let
Ai = A + εb∆′ic. Then the ring R = R(X;KX + ∆1 + A1, . . . , KX + ∆r + Ar) is
finitely generated by Theorem 1.9, and SuppR = R+(KX +A+ EA(V )). Hence we
have:

Theorem B. Let (X,
∑p

i=1 Si) be a log smooth projective pair of dimension n, where
S1, . . . , Sp are distinct prime divisors. Let V =

∑p
i=1 RSi ⊆ DivR(X), and let A be

an ample Q-divisor on X. Then EA(V ) is a rational polytope.

We will, actually, in the course of the proof use Theorem B to derive Theorem
A. More precisely, we use Theorem An to denote Theorem A in dimension n, and
similarly for other theorems. Then a rough scheme of the proof looks like this:

An−1 + Bn ⇒ An, An−1 + Bn−1 ⇒ Bn.

We will refine this induction scheme a little bit later. First we need the following
simple, but crucial example.

Definition 2.5. Let X be a smooth projective variety, let S be a smooth prime
divisor on X and let D be a Q-divisor on X. Fix η ∈ H0(X,OX(S)) such that
div η = S. From the exact sequence

0→ H0(X,OX(bDc − S))
·η−→ H0(X,OX(bDc)) ρS−→ H0(S,OS(bDc))

we define resS H
0(X,OX(D)) = im(ρS), and for σ ∈ H0(X,OX(D)), denote σ|S =

ρS(σ). Note that

ker(ρS) = H0(X,OX(D − S)) · η,
and that resS H

0(X,OX(D)) = 0 if and only if S ⊆ Bs |bDc|.
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For Q-divisors D1, . . . , D`, the restriction of R(X;D1, . . . , D`) to S is the ring

resS R(X;D1, . . . , D`) =
⊕

(n1,...,n`)∈N`
resS H

0
(
X,OX(n1D1 + · · ·+ n`D`)

)
.

Note that resS R(X,D) = 0 if and only if S ⊆ B(D).

Example 2.6. Let (X,S + B) be a log smooth pair, where bBc = 0 and S is a
prime divisor, and assume that there exists a positive rational number r such that
KX + S + B ∼Q rS. Then R(X,KX + S + B) is finitely generated if and only if
resS R(X/Z,KX + S +B) is finitely generated.

Indeed, the harder part is sufficiency, and by Lemma 1.8 it is enough to prove
that the ring R(X,S) is finitely generated. Again by Lemma 1.8 we have that
resS R(X,S) is finitely generated, and let θ1, . . . , θp be some homogeneous generators
of resS R(X,S). Choose Θ1, . . . ,Θp ∈ R(X,S) such that Θi|S = θs. Let σS ∈
H0(X,S) be a section such that div σS = S and let H = {σs,Θ1, . . . ,Θp}. Then H
is the set of generators of R(X,S): indeed, let ϕ ∈ R(X,S) be any homogeneous
section, say ϕ ∈ H0(X, dS) for some d ≥ 1. Then there exists a polynomial p ∈
C[X1, . . . , Xp] such that ϕ|S = p(θ1, . . . , θp). From the exact sequence

0→ H0(X, (d− 1)S)
·σS−−→ H0(X, dS)→ resS H

0(X, dS)→ 0

we get ϕ−p(Θ1, . . . ,Θp) = σS ·ϕ′ for some ϕ′ ∈ H0(X, (d−1)S), hence we conclude
by descending induction on d.

Note that in this example, resS R(X,KX + S + B) ⊆ R(S,KS + B|S). If we
had equality instead of inclusion, we would conclude by induction that the ring
R(X.KX + S +B) is finitely generated; however, this is almost never the case. The
second problem that we have to deal with in our proof of Theorem 1.9 is that the
above condition KX + S + B ∼Q rS also almost never happens; however, in the
context of the MMP, it occurs in a special situation called pl flips, which was used
to give the first proof of the existence of klt flips. This condition was useful for us
for two reasons: (a) the section σS was immediately an element of R(X,S), and
(b) by “dividing by σS” we again landed in R(X,S). We will have to deal with
both of these issues in the next section. However, the main idea is contained in this
example: in favourable circumstances, we do not have to know what the kernel of
the restriction map is – rather, it is enough to know the generators of the restriction,
and then we can chase the generators of the original ring by hand.

This example suggests the following result, whose role will be apparent from the
proof in the following section.

Theorem C. Let (X,S +
∑p

i=1 Si) be a log smooth projective pair of dimension n,
where S and all Si are distinct prime divisors. Let V =

∑p
i=1 RSi ⊆ DivR(X), let

30



A be an ample Q-divisor on X, and let B1, . . . , Bm ∈ ES+A(V ) be Q-divisors. Then
the ring

resS R(X;KX + S +B1 + A, . . . ,KX + S +Bm + A)

is finitely generated.

Now, this result implies that the set BSA(V ) is a rational polytope, in exactly the
same way as we showed above that Theorem A implies Theorem B. Therefore:

Theorem D. Let (X,S +
∑p

i=1 Si) be a log smooth projective pair of dimension n,
where S and all Si are distinct prime divisors. Let V =

∑p
i=1 RSi ⊆ DivR(X) and

let A be an ample Q-divisor on X. Then BSA(V ) is a rational polytope.

Now we can give a refined version of the induction procedure in the proof. In
the next section we will show:

Theorem 2.7. Theorem Bn and Theorem Cn imply Theorem An.

Then we concentrate on proving Theorems Cn and Dn – indeed, we will prove a
more general result which will yield both results almost at once. The induction step
here is:

Theorem 2.8. Theorem An−1, Theorem Bn−1 and Theorem Dn imply Theorem Cn.

Theorem 2.9. Theorem An−1 and Theorem Bn−1 imply Theorem Dn.

Finally, the last step is to show

Theorem 2.10. Theorem Dn implies Theorem Bn.

2.2 Proof of Theorem 2.7

In order to prove Theorem 2.7, we first need some additional definitions. The fol-
lowing generalises our previous definition of divisorial and adjoint rings.

Definition 2.11. Let X be a smooth projective variety and let S ⊆ DivQ(X) be a
finitely generated monoid. Then

R(X,S) =
⊕
D∈S

H0
(
X,OX

(
D)
)

is a divisorial S-graded ring . If D1, . . . , D` are generators of S, then there is a natural
projection map R(X;D1, . . . , D`) −→ R(X,S). If Di ∼Q ki(KX+∆i), where ∆i ≥ 0
and ki ∈ Q+ for every i, the algebra R(X,S) is an adjoint ring associated to S.

If C ⊆ DivR(X) is a rational polyhedral cone, we define the algebra R(X, C), an
adjoint ring associated to C, to be R(X, C ∩Div(X)).
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Note that here we used that by Gordan’s lemma [Ful93, Section 1.2, Proposition
1], the monoid C ∩ Div(X) is finitely generated. The following lemma summarises
the basic properties of preservation of finite generation under natural operations on
the monoid S.

Definition 2.12. Let S ⊆ Zr be a finitely generated monoid and let R =
⊕

s∈S Rs

be an S-graded algebra. If S ′ ⊆ S is a finitely generated submonoid, then R′ =⊕
s∈S′ Rs is a Veronese subring of R. If there exists a subgroup L ⊂ Zr of finite

index such that S ′ = S ∩ L, then R′ is a Veronese subring of finite index of R.

Lemma 2.13. Let S ⊆ Zr be a finitely generated monoid and let R =
⊕

s∈S Rs be
an S-graded algebra. Let S ′ ⊆ S be a finitely generated submonoid and let R′ =⊕

s∈S′ Rs.

(i) If R is finitely generated over R0, then R′ is finitely generated over R0.

(ii) If R0 is Noetherian, R′ is a Veronese subring of finite index of R, and R′ is
finitely generated over R0, then R is finitely generated over R0.

(iii) Let s1, . . . , sr be generators of S, and consider the free monoidM =
⊕r

i=1 Nsi
with the natural projection π : M → S. Let M be the M-graded ring with
Mm = Rπ(m) for m ∈ M. Then M is finitely generated if and only if R is
finitely generated.

Proof. See [ADHL10, Propositions 1.2.2, 1.2.4, 1.2.6].

Now we can prove Theorem 2.7.

Proof of Theorem 2.7.

Step 1. We first assume that there exist Q-divisors Fi ≥ 0 such that(
X,
∑

i(Bi + Fi)
)

is log smooth and KX + A+Bi ∼Q Fi for every i. (2.1)

We reduce the general case to this one at the end of the proof.
Let W be the subspace of DivR(X) spanned by the components of all Bi and Fi,

and let S1, . . . , Sp be the prime divisors in W . Denote by

T = {(t1, . . . , tk) | ti ≥ 0,
∑

ti = 1} ⊆ Rk

the standard simplex, and for each τ = (t1, . . . , tk) ∈ T , set

Bτ =
k∑
i=1

tiBi and Fτ =
k∑
i=1

tiFi ∼R KX + A+Bτ . (2.2)

32



Denote
B = {Fτ +B | τ ∈ T , 0 ≤ B ∈ W,Bτ +B ∈ L(W )} ⊆ W,

and for every j = 1, . . . , p, let

Bj = {Fτ +B | τ ∈ T , 0 ≤ B ∈ W,Bτ +B ∈ L(W ), Sj ⊆ bBτ +Bc} ⊆ W.

Then B and Bj are rational polytopes, and thus C = R+B and Cj = R+Bj are rational
polyhedral cones. Denote S = C ∩Div(X) and Sj = Cj ∩Div(X). Then it is enough
to show that the ring R(X,S) is finitely generated: indeed, let d be a positive integer
such that F ′i = dFi are integral divisors for i = 1, . . . , k. Pick divisors F ′k+1, . . . , F

′
m

such that F ′1, . . . , F
′
m are generators of S. Then R(X;F ′1, . . . , F

′
m) is finitely gen-

erated by Lemma 2.13(iii), and so is R(X;F ′1, . . . , F
′
k) by Lemma 2.13(i). Finally,

Lemma 2.13(ii) implies that R(X;F1, . . . , Fk) is finitely generated, and therefore so
is R(X;KX + A+B1, . . . , KX +B + Ak) by (2.1) and by Lemma 1.8.

We prove that the ring R(X,S) is finitely generated in Step 3, but first we need
a claim.

Step 2. We claim that:

(i) C =
⋃p
j=1 Cj,

(ii) there exists M > 0 such that the “width” of the cones Ci in the half-plane
{∑xiSi |

∑
xi ≥ M} is bigger than 1; more precisely, there exists M > 0

such that, if
∑
αiSi ∈ Cj for some j and some αi ∈ N with

∑
αi ≥ M , then∑

αiSi − Sj ∈ C;

(iii) the ring resSj R(X,Sj) is finitely generated for every j = 1, . . . , p.

Note that (i) and (ii) are true by “looking at the picture”, and (iii) follows from
Theorem Cn. Note that the picture shows the situation when we only have two
components S1 and S2, and where our ring has rank 1, but in general the picture is
similar, just more complicated. We now give more details.

To see (i), fix G ∈ C\{0}. Then, by definition of C, there exist τ ∈ T , 0 ≤ B ∈ W
and r > 0 such that Bτ +B ∈ L(W ) and G = r(Fτ +B). Setting

λ = max{t ≥ 1 | Bτ + tB + (t− 1)Fτ ∈ L(W )}

and B′ = λB + (λ− 1)Fτ , we have

λG = r(Fτ +B′),

and there exists j0 such that Sj0 ⊆ bBτ +B′c. Therefore G ∈ Cj0 , which proves (i).
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For (ii), denote by ‖ · ‖ the sup-norm on V . There exists ε > 0 such that
‖Bi‖ ≤ 1− ε for all i, and thus

‖Bτ‖ ≤ 1− ε for any τ ∈ T . (2.3)

Since the polytopes Bj ⊆ W are compact, there is a positive constant C such that
‖Ψ‖ ≤ C for any Ψ ∈ ⋃p

j=1 Bj, and denote M = pC/ε. For some j ∈ {1, . . . , p}, let
G =

∑
αiSi ∈ Sj be such that

∑
αi ≥M . Since p‖G‖ ≥∑αi, we have

‖G‖ ≥ M

p
=
C

ε
.

By definition of Cj and of C, we may write G = rG′ with G′ ∈ Bj, ‖G′‖ ≤ C and
r > 0. In particular,

r =
‖G‖
‖G′‖ ≥

1

ε
. (2.4)

Furthermore, G′ = Fτ +B for some τ ∈ T and 0 ≤ B ∈ W such that Bτ +B ∈ L(W )
and Sj ⊆ bBτ +Bc. Therefore, by (2.3) and (2.4) we have

multSj B = 1−multSj Bτ ≥ ε ≥ 1

r
,

and thus

G− Sj = r
(
Fτ +B − 1

r
Sj
)
∈ C.

Finally, to show (iii), fix j ∈ {1, . . . , p}, and let {E1, . . . , E`} be a set of generators
of Sj. Then, by definition of Sj and by (2.2), for every i = 1, . . . , `, there exist
ki ∈ Q+, τi ∈ T ∩Qk and 0 ≤ Bi ∈ W such that Bτi +Bi ∈ L(W ), Sj ⊆ bBτi +Bic
and

Ei = ki(Fτi +Bi) ∼Q ki(KX + A+Bτi +Bi).

Denote E ′i = KX + A + Bτi + Bi. Then the ring resSj R(X;E ′1, . . . , E
′
`) is finitely

generated by Theorem C, and thus so is resSj R(X;E1, . . . , E`) by Lemma 1.8. Since
there is the natural projection resSj R(X;E1, . . . , E`) → resSj R(X,Sj), this proves
the claim.

Step 3. Now we show how the claim shows that the ring R(X,S) is finitely generated.
The proof is similar to that from Example 2.6.

For every i = 1, . . . , p, let σi ∈ H0(X,OX(Si)) be a section such that div σi = Si.
Let R ⊆ R(X;S1, . . . , Sp) be the ring spanned by R(X,S) and σ1, . . . , σp, and note
that R is graded by

∑p
i=1 NSi. By Lemma 2.13(i), it is enough to show that R is

finitely generated.
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For any α = (α1, . . . , αp) ∈ Np, denote Dα =
∑
αiSi and deg(α) =

∑
αi, and for

a section σ ∈ H0(X,OX(Dα)), set deg(σ) = deg(α). By (ii), for each j = 1, . . . , p
there exists a finite set Hj ⊆ R(X,Sj) such that

resSj R(X,Sj) is generated by the set {σ|Sj | σ ∈ Hj}. (2.5)

Since the vector space H0(X,OX(Dα)) is finite-dimensional for every α ∈ Np, there
is a finite set H ⊆ R such that

{σ1, . . . , σp} ∪ H1 ∪ · · · ∪ Hp ⊆ H, (2.6)

and

H0(X,OX(Dα)) ⊆ C[H] for every α ∈ Np with Dα ∈ S and deg(α) ≤M, (2.7)

where C[H] is the C-algebra generated by the elements of H. Observe that C[H] ⊆
R, and it suffices to show that R ⊆ C[H].

Let χ ∈ R. By definition of R, we may write χ =
∑

i σ
λ1,i
1 . . . σ

λp,i
p χi, where

χi ∈ H0(X,OX(Dαi)) for some Dαi ∈ S and λj,i ∈ N. Thus, it is enough to show
that χi ∈ C[H], and after replacing χ by χi we may assume that

χ ∈ H0(X,OX(Dα)) for some Dα ∈ S.

The proof is by induction on degχ. If degχ ≤ M , then χ ∈ C[H] by (2.7). Now
assume degχ > M . Then there exists 1 ≤ j ≤ p such that Dα ∈ Sj, and so by (2.5)
and (2.6) there are θ1, . . . , θz ∈ H and a polynomial ϕ ∈ C[X1, . . . , Xz] such that
χ|Sj = ϕ(θ1|Sj , . . . , θz|Sj). Therefore, from the exact sequence

0 −→ H0(X,OX(Dα − Sj))
·σj−→ H0(X,OX(Dα)) −→ H0(Sj,OSj(Dα))

we obtain

χ− ϕ(θ1, . . . , θz) = σj · χ′ for some χ′ ∈ H0(X,OX(Dα − Sj)).

Note that Dα − Sj ∈ S by (i), and since degχ′ < degχ, by induction we have
χ′ ∈ C[H]. Therefore χ = σj · χ′ + ϕ(θ1, . . . , θz) ∈ C[H], and we are done.

This completes the proof under the additional assumption that (2.1) holds.

Step 4. We finally prove the general case of the theorem – the goal is to reduce to the
case covered above. This is easy, but technical; we want to use Theorem B to reduce
to the case where the support of our ring is the whole cone

∑
R+(KX +A+Bi), and
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we also need to pass to a log resolution to make everything in sight simple normal
crossings. If you find this believable, I suggest you skip it in the first reading.

Let V be the subspace of DivR(X) spanned by the components of all Bi, let
P ⊆ V be the convex hull of all Bi, and denote R = R+(KX + A + P). Then, by
Lemma 2.13(iii) it suffices to show that R(X,R) is finitely generated. By Theorem
Bn, PE = P ∩ EA(V ) is a rational polytope, and denote RE = R+(KX + A + PE).
Since H0(X,OX(D)) = 0 for every integral divisor D ∈ R \ RE , the ring R(X,R)
is finitely generated if and only if R(X,RE) is.

By Gordan’s lemma, the monoid RE ∩Div(X) is finitely generated, and let Ri be
its generators for i = 1, . . . , `. Then there exist pi ∈ Q+ and Pi ∈ PE∩DivQ(X) such
that Ri = pi(KX + A + Pi). By construction, bPic = 0 and there exist Q-divisors
Gi ≥ 0 such that

KX + A+ Pi ∼Q Gi

for all i. Let f : Y → X be a log resolution of
(
X,
∑

i(Pi + Gi)
)
. For every i,

there are Q-divisors Ci, Ei ≥ 0 on Y with no common components such that Ei is
f -exceptional and

KY + Ci = f ∗(KX + Pi) + Ei.

Note that bCic = 0, and denote F ◦i = pi(f
∗Gi + Ei) ≥ 0. Let H ≥ 0 be an f -

exceptional Q-divisor on Y such that A◦ is ample and bC◦i c = 0 for all i, where
A◦ = f ∗A−H is ample and C◦i = Ci +H, and denote D◦i = KY + A◦ + C◦i . Then

piD
◦
i ∼Q f

∗Ri + piEi ∼Q F
◦
i .

This last relation implies two things: first, it follows from Steps 1–3 and by Lemma
2.13 that the adjoint ring R(Y ;D◦1, . . . , D

◦
` ) is finitely generated. Second, the ring

R(X;R1, . . . , R`) is then finitely generated by Lemma 1.8. Since there is the nat-
ural projection map R(X;R1, . . . , R`) → R(X,RE), the ring R(X,RE) is finitely
generated, and we are done.

2.3 Nakayama functions

We need several definitions and results from [Nak04]. We would like to find a
meaningful extension of the asymptotic valuations oΓ that we defined before, to the
case of pseudo-effective divisors for which we do not necessarily know that they are
effective. The starting point is the following simple lemma.

Lemma 2.14. Let X be a Q-factorial projective variety, let A be an ample Q-divisor
on X, and let D and D′ be two big Q-divisors on X such that D ≡ D′. Let Γ be a
prime divisor on X. Then oΓ(D) = oΓ(D′) and

oΓ(D) = lim
ε↓0

oΓ(D + εA).
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Proof. We first prove the second statement. Note that by Kodaira’s trick we can
write D ∼Q δA+E for some rational δ > 0 and an effective Q-divisor E. Therefore

(1 + ε)oΓ(D) = oΓ(D + εδA+ εE) ≤ oΓ(D + εδA) + εoΓ(E) ≤ oΓ(D) + εoΓ(E),

and we obtain the claim by letting ε ↓ 0.

Now, fix an ample divisor A and a rational number ε > 0. Since the divisor
D −D′ + εA is numerically equivalent to εA, and thus ample, we have

oΓ(D + εA) = oΓ

(
D′ + (D −D′ + εA)

)
≤ oΓ(D′).

Letting ε ↓ 0 and applying the claim, we get oΓ(D) ≤ oΓ(D′). The reverse inequality
is analogous.

This motivates the following definition.

Definition 2.15. Let X be a smooth projective variety, let A be an ample Q-divisor,
and let Γ be a prime divisor. If D ∈ DivR(X) is pseudo-effective, set

σΓ(D) = lim
ε↓0

oΓ(D + εA) and Nσ(D) =
∑

Γ σΓ(D) · Γ,

where the sum runs over all prime divisors Γ on X.

Lemma 2.16. Let X be a smooth projective variety, let A be an ample R-divisor,
let D be a pseudo-effective R-divisor, and let Γ be a prime divisor. Then σΓ(D)
exists as a limit, it is independent of the choice of A, it depends only on the nu-
merical equivalence class of D, and σΓ(D) = oΓ(D) if D is big. The function σΓ

is homogeneous of degree one, convex and lower semi-continuous on the cone of
pseudo-effective divisors on X, and it is continuous on the cone of big divisors. For
every pseudo-effective R-divisor E we have σΓ(D) = lim

ε↓0
σΓ(D + εE).

Furthermore, Nσ(D) is an R-divisor on X, D −Nσ(D) is pseudo-effective, and
for any R-divisor 0 ≤ F ≤ Nσ(D) we have Nσ(D − F ) = Nσ(D)− F .

Proof. See [Nak04, §III.1].

Remark 2.17. Let X be a smooth projective variety, let Dm be a sequence of
pseudo-effective R-divisors which converge to an R-divisor D, and let Γ be a prime
divisor on X. Then the sequence σΓ(Dm) is bounded. Indeed, pick k � 0 such
that D − kΓ is not pseudo-effective, and assume that σΓ(Dm) > k for infinitely
many m. Then Dm − kΓ is pseudo-effective for infinitely many m by Lemma 2.16,
a contradiction.
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Remark 2.18. Let X be a smooth projective variety, let D be a pseudo-effective R-
divisor, let A be an ample R-divisor, and let x ∈ X\⋃ε>0 Bs(D+εA). Let f : Y → X
be the blowup of X along x with the exceptional divisor E. Then σE(f ∗D) = 0. To
see this, observe that E * Bs(f ∗D+ εf ∗A), and thus oE(f ∗D+ εf ∗A) = 0. Letting
ε→ 0, we conclude by Lemma 2.16.

Lemma 2.19. Let X be a smooth projective variety, let D be a pseudo-effective R-
divisor, and let A be an ample Q-divisor. If D 6≡ Nσ(D), then there exist a positive
integer k and a positive rational number β such that kA is integral and

h0(X,OX(mD + kA)) > βm for all m� 0.

Proof. Replacing D by D − Nσ(D), we may assume that Nσ(D) = 0. Now apply
[Nak04, Theorem V.1.11].

Lemma 2.20. Let X be a smooth projective variety, let D be a pseudo-effective R-
divisor on X, and let Γ1, . . . ,Γ` be distinct prime divisors such that σΓi(D) > 0 for
all i. Then for any γj ∈ R+ we have σΓi(

∑`
j=1 γjΓj) = γi for every i. In particular,

if D ≥ 0 and if σΓ(D) > 0 for every component Γ of D, then D = Nσ(D).

Proof. This is [Nak04, Proposition III.1.10].

Lemma 2.21. Let X be a smooth projective variety and let Γ be a prime divisor.
Let D be a pseudo-effective R-divisor and let A be an ample R-divisor.

(i) If σΓ(D) = 0, then Γ * Bs(D + A).

(ii) If σΓ(D) > 0, then Γ ⊆ Bs(D + εA) for 0 < ε� 1.

Proof. For (i), note that σΓ(D + 1
2
A) ≤ σΓ(D) = 0. By Lemma 2.16 there exists

0 ≤ D′ ∼R D+ 1
2
A such that γ = multΓD

′ � 1, and in particular 1
2
A+γΓ is ample.

Pick A′ ∼R
1
2
A+ γΓ such that A′ ≥ 0 and multΓA

′ = 0. Then

D + A ∼R D
′ − γΓ + A′ ≥ 0 and multΓ(D′ − γΓ + A′) = 0.

This proves the first claim. The second claim follows from 0 < σΓ(D) = lim
ε↓0

oΓ(D+

εA), since then oΓ(D + εA) > 0 for 0 < ε� 1.

Lemma 2.22. Assume Theorem Dn. Let (X,S+
∑p

i=1 Si) be a log smooth projective
pair of dimension n, where S and Si are distinct prime divisors, let A be an ample
Q-divisor on X, and let V =

∑p
i=1 RSi ⊆ DivR(X). Then

BSA(V ) = {B ∈ L(V ) | σS(KX + S + A+B) = 0}.
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Proof. Let V ⊆ DivR(X) be the vector space spanned by the components of V .
Denoting Q = {B ∈ L(V ) | σS(KX + S + A+B) = 0}, then clearly Q ⊇ BSA(V ).

For the reverse inclusion, fix B ∈ Q, and let H be a very ample divisor such
that (X,S +

∑p
i=1 Si + H) is log smooth and H * Supp(S +

∑p
i=1 Si). Let VH =

RH + V ⊆ DivR(X), and note that

σS(KX + S + A+B + tH) ≤ σS(KX + S + A+B) = 0 for t > 0.

Then B + tH ∈ BSA(VH) for any 0 < t < 1 by Lemma 2.21(i), hence B ∈ BSA(VH)
since BSA(VH) is closed. Therefore B ∈ BSA(V ).

2.4 Proof of Theorem 2.10

In this section we prove that Theorem Dn implies Theorem Bn. To this end, let
(X,

∑p
i=1 Si) be a log smooth projective pair of dimension n, where Si are distinct

prime divisors, let A be an ample Q-divisor on X, and let V =
∑p

i=1 RSi ⊆ DivR(X).
Consider the set

PA(V ) = {B ∈ L(V ) | KX + A+B ≡ D for some R-divisor D ≥ 0}.

The strategy is to show that this set is a rational polytope, and that it equals EA(V ).
The moral of the story is that for divisors of the form KX + B + A, the effectivity
is the numerical property.

2.4.1 Numerical effectivity

We start with the following lemma which makes this more precise.

Lemma 2.23. Let (X,B) be a log smooth pair, where B is a Q-divisor such that
bBc = 0. Let A be a nef and big Q-divisor, and assume that there exists an R-divisor
D ≥ 0 such that KX +A+B ≡ D. Then there exists a Q-divisor D′ ≥ 0 such that
KX + A+B ∼Q D

′.

Proof. Let V ⊆ Div(X)R be the vector space spanned by the components of KX , A,
B and D, and let φ : V −→ N1(X)R be the linear map sending an R-divisor to its
numerical class. Since φ−1(φ(KX + A + B)) is a rational affine subspace of V , we
can assume that D ≥ 0 is a Q-divisor.

First assume that (X,B + D) is log smooth. Let m be a positive integer such
that m(A + B) and mD are integral. Denoting F = (m − 1)D + B, L = m(KX +
A+B)− bF c and L′ = mD − bF c, we have

L ≡ L′ = D −B + {F} ≡ KX + A+ {F}.
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Thus, Kawamata-Viehweg vanishing implies that hi(X,OX(L)) = hi(X,OX(L′)) =
0 for all i > 0, and since the Euler characteristic is a numerical invariant, this yields
h0(X,OX(L)) = h0(X,OX(L′)). As mD is integral and bBc = 0, it follows that

L′ = mD − b(m− 1)D +Bc = dD −Be ≥ 0,

and thus h0
(
X,OX(m(KX + A + B))

)
= h0(X,OX(L + bF c)) ≥ h0(X,OX(L)) =

h0(X,OX(L′)) > 0.
In the general case, let f : Y → X be a log resolution of (X,B+D). Then there

exist Q-divisors B′, E ≥ 0 with no common components such that E is f -exceptional
and KY + B′ = f ∗(KX + B) + E. Therefore KY + f ∗A + B′ ≡ f ∗D + E ≥ 0, so
by above there exists a Q-divisor D◦ ≥ 0 such that KY + f ∗A + B′ ∼Q D

◦. Hence
KX + A+B ∼Q f∗D

◦ ≥ 0.

Corollary 2.24. Let (X,
∑p

i=1 Si) be a log smooth projective pair of dimension n,
where Si are distinct prime divisors, let A be an ample Q-divisor on X, and let
V =

∑p
i=1 RSi ⊆ DivR(X). If PA(V ) is a rational polytope, then EA(V ) = PA(V ).

Proof. Let B1, . . . , Bq be the extreme points of PA(V ), and choose ε > 0 such that
A+ εBi is ample for every i. Since KX +A+Bi = KX + (A+ εBi) + (1− ε)Bi and
b(1 − ε)Bic = 0, Lemma 2.23 implies that there exist Q-divisors Di ≥ 0 such that
KX + A + Bi ∼Q Di. Thus Bi ∈ EA(V ) for every i, and therefore PA(V ) ⊆ EA(V )
as EA(V ) is convex. Since obviously EA(V ) ⊆ PA(V ), the corollary follows.

Lemma 2.25. Let (X,
∑p

i=1 Si) be a log smooth projective pair of dimension n,
where Si are distinct prime divisors, let A be an ample Q-divisor on X, and let
V =

∑p
i=1 RSi ⊆ DivR(X). If PA(V ) is a polytope, then it is a rational polytope.

Proof. Let B1, . . . , Bq be the extreme points of PA(V ). Then there exist R-divisors
Di ≥ 0 such that KX + A + Bi ≡ Di for all i. Let W ⊆ DivR(X) be the vector
space spanned by V and by the components of KX +A and

∑q
i=1 Di. Note that for

every τ = (t1, . . . , tq) ∈ Rq
+ such that

∑
ti = 1, we have Bτ =

∑
tiBi ∈ PA(V ) and

KX +A+Bτ ≡
∑
tiDi ∈ W . Let φ : W −→ N1(X)R be the linear map sending an

R-divisor to its numerical class. Then W0 = φ−1(0) is a rational subspace of W and

PA(V ) = {B ∈ L(V ) | B = −KX − A+D +R, where 0 ≤ D ∈ W,R ∈ W0}.

Therefore, PA(V ) is cut out from L(V ) ⊆ W by finitely many rational half-spaces,
and thus is a rational polytope.

2.4.2 Compactness

Hence, until the end of the section we prove that PA(V ) is a polytope, which suffices
by Corollary 2.24 and by Lemma 2.25. We start with a few lemmas, which will first
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enable us to conclude that PA(V ) is a closed set. As we will see, this is essentially
equivalent to the statement that if an adjoint divisor KX +A+B is pseudo-effective,
then it is numerically equivalent to an effective divisor. This statement is usually
referred to as “non-vanishing.”

Lemma 2.26. Let X be a smooth projective variety of dimension n and let x ∈ X.
Let D ∈ Div(X) and assume that s is a positive integer such that h0(X,OX(D)) >(
s+n
n

)
. Then there exists D′ ∈ |D| such that multxD

′ > s.

Proof. Let m ⊆ OX be the ideal sheaf of x. Then we have

h0(X,OX/ms+1) = dimCC[x1, . . . , xn]/(x1, . . . , xn)s+1 =

(
s+ n

n

)
,

hence h0(X,OX(D)) > h0(X,OX/ms+1). Therefore the exact sequence

0→ ms+1 ⊗OX(D)→ OX(D)→ (OX/ms+1)⊗OX(D) ' OX/ms+1 → 0

yields h0
(
X,ms+1⊗OX(D)

)
> 0, so there exists a divisor D′ ∈ |D| with multiplicity

at least s+ 1 at x.

Lemma 2.27. Assume Theorem Dn. Let (X,B) be a log smooth pair of dimension
n, where B is an R-divisor such that bBc = 0. Let A be an ample Q-divisor on X,
and assume that KX +A+B is a pseudo-effective R-divisor such that KX +A+B 6≡
Nσ(KX +A+B). Then there exists an R-divisor F ≥ 0 such that KX +A+B ∼R F .

Proof. By Lemma 2.19, we have h0(X,OX(mk(KX + A + B) + kA)) >
(
nk+n
n

)
for

any sufficiently divisible positive integers m and k. Fix a point

x ∈ X \
⋃
ε>0

Bs(KX + A+B + εA).

Then, by Lemma 2.26 there exists an R-divisor G ≥ 0 such that G ∼R mk(KX +
A+B) + kA and multxG > nk, so setting D = 1

mk
G, we have

D ∼R KX + A+B +
1

m
A and multxD >

n

m
. (2.8)

For any t ∈ [0,m], define At = m−t
m
A and Ψt = B + tD, so that

(1 + t)(KX + A+B) ∼R KX + A+B + t
(
D − 1

m
A
)

= KX + At + Ψt. (2.9)

Let f : Y → X be a log resolution of (X,B +D) constructed by first blowing up X
at x. Then for every t ∈ [0,m], there exist R-divisors Ct, Et ≥ 0 with no common
components such that Et is f -exceptional and

KY + Ct = f ∗(KX + Ψt) + Et. (2.10)
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The exceptional divisor of the initial blowup gives a prime divisor P ⊆ Y such that
multP (KY − f ∗KX) = n − 1, multP f

∗Ψt = multx Ψt, and P /∈ SuppNσ(f ∗(KX +
A+B)) by Remark 2.18. Since multx Ψm > n by (2.8), it follows from (2.10) that

multP Em = 0 and multP Cm > 1. (2.11)

Note that bC0c = 0, and denote

Bt = Ct − Ct ∧Nσ(KY + f ∗At + Ct).

Observe that by (2.9) and (2.10) we have

Nσ(KY + f ∗At + Ct) = Nσ

(
f ∗(KX + At + Ψt)

)
+ Et

= (1 + t)Nσ

(
f ∗(KX + A+B)

)
+ Et,

hence Bt is a continuous function in t. Moreover P * SuppNσ(KY +f ∗Am+Bm) by
the choice of x and by (2.11), and in particular multP Bm > 1. Pick 0 < ε� 1 such
that multP Bm−ε > 1, and let H ≥ 0 be an f -exceptional Q-divisor on Y such that
bB0 + Hc = 0 and f ∗Am−ε −H is ample. Then there exists a minimal λ < m − ε
such that bBλ +Hc 6= 0, and let S ⊆ bBλ +Hc be a prime divisor. Since bHc = 0,
we have S ⊆ SuppBλ. As Bλ∧Nσ(KY +f ∗Aλ+Bλ) = 0 by Lemma 2.16, we deduce
that S * SuppNσ(KY + f ∗Aλ +Bλ).

Let A′ = f ∗Aλ − H = f ∗(m−ε−λ
m

A) + (f ∗Am−ε − H). Then A′ is ample, and
since σS(KY +A′ +Bλ +H) = σS(KY + f ∗Aλ +Bλ) = 0 by what we proved above,
Lemma 2.22 implies that S * Bs(KY + A′ + Bλ + H) = Bs(KY + f ∗Aλ + Bλ). In
particular, there exists an R-divisor F ′ ≥ 0 such that KY + f ∗Aλ + Bλ ∼R F

′, and
thus, by (2.9) and (2.10),

KX + ∆ ∼R
1

1 + λ
f∗(KY + f ∗Aλ + Cλ) ∼R

1

1 + λ
f∗(F

′ + Cλ −Bλ) ≥ 0.

This finishes the proof.

Corollary 2.28. Let (X,
∑p

i=1 Si) be a log smooth projective pair of dimension n,
where Si are distinct prime divisors, let A be an ample Q-divisor on X, and let
V =

∑p
i=1 RSi ⊆ DivR(X). Then PA(V ) is a closed set and

PA(V ) = {B ∈ L(V ) | KX + A+B is pseudo-effective}.
Proof. The last claim follows immediately from Lemma 2.27. For compactness, fix
B ∈ PA(V ) and denote ∆ = A + B. In particular, KX + ∆ is pseudo-effective. If
KX + ∆ ≡ Nσ(KX + ∆), then it follows immediately that B ∈ PA(V ). If KX + ∆ 6≡
Nσ(KX + ∆), assume first that bBc = 0. Then by Lemma 2.27 there exists an
R-divisor F ≥ 0 such that KX + ∆ ∼R F , and in particular B ∈ PA(V ). If bBc 6= 0,
pick a Q-divisor 0 ≤ G ∈ V such that A + G is ample and bB − Gc = 0. Then
B − G ∈ PA+G(V ) by above, and hence B ∈ PA(V ). This implies that PA(V ) is
compact.
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2.4.3 Finitely many extremal points

The technique applied in Lemma 2.27 is often called tie-breaking : the idea is to
“scale-up” the an adjoint divisor until some of divisor contains a component with
coefficient one; the additionally we demand some other properties – in the case of
Lemma 2.27, we demanded that the Nakayama function of the adjoint divisor along
the component is zero.

Tie-breaking in Lemma 2.27 was a bit involved, since we did not have an ef-
fective representative in the (linear equivalence) class of the divisor to start with.
Once we have such an effective representative, tie-breaking produces some additional
properties. That is the content of the following lemma.

Lemma 2.29. Assume Theorem Dn. Let (X,B) be a log smooth pair of dimension
n, where B is an R-divisor such that bBc = 0. Let A be an ample Q-divisor on X,
assume that KX + A + B 6≡ Nσ(KX + A + B), and let F ≥ 0 be an R-divisor such
that KX + A+B ∼R F , cf. Lemma 2.27.

Then there exist a positive real number µ such that, if we denote

Φµ = B + µF, Λ = Φµ ∧Nσ

(
(1 + µ)F

)
, Υµ = Φµ − Λ, Σ = (1 + µ)F − Λ,

then the coefficients of Φµ are between 0 and 1, we have

Σ ≥ 0 and KX + A+ Υµ ∼R Σ, (2.12)

and there exists a prime divisor S ⊆ bΦµc such that

σS(KX + A+ Υµ) = 0 and multS Σ > 0.

Proof. For any t ≥ 0, define

Φt = B + tF, (2.13)

so that

(1 + t)(KX + A+B) ∼R KX + A+B + tF = KX + A+ Φt.

Note that bΦ0c = 0 and

Nσ(KX + A+ Φt) = (1 + t)Nσ(KX + A+B) = (1 + t)Nσ(F ). (2.14)

Thus, if we denote

Υt = Φt − Φt ∧Nσ(KX + A+ Φt), (2.15)

then Υt is a continuous function in t.
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Write F =
∑`

j=1 fjFj, where Fj are prime divisors and fj > 0 for all j. Since
F 6≡ Nσ(F ), Lemma 2.20 implies that there exists j ∈ {1, . . . , `} such that σFj(F ) =
0. Thus, by (2.13), (2.14) and (2.15),

multFj Υt = multFj B + tfj,

so there exists a minimal µ > 0 such that bΥµc 6= 0. Note that bΥµc ⊆ SuppF , but
Fj is not necessarily a component of bΥµc. Fixing a prime divisor S ⊆ bΥµc, we
immediately have

σS(KX + A+ Υµ) = 0

by (2.15). Moreover,

σS
(
(1 + µ)F

)
= σS(KX + A+ Φµ) = multS Φµ −multS Υµ

= multS B + µmultS F − 1 < µmultS F

by (2.13), (2.14) and (2.15), hence

multS Σ ≥ (1 + µ) multS F − σS
(
(1 + µ)F

)
> multS F ≥ 0.

The relations in (2.12) are clear from the construction.

Now we have all the tools to show that PA(V ) is a polytope. We do it in the
following way: Assume for contradiction that PA(V ) is not a polytope. Then there
exists an infinite sequence of distinct extreme points Bm ∈ PA(V ). By compactness
and by passing to a subsequence we can assume that there is a point B ∈ PA(V ) such
that lim

m→∞
Bm = B. We will show that for infinitely many m there exist B′m ∈ PA(V )

such that Bm ∈ (B,B′m), so that in particular, no such Bm can be an extreme point
of PA(V ). We do it in Lemmas 2.32 and 2.33, depending on the properties of the
point B.

But first we need a simple lemma from convex geometry which characterises
polytopes.

Lemma 2.30. Let P be a compact convex set in RN , and fix any norm ‖ · ‖ on RN .
Then P is a polytope if and only if for every point x ∈ P there exists a real number
δ = δ(x,P) > 0, such that for every y ∈ RN with 0 < ‖x− y‖ < δ, if (x, y)∩P 6= ∅,
then y ∈ P.

Proof. Suppose that P is a polytope and let x ∈ P . Let F1, . . . , Fk be the set of all
the faces of P which do not contain x. Then it is enough to define

δ(x,P) = min{‖x− y‖ | y ∈ Fi for some i = 1, . . . , k}.

Conversely, assume that P is not a polytope, and let xn be an infinite sequence
of distinct extreme points of P . Since P is compact, by passing to a subsequence
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we may assume that there exists x = lim
n→∞

xn ∈ P . For any real number δ > 0

pick k ∈ N such that 0 < ‖x − xk‖ < δ, and set x′ = x + t(xk − x) for some
1 < t < δ/‖x−xk‖. Then 0 < ‖x−x′‖ < δ and ∅ 6= (x, xk) ⊆ (x, x′)∩P , but x′ /∈ P
since xk is an extreme point of P . This proves the lemma.

Remark 2.31. With assumptions from Lemma 2.30, assume additionally that P
does not contain the origin, and let C = R+P . Then the same proof shows that C
is a polyhedral cone if and only if for every point x ∈ C there exists a real number
δ = δ(x, C) > 0, such that for every y ∈ RN with 0 < ‖x− y‖ < δ, if (x, y) ∩ C 6= ∅,
then y ∈ C.

Lemma 2.32. Assume Theorem Dn. Let (X,
∑p

i=1 Si) be a log smooth projective
pair of dimension n, where Si are distinct prime divisors, let A be an ample Q-divisor
on X, and let V =

∑p
i=1 RSi ⊆ DivR(X). Fix B ∈ PA(V ), and let Bm ∈ PA(V ) be

a sequence of distinct points such that lim
m→∞

Bm = B. Assume that bBc = 0 and

KX + A+B 6≡ Nσ(KX + A+B).

Then for infinitely many m there exist B′m ∈ PA(V ) such that Bm ∈ (B,B′m).

Proof. By Lemma 2.27, there exists an R-divisor F ≥ 0 such that KX+A+B ∼R F .
We first prove the lemma under an additional assumption that F ∈ V , and treat
the general case at the end of the proof.

Step 1. We use notation from Lemma 2.29. For every m ∈ N, define Φµ,m =
Bm + µ(F +Bm −B). Then

lim
m→∞

Φµ,m = Φµ and (1 + µ)(KX + A+Bm) ∼R KX + A+ Φµ,m (2.16)

by assumption, and let

Λm = Φµ,m ∧
∑

Z⊆Supp Λ

σZ(KX + A+ Φµ,m) · Z.

Note that 0 ≤ Λm ≤ Nσ(KX +A+ Φµ,m). By Lemma 2.16, we have Λ ≤ lim inf
m→∞

Λm,

and in particular, Supp Λm = Supp Λ for m � 0. Thus, there exists an increasing
sequence of rational numbers εm > 0 such that lim

m→∞
εm = 1 and Λm ≥ εmΛ, and

define Υµ,m = Φµ,m − εmΛ.

Note that KX + A+ Υµ,m is pseudo-effective by Lemma 2.16, and

lim
m→∞

Υµ,m = Υµ (2.17)
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by (2.16). We claim that by passing to a subsequence, for every m there exist
Υ′m ∈ V and 0 < αm � 1 such that

KX + A+ Υ′m is pseudo-effective and Υµ,m = αmΥµ + (1− αm)Υ′m.

This immediately implies the lemma under our additional assumption that F ∈ V :
indeed, setting B′m = 1

1−αm (Bm−αmB), we have Bm = αmB + (1−αm)B′m, and an
easy calculation involving (2.13), (2.16) and (2.17) shows that

KX + A+B′m ∼R
1

1 + µ

(
KX + A+ Υ′m +

εm − αm
1− αm

Λ
)
.

In particular, KX +A+B′m is pseudo-effective for m� 0. Since L(V ) is a rational
polytope, Lemma 2.30 yields B′m ∈ L(V ) for m � 0, hence B′m ∈ PA(V ) by
Corollary 2.28.

Step 2. In this step we prove the claim from Step 1. By relabelling if necessary, we
may assume that S = S1 and denote W =

∑p
i=2 RSi ⊆ DivR(X). Let

Σm = Σ + Υm −Υ ∼R KX + A+ Υm and Γm = Σm − σS(Σm)S.

Then Γm is pseudo-effective by Lemma 2.16. Let

Z =
∑

multSi Υ=1

Si −
∑

multSj Υ=0

Sj,

and pick a rational number 0 < ε� 1 such that the Q-divisor A′ = A+εZ is ample.
Setting Υ′ = Υ− S + εZ, we have

Υ′ ∈
p∑
i=1

[εSi, (1− ε)Si] and KX + S + A′ + Υ′ ∼R Σ. (2.18)

By Theorem Dn, BSA′(V ) is a rational polytope, and denote

P = Σ−Υ′ + BSA′(W ) and D = R+P ⊆ V.

Then P is a rational polytope and D is a rational polyhedral cone. Since

σS(KX + S + A′ + Υ′) = σS(Σ) = σS(KX + A+ Υ) = 0

by assumption, Lemma 2.22 implies that Υ′ ∈ BSA′(W ), and therefore Σ ∈ P . By
the definition of P and by (2.18), for every D ∈ P there exists B ∈ BSA′(W ) such
that

D = Σ−Υ′ +B ∼R KX + S + A′ +B.
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Since multS Υ′ = multS B = 0, this implies multS D = multS Σ > 0 and, in partic-
ular, P does not contain the origin. Moreover, by the definition of BSA′(V ), every
such D is pseudo-effective, hence every element of D is pseudo-effective.

We will show that, after passing to a subsequence, we have

Γm ∈ D for all m > 0, and lim
m→∞

Γm = Σ. (2.19)

This immediately implies the claim from Step 1: indeed, Remark 2.31 applied to
D and to the point Σ ∈ D shows that for any m � 0 there exist Ψm ∈ D and
0 < µm < 1 such that Γm = µmΣ + (1− µm)Ψm. Then Ψm is pseudo-effective, and
thus so is the R-divisor

Σ′m = Ψm +
1

1− µm
(Σm − Γm) = Ψm +

σS(Σm)

1− µm
S.

Let Υ′m = 1
1−µm (Υm − µmΥ) ∈ V . Then it is easy to check that Υm ∈ (Υ,Υ′m) and

KX + A+ Υ′m ∼R Σ′m is pseudo-effective as desired.
It remains to prove (2.19). Note that

{Σ + Θ | Θ ∈ L(V ), ‖Θ‖ ≤ ε} ⊆ D,

and therefore dimD = dimV . If Σ belongs to the interior of D, then Σm ∈ D for
m� 0 and, in particular, σS(Σm) = 0. Therefore, Γm = Σm and the claim follows.

Otherwise, Σ belongs to the boundary of D. Let Hi be the supporting hyper-
planes of maximal faces of D containing Σ, for i = 1, . . . , ` ≤ dimV − 1. Let Wi be
the half-spaces bounded by Hi containing D, and denote Q =

⋂`
i=1Wi. Note that

Q is an unbounded polygon which contains D. If Σm ∈ Q for infinitely many m,
then Σm ∈ D, and again Γm = Σm.

Thus, after taking a subsequence, we may assume that Σm /∈ Q for all m. Since
multS Σ > 0, let λm = multS Γm/multS Σ ∈ R, and for every m choose 0 < βm � 1
such that δm = βmλm < 1 and βm‖Γm−λmΣ‖ < ε. Denote Rm = Υ′+βmΓm−δmΣ,
and note that by the choice of βm and δm we have multS Rm = 0. Furthermore,
since ‖βmΓm − δmΣ‖ < ε, by (2.18) we have Rm ∈ L(V ), and note that

(1− δm)Σ + βmΓm ∼R KX + A+Rm = KX + S + A′ +Rm. (2.20)

By assumption and by definition of Γm, we have

σS
(
(1− δm)Σ + βmΓm

)
≤ (1− δm)σS(Σ) + βmσS(Γm) = 0, (2.21)

hence Lemma 2.22 implies that Rm ∈ BSA′(V ), and in particular

(1− δm)Σ + βmΓm ∈ D. (2.22)
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As Σ ∈ Hi for every i, the convex cone R>0Σ + R>0Γm intersects Wi for every
i. This implies that Γm ∈ Wi, and thus Γm ∈ Q. Therefore, after passing to a
subsequence we may assume that there is i0 ∈ {1, . . . , `}, such that for all m there
exists Pm ∈ [Σm,Γm]∩Hi0 . In particular lim

m→∞
Pm = Σ, and thus Pm ∈ D for m� 0.

This implies σS(Pm) = 0, and finally Γm = Pm ∈ D and lim
m→∞

Γm = Σ.

Step 3. To show the general case of the lemma when F is not necessarily an element
of V , let f : Y → X be a log resolution of (X,B + F ). Then there are R-divisors
C,E ≥ 0 on Y with no common components and Cm, Em ≥ 0 on Y with no common
components such that E and Em are f -exceptional and

KY + C = f ∗(KX +B) + E and KY + Cm = f ∗(KX +Bm) + Em.

Note that lim
m→∞

Cm = C. Let G ≥ 0 be an f -exceptional Q-divisor on Y such that

A◦ is ample, bC◦c = 0, and bC◦mc = 0 for all m� 0, where

A◦ = f ∗A−G, C◦ = C +G and C◦m = Cm +G.

Denoting F ◦ = f ∗F + E ≥ 0, we have

f∗C
◦ = B, f∗C

◦
m = Bm, and KY + A◦ + C◦ ∼R F

◦.

Let V ◦ ⊆ DivR(Y ) be the vector space spanned by the components of
∑p

i=1 f
−1
∗ Si +

f−1
∗ F plus all exceptional prime divisors, and note that F ◦ ∈ V ◦. By what we proved

above, for infinitely many m there exist C ′m ∈ PA◦(V ◦) such that C◦m ∈ (C◦, C ′m).
Note that SuppC ′m is a subset of

∑p
i=1 f

−1
∗ Si plus all exceptional prime divisors,

and denote B′m = f∗C
′
m ∈ L(V ). Then Bm ∈ (B,B′m), and the divisor

KX + A+B′m = f∗(KY + A◦ + C ′m)

is numerically equivalent to an effective divisor, hence B′m ∈ PA(V ).

Lemma 2.33. Let (X,
∑p

i=1 Si) be a log smooth projective pair of dimension n,
where Si are distinct prime divisors, let A be an ample Q-divisor on X, and let
V =

∑p
i=1 RSi ⊆ DivR(X). Fix B ∈ PA(V ), and let Bm ∈ PA(V ) be a sequence of

distinct points such that lim
m→∞

Bm = B. Assume that bBc = 0 and

KX + A+B ≡ Nσ(KX + A+B).

Then for infinitely many m there exist B′m ∈ PA(V ) such that Bm ∈ (B,B′m).

Proof. Let Dm ≥ 0 be R-divisors such that KX+A+Bm ≡ Dm. By Lemma 2.21(ii),
there exists an ample R-divisor H such that

SuppNσ(KX + A+B) ⊆ Bs(KX + A+B +H),
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and as H+ (KX +A+B−Dm) ≡ H+ (B−Bm) is ample for all m� 0, by passing
to a subsequence we may assume that

SuppNσ(KX + A+B) ⊆ Bs
(
Dm +H + (KX + A+B −Dm)

)
(2.23)

⊆ Bs(Dm) ⊆ SuppDm

for all m. For m ∈ N and t > 1, denote Cm,t = B + t(Bm −B), and observe that

Bm =
1

t
Cm,t +

t− 1

t
B (2.24)

and

KX+A+Cm,t ≡ tDm−(t−1)(KX+A+B) ≡ tDm−(t−1)Nσ(KX+A+B). (2.25)

Since L(V ) is a polytope and B ∈ L(V ), pick δ = δ(B,L(V )) > 0 as in Lemma
2.30. By passing to a subsequence we may assume that ‖Bm − B‖ ≤ δ/2 for every
m, and as ‖Cm,t − B‖ = t‖Bm − B‖, Lemma 2.30 gives Cm,t ∈ L(V ) for all m and
1 < t < 2.

Fix m. By (2.23) there exists 1 < tm < 2 such that tmDm − (tm − 1)Nσ(KX +
A + B) ≥ 0, and denote B′m = Cm,tm . Then (2.25) implies B′m ∈ PA(V ), and thus
(2.24) proves the lemma.

Corollary 2.34. Assume Theorem Dn. Let (X,
∑p

i=1 Si) be a log smooth projective
pair of dimension n, where Si are distinct prime divisors, let A be an ample Q-divisor
on X, and let V =

∑p
i=1 RSi ⊆ DivR(X). Fix B ∈ PA(V ), and let Bm ∈ PA(V )

be a sequence of distinct points such that lim
m→∞

Bm = B. Then for infinitely many

m there exist B′m ∈ PA(V ) such that Bm ∈ (B,B′m). In particular, PA(V ) is a
polytope.

Proof. Pick δ = δ(B,L(V )) as in Lemma 2.30. By passing to a subsequence, we may
choose a Q-divisor 0 ≤ G ∈ V such that A◦ is ample, bB◦c = 0 and all bB◦mc = 0,
where

A◦ = A+G, B◦ = B −G and B◦m = Bm −G.
By Lemmas 2.32 and 2.33, for infinitely many m there exist Fm ∈ PA◦(V ) such
that B◦m ∈ (B◦, Fm). In particular, setting B′m = Fm + G, we have Bm ∈ (B,B′m).
Since B − B′m = B◦ − Fm, we may assume that ‖B − B′m‖ ≤ δ for m � 0 by
choosing Fm closer to B◦ if necessary. Therefore, by Lemma 2.30 applied to the
polytope L(V ) and the point B ∈ L(V ), we have B′m ∈ L(V ) for m � 0, and thus
B′m ∈ PA(V ) since KX + A + B′m = KX + A◦ + Fm is numerically equivalent to an
effective divisor.

This finishes the proof of Theorem 2.10.
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2.5 Proofs of Theorems 2.8 and 2.9

In this section we finally finish the circle of induction, by proving that Theorems
An−1 and Bn−1 imply Theorems Cn and Dn. This is the only step which really
involves induction on the dimension, and hence we have to relate global sections of
pluricanonical bundles with the corresponding bundles in dimension one lower. This
is done via so called extension theorems.

2.5.1 Extension theorem

As always, let (X,
∑p

i=1 Si) be a log smooth projective pair of dimension n, where
Si are distinct prime divisors, let A be an ample Q-divisor on X, and let V =∑p

i=1 RSi ⊆ DivR(X). Our goal is to analyse what precisely is the vector space
resS H

0(X,m(KX + S + A + B)) for B ∈ EA(V ), at least when m � 0. We know
from before that this space is only interesting when B ∈ BSA(V ), and in any case, we
know that resS H

0(X,m(KX+S+A+B)) ⊆ H0(S,m(KS+A|S+B|S)) by definition.
In practice, this inclusion is almost never an equality. Our goal is to show that the
vector space we are looking for is actually a complete linear system on S, and not
just any linear system – it is a linear system associated to an adjoint line bundle
on S. This is precisely the content of Theorem 2.37, or more precisely, of Corollary
2.39 below. We will prove these results later in the course. Their formulations look
(and are) terrifying, but let us first see what they mean.

First we need a few definitions.

Definition 2.35. Let X be a smooth projective variety and let S be a smooth
prime divisor. Let C and D be Q-divisors on X such that |C|Q 6= ∅, |D|Q 6= ∅ and
S * Bs(D). Then |D|S denotes the image of the linear system |D| under restriction
to S, and we define

Fix(C) = lim inf
1

k
Fix |kC| and FixS(D) = lim inf

1

k
Fix |kD|S

for all k sufficiently divisible.
If V is any linear system on X, then Fix(V ) denotes the fixed divisor of V , i.e.

the maximal divisor smaller than any divisor in V . Then Mov(V ) = {D − Fix(V ) |
D ∈ V } is the movable part of V .

Definition 2.36. Let (X,∆) be a log pair with b∆c = 0. Then (X,∆) has canoni-
cal , respectively terminal , singularities if for every log resolution f : Y → X, if we
write

KY + f−1
∗ ∆ = f ∗(KX + ∆) + E,

we have E ≥ 0, respectively E ≥ 0 and SuppE = Exc f . Note that if (X,∆) is
terminal, then for every R-divisor G, the pair (X,∆ + εG) is also terminal for every
0 ≤ ε� 1.
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A typical example of a terminal pair is a log smooth pair (X,∆), where the
components of ∆ are disjoint (exercise!). Starting from a klt pair we can always
reach a terminal pair on a log resolution; we will see a slight generalisation of this
in Lemma below.

Now we can state the extension theorem.

Theorem 2.37. Let (X,S+B) be a log smooth projective pair of dimension n, where
S is a prime divisor, and B is a Q-divisor such that S * SuppB and bBc = 0. Let
A be an ample Q-divisor on X and denote ∆ = S+A+B. Let C ≥ 0 be a Q-divisor
on S such that (S,C) is canonical, and let m be a positive integer such that mA,
mB and mC are integral.

Assume that for some rational number 0 ≤ ε < 1
m

we have S 6⊆ B(KX +∆+εA)
and

C ≤ B|S −B|S ∧ FixS(KX + ∆ + εA).

Then

|m(KS + A|S + C)|+m(B|S − C) ⊆ |m(KX + ∆)|S.
In particular, if |m(KS + A|S + C)| 6= ∅, then |m(KX + ∆)|S 6= ∅, and

Fix |m(KS + A|S + C)|+m(B|S − C) ≥ Fix |m(KX + ∆)|S ≥ mFixS(KX + ∆).

Furthermore, if we assume Theorem An−1, then

Fix(KS + A|S + C) + (B|S − C) ≥ FixS(KX + ∆).

The presence of the divisor C may seem very strange, however we will see that
this precise form of the theorem will be crucial in our proofs below. The following
lemma shows how we can, and will, achieve the condition that the pair (S,C) is
canonical (even terminal).

Lemma 2.38. Let (X,S + B) be a log smooth projective pair, where S is a prime
divisor and B is a Q-divisor such that bBc = 0 and S * SuppB. Then there exist
a log resolution f : Y → X of (X,S + B) and Q-divisors C,E ≥ 0 on Y with no
common components, such that the components of C are disjoint, E is f -exceptional,
and if T = f−1

∗ S, then

KY + T + C = f ∗(KX + S +B) + E.

In particular, the pair (T,C|T ) is terminal.

Proof. By [KM98, Proposition 2.36], there exist a log resolution f : Y → X which
is a sequence of blow-ups along intersections of components of B, and Q-divisors
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C,E ≥ 0 on Y with no common components, such that the components of C are
disjoint, E is f -exceptional, and

KY + C = f ∗(KX +B) + E.

Since (X,S + B) is log smooth, it follows that if some components of B intersect,
then no irreducible component of their intersection is contained in S. Thus T = f ∗S,
and the lemma follows.

Corollary 2.39. Let (X,S+B) be a log smooth projective pair, where S is a prime
divisor, and B is a Q-divisor such that S * SuppB, bBc = 0 and (S,B|S) is
canonical. Let A be an ample Q-divisor on X and denote ∆ = S + A + B. Let
m be a positive integer such that mA and mB are integral, and such that S 6⊆
Bs |m(KX + ∆)|. Denote Φm = B|S −B|S ∧ 1

m
Fix |m(KX + ∆)|S.

Then

|m(KS + A|S + Φm)|+m(B|S − Φm) = |m(KX + ∆)|S.

In other words, if we consider linear systems on S as subsets of k(S), then

resS H
0(X,m(KX + ∆)) ' H0(S,m(KS + A|S + Φm)).

Proof. Since Φm ≤ B|S −B|S ∧ 1
qm

Fix |qm(KX + ∆ + 1
m
A)|S for any positive integer

q, the inclusion |m(KS + A|S + Φm)|+m(B|S − Φm) ⊆ |m(KX + ∆)|S follows from
Theorem 2.37.

For the reverse inclusion, it suffices to note that m(B|S − Φm) ≤ Fix |m(KX +
∆)|S, and hence Mov |m(KX + ∆)|S ⊆ |m(KS + A|S + Φm)|.

2.5.2 Proof of Theorem D

The following result contains the heart of the proof.

Proposition 2.40. Assume Theorem An−1 and Theorem Bn−1. Let (X,S+
∑p

i=1 Si)
be a log smooth projective pair of dimension n, where S and all Si are distinct prime
divisors. Let V =

∑p
i=1 RSi ⊆ DivR(X), let A be an ample Q-divisor on X, and let

W ⊆ DivR(S) be the subspace spanned by the components of
∑
Si|S.

(i) Define the set

F = {E ∈ EA|S(W ) | E ∧ Fix(KS + A|S + E) = 0}.

Then there are finitely many rational polytopes Fi such that F =
⋃
iFi.
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(ii) Let G be a rational polytope contained in the interior of L(V ), and assume
that (S,B|S) is terminal for every B ∈ G. For each i, define

Q′i = {(B,C) ∈ DivQ(X)×DivQ(S) | B ∈ G ∩ BSA(V ), C ∈ Fi,
C ≤ B|S −B|S ∧ FixS(KX + S + A+B)}.

Then the convex hull of Q′i is a rational polytope.

(iii) The set G ∩ BSA(V ) is a rational polytope.

This result immediately implies Theorem 2.9:

Proof of Theorem 2.9. Fix B ∈ BSA(V ), and let Bm ∈ BSA(V ) be a sequence of
distinct points such that lim

m→∞
Bm = B. It is enough to find a rational polytope

G ⊆ BSA(V ) such that the points B and Bm belong to G: indeed, since B is arbitrary,
this implies that BSA(V ) is closed, and that around every point there are only finitely
many extreme points of BSA(V ), hence BSA(V ) is a polytope. If, in particular, B is
an extremal point of BSA(V ), this further shows that B is rational.

Let G ∈ V be a Q-divisor such that B −G is contained in the interior of L(V ),
and that A+G is ample. Denote

BG = B −G, BG
m = Bm −G and AG = A+G,

and observe that BG and BG
m belong to BS

AG
(V ) for m� 0. By Lemma 2.38, there

exist a log resolution f : Y → X of (X,S + BG) and Q-divisors C,E ≥ 0 on Y
with no common components, such that the components of C are disjoint, bCc = 0,
T = f−1

∗ S * SuppC, and

KY + T + C = f ∗(KX + S +BG) + E.

We may then write

KY + T + Cm = f ∗(KX + S +BG
m) + Em,

where Cm, Em ≥ 0 are Q-divisors on Y with no common components, bCmc = 0,
T * SuppCm, and note that lim

m→∞
Cm = C. Let V ◦ ⊆ DivR(Y ) be the subspace

spanned by the components of C and by all f -exceptional prime divisors. Then
there exists an f -exceptional Q-divisor F ≥ 0 such that f ∗AG − F is ample, C + F
lies in the interior of L(V ◦) and (T, (C + F )|T ) is terminal. Denote

A◦ = f ∗AG − F, C◦ = C + F and C◦m = Cm + F,

and observe that C◦ and C◦m belong to BTA◦(V ◦) for m� 0.
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Let P be a rational polytope of dimension dimV ◦ contained in the interior of
L(V ◦) and containing C◦ in its interior, such that (T,Θ|T ) is terminal for every Θ ∈
P . Then P ′ = P∩BTA◦(V ◦) is a rational polytope by Proposition 2.40. In particular,
it is closed, so C◦ and C◦m belong to BTA◦(V ◦) for m� 0. Therefore, BG = f∗C

◦ and
BG
m = f∗C

◦
m belong to BSAG(V ) for m� 0, and hence B,Bm ∈ BSA(V ).

The set f∗P ′ ⊆ BSAG(V ) is a polytope, and thus the set

G = L(V ) ∩ (G+ f∗P ′) ⊆ BSA(V )

is also a polytope which contains the points B and Bm for m� 0, which concludes
the proof.

Proof of Proposition 2.40(i)

The set EA|S(W ) is a rational polytope by Theorem Bn−1, and if E1, . . . , Ed are its
extreme points, the ring

R = R(S;KS + A|S + E1, . . . , KS + A|S + Ed)

is finitely generated by Theorem An−1. Therefore, the function

Fix : SuppR ∩DivQ(X)→ R

extends to a rational piecewise linear function on SuppR = R+(KS+A|S+EA|S(W ))
by Theorem 1.10. Then F is a subset of EA|S(W ) defined by finitely many linear
equalities and inequalities. Thus, there are finitely many rational polytopes Fi such
that F =

⋃
iFi.

Proof of Proposition 2.40(ii)

We proceed in several steps.

Step 0. We fix some notation until the end of the proof. By abuse of notation, ‖ · ‖
denotes the sup-norm on DivR(X), DivR(S) and on DivR(X)×DivR(S). Denote by
Qi the convex hull of Q′i, and set

Φ(B) = B|S −B|S ∧ FixS(KX + S + A+B)

for a Q-divisor B ∈ BSA(V ). By Theorem 1.10 there exists a positive integer k with
the property that

Fix(KS + A|S + E) =
1

m
Fix |m(KS + A|S + E)| (2.26)

for every rational E ∈ EA|S(W ) and every m ∈ N such that mA/k and mE/k are
integral; note that, in particular, |m(KS + A|S + E)| 6= ∅ for every such m.
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Fix a rational number 0 < ε� 1 such that D+ 1
4
A is ample for any D ∈ V with

‖D‖ < ε, and ε(KX + S + A+B) + 1
4
A is ample for any B ∈ L(V ).

Step 1. In this step we prove that Q′i is dense in Qi.
To this end, fix (B0, C0), (B1, C1) ∈ Q′i, and for a rational number 0 ≤ t ≤ 1 set

(Bt, Ct) =
(
(1− t)B0 + tB1, (1− t)C0 + tC1

)
∈ P × Fi.

It suffices to show that (Bt, Ct) ∈ Q′i, i.e. that Ct ≤ Φ(Bt) for every t.
Let T be a prime divisor in W . If multT Ct = 0 for some 0 < t < 1, then since

multT C0 ≥ 0 and multT C1 ≥ 0 we must have multT Ct = 0 for all rational t ∈ [0, 1],
and in particular multT Ct ≤ multT Φ(Bt).

Otherwise, we have multT Ct > 0 for all 0 < t < 1, and it follows from the
definition of Fi and by continuity of the function Fix, cf. the proof of part (i), that

multT Fix(KS + A|S + Ct) = 0 for all t ∈ [0, 1]. (2.27)

By Theorem 2.37 we have

FixS(KX + S + A+Bj) ≤ Fix(KS + A|S + Cj) + (Bj|S − Cj),

and therefore multT
(
Bj|S −FixS(KX +S +A+Bj)

)
≥ multT Cj by (2.27). Hence,

multT Ct ≤ multT
(
Bt|S − FixS(KX + S + A+Bt)

)
≤ multT Φ(Bt)

for all t by convexity of the function FixS.

Step 2. Let
Ci = {(G,F ) ∈ G × Fi | F ≤ G|S}.

Note that Ci is a rational polytope and Qi ⊆ Ci. Recall the definition of ε from Step
0. We claim:

Claim 2.41. Suppose we are given (B,C) ∈ Qi and (Γ,Ψ) ∈ face
(
Ci, (B,C)

)
. As-

sume that there exist a positive integer m and a rational number 0 < φ ≤ 1 such
that mA/k, mΓ/k and mΨ/k are integral, that ‖(B,C) − (Γ,Ψ)‖ < φε

2m
, and that

for any prime divisor T on S we have

multT (B|S − C) > φ or multT (B|S − C) ≤ multT (Γ|S −Ψ).

Then (Γ,Ψ) ∈ Q′i.
Assuming the claim, let us see how it implies Proposition 2.40(ii). Fix a point

(B,C) ∈ Qi, and let Π be the set of prime divisors T on S such that multT (B|S−C) >
0. If Π 6= ∅, pick a positive rational number

φ < min{multT (B|S − C) | T ∈ Π} ≤ 1,
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and set φ = 1 if Π = ∅. By Lemma 2.42, there exist finitely many points (Γj,Ψj) ∈
face

(
Ci, (B,C)

)
and positive integers mj divisible by k, such that mjA/k, mjΓj/k

and mjΨj/k are integral, (B,C) is a convex linear combination of all (Γj,Ψj), and

‖(B,C)− (Γj,Ψj)‖ <
φε

2mj

.

Now Claim 2.41 implies (Γj,Ψj) ∈ Q′i for all j, hence (B,C) ∈ Qi. This shows that
Qi is closed and that all of its extreme points are rational.

Next we show that Qi is a rational polytope. Assume for a contradiction that
Qi is not a polytope. Then there exist infinitely many distinct rational extreme
points vn = (Bn, Cn) of Qi, with n ∈ N. Since Qi is compact and Ci is a rational
polytope, by passing to a subsequence there exist v∞ = (B∞, C∞) ∈ Qi and a
positive dimensional face V of Ci such that

v∞ = lim
n→∞

vn and face(Ci, vn) = V for all n ∈ N. (2.28)

In particular, v∞ ∈ V . Let Π∞ be the set of all prime divisors T on S such that
multT (B∞|S − C∞) > 0. If Π∞ 6= ∅, pick a positive rational number

φ < min{multT (B∞|S − C∞) | T ∈ Π∞} ≤ 1,

and set φ = 1 if Π∞ = ∅. Then, if k is the positive integer from Step 0, then by
Lemma 2.42 there exist v′∞ ∈ face(Ci, v∞), and a positive integer m divisible by k,
such that m

k
v′∞ is integral and ‖v∞ − v′∞‖ < φε

2m
. By Claim 2.41 we have v′∞ ∈ Qi.

Pick j � 0 so that

‖vj − v′∞‖ ≤ ‖vj − v∞‖+ ‖v∞ − v′∞‖ <
φε

2m
, (2.29)

and that multT (Bj|S −Cj) > φ if T ∈ Π∞. Note that vj is contained in the relative
interior of V by (2.28), and v′∞ ∈ face(Ci, v∞) ⊆ V . Therefore, there exists a positive
integer m′ � 0 divisible by k, such that m+m′

k
vj is integral, and such that if we

define

v′j =
m+m′

m′
vj −

m

m′
v′∞,

then v′j ∈ V . Note that m′

k
v′j is integral,

vj =
m′

m+m′
v′j +

m

m+m′
v′∞, (2.30)

and

‖v′j − vj‖ =
m

m′
‖vj − v′∞‖ <

φε

2m′
(2.31)
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by (2.29). Furthermore, if v′∞ = (B′∞, C
′
∞), v′j = (B′j, C

′
j), and if T is a prime divisor

on S such that T /∈ Π∞, then multT (B′∞|S − C ′∞) = 0 as v′∞ ∈ face(Ci, v∞), hence

(2.30) gives

multT (Bj|S − Cj) =
m′

m+m′
multT (B′j|S − C ′j) ≤ multT (B′j|S − C ′j). (2.32)

Therefore, v′j ∈ Qi by (2.31), (2.32) and by Claim 2.41, and since vj belongs to the
interior of the segment [v′j, v

′
∞] by (2.30), the point vj is not an extreme point of Qi.

This is a contradiction which finishes the proof.

Step 3. It remains to prove Claim 2.41. It suffices to show

multT FixS(KX + S + A+ Γ + 1
2m
A) ≤ multT (Γ|S −Ψ) (2.33)

for every prime divisor T ⊆ Supp Ψ. Indeed, then it clearly follows that

Γ|S ∧ FixS(KX + S + A+ Γ + 1
2m
A) ≤ Γ|S −Ψ,

hence Theorem 2.37 implies

|m(KS + A|S + Ψ)|+m(Γ|S −Ψ) ⊆ |m(KX + S + A+ Γ)|S (2.34)

and
Fix(KS + A|S + Ψ) + (Γ|S −Ψ) ≥ FixS(KX + S + A+ Γ). (2.35)

By the assumption on m from Step 0, (2.34) yields Γ ∈ BSA(V ). Since Ψ ∈ Fi, we
have Ψ ∧ Fix(KS + A|S + Ψ) = 0, (2.35) shows that

Γ|S −Ψ ≥ Γ|S ∧ FixS(KX + S + A+ Γ),

and finally Ψ ≤ Φ(Γ).
To conclude, we show (2.33). Since (B,C) ∈ Qi, and Q′i is dense in Qi by Step

1, for every 0 < δ < ε
m

there exists a point (Bδ, Cδ) ∈ Q′i such that ‖B − Bδ‖ < δ
2

and ‖C−Cδ‖ < δ
2
. Since then ‖Γ−Bδ‖ ≤ ‖Γ−B‖+ ‖B−Bδ‖ < ε

m
, the Q-divisors

Hδ = Γ−Bδ + 1
4m
A and Gδ = ε

m
(KX + S + A+Bδ) + 1

4m
A

are ample by the assumptions from Step 0. Then

B(KX +S+A+Γ+ 1
2m
A) = B(KX +S+A+Bδ+Hδ+ 1

4m
A) ⊆ B(KX +S+A+Bδ),

hence S * B(KX + S + A+ Γ + 1
2m
A). Since

KX + S + A+ Γ + 1
2m
A = (1− ε

m
)(KX + S + A+Bδ) + (Gδ +Hδ),
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we have

FixS(KX + S + A+ Γ + 1
2m
A) ≤ FixS

(
(1− ε

m
)(KX + S + A+Bδ)

)
=
(
1− ε

m

)
FixS(KX + S + A+Bδ)

Since (Bδ, Cδ) ∈ Q′i, Theorem 2.37 implies

FixS(KX + S + A+Bδ) ≤ Bδ|S − Cδ + Fix(KS + A|S + Cδ),

which together with the previous inequality yields

FixS(KX + S + A+ Γ + 1
2m
A) ≤ (1− ε

m
)(Bδ|S − Cδ) + Fix(KS + A|S + Cδ).

If T is a component of Ψ, then T is a component of C as (Γ,Ψ) ∈ face
(
Ci, (B,C)

)
.

Thus T ⊆ SuppCδ for δ � 1, and so multT Fix(KS + A|S + Cδ) = 0 since Cδ ∈ Fi.
Therefore

multT FixS(KX + S + A+ Γ + 1
2m
A) ≤ (1− ε

m
) multT (Bδ|S − Cδ)

≤ (1− ε
m

) multT (B|S − C) + δ,

and we obtain

multT FixS(KX + S + A+ Γ + 1
2m
A) ≤ (1− ε

m
) multT (B|S − C)

by letting δ → 0. If multT (B|S−C) ≤ multT (Γ|S−Ψ), then clearly (1− ε
m

) multT (B|S−
C) ≤ multT (Γ|S−Ψ). Otherwise, by assumption φ < multT (B|S−C) ≤ multT (Γ|S−
Ψ) + φε

m
, and so

(1− ε
m

) multT (B|S − C) ≤ multT (Γ|S −Ψ) + φε
m
− ε

m
multT (B|S − C)

= multT (Γ|S −Ψ)− ε
m

(
multT (B|S − C)− φ

)
≤ multT (Γ|S −Ψ).

This proves (2.33) and finishes the proof of Proposition 2.40.

We used the following result from Diophantine approximation.

Lemma 2.42. Let ‖ · ‖ be a norm on RN , let P ⊆ RN be a rational polytope and
let x ∈ P. Fix a positive integer k and a positive real number ε.

Then there are finitely many xi ∈ P and positive integers ki divisible by k, such
that kixi/k are integral, ‖x−xi‖ < ε/ki, and x is a convex linear combination of xi.

Proof. This is well known, see for instance [BCHM10, Lemma 3.7.7].
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Proof of Proposition 2.40(iii)

Denote P = G ∩ BSA(V ), and recall the definition of Qi from Step 0 of the proof of
Proposition 2.40(ii). Let Pi ⊆ V be the image of Qi through the first projection. Fix
B ∈ P ∩ DivQ(X), and for every positive integer m such that mA,mB are integral
and S * Bs |m(KX + S + A+B)|, denote

Φm = B|S −B|S ∧ 1
m

Fix |m(KX + S + A+B)|S ∈ EA|S(W ).

As in the proof of Corollary 2.39 we have

|m(KS + A|S + Φm)|+m(B|S − Φm) ⊇ |m(KX + S + A+B)|S,
so

Fix |m(KS + A|S + Φm)|+m(B|S − Φm) ≤ Fix |m(KX + S + A+B)|S. (2.36)

If T is a component of Φm, then by definition

multT Φm = multT B|S − 1
m

multT Fix |m(KX + S + A+B)|S,
which together with (2.36) gives multT Fix |m(KS + A|S + Φm)| = 0, and hence

multT Fix(KS + A|S + Φm) = 0.

This implies
(
B,Φm

)
∈ ⋃iQi, thus B ∈ ⋃iPi. Therefore P ∩ DivQ(X) ⊆ ⋃iPi,

and since P ∩ DivQ(X) is dense in P (exercise!), we have P ⊆ ⋃iPi. The reverse
inclusion follows by the definition of the sets Q′i, and this finishes the proof.

2.5.3 Proof of Theorem C

The following result contains the heart of the proof.

Proposition 2.43. Assume Theorem An−1 and Theorem Bn−1. Let (X,S+
∑p

i=1 Si)
be a log smooth projective pair of dimension n, where S and all Si are distinct prime
divisors. Let V =

∑p
i=1 RSi ⊆ DivR(X) and let A be an ample Q-divisor on X. Let

G be a rational polytope contained in the interior of L(V ), and assume that (S,B|S)
is terminal for every B ∈ G. Denote P = G ∩ BSA(V ).

(i) For each B ∈ P∩DivQ(X), denote Φ(B) = B|S−B|S∧FixS(KX +S+A+B).
Then Φ extends to a rational piecewise affine function on P,

(ii) For every positive integer m such that mA,mB are integral and S * Bs |m(KX+
S + A+B)|, denote

Φm(B) = B|S −B|S ∧ 1
m

Fix |m(KX + S + A+B)|S.
Then there exists a positive integer ` with the property that Φ(B) = Φm(B)
for every B ∈ P ∩ DivQ(X) and every positive integer m such that mB/` is
integral.
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This immediately implies Theorem C:

Proof of Theorem 2.8. We first prove the lemma under additional assumptions, and
then treat the general case in Step 2.

Step 1. In this step we assume that all Bi lie in the interior of L(V ) and that all
(S,Bi|S) are terminal. We use functions Φm and Φ defined in Proposition 2.43.

Let G ⊆ ES+A(V ) be the convex hull of all Bi. Then G is contained in the interior
of L(V ), and (S,G|S) is terminal for every G ∈ G. Denote

D = R+(KX + S + A+ G).

Then, by Lemma 2.13(iii) it suffices to prove that resS R(X,D) is finitely generated.
By Theorem Dn, the set P = G∩BSA(V ) is a rational polytope, and there exists a

finite decomposition P =
⋃Pi into rational polytopes such that Φ is rational affine

on each Pi by Proposition 2.43, where we assume the notation from Proposition
2.43. Denote

C = R+(KX + S + A+ P) and Ci = R+(KX + S + A+ Pi),

and note that C =
⋃ Ci. Since resS H

0(X,OX(D)) = 0 for every D ∈ D \ C, and
as C is a rational polyhedral cone, it suffices to show that resS R(X, C) is finitely
generated, and therefore, to prove that resS R(X, Ci) is finitely generated for each i.
Hence, after replacing G by Pi, we can assume that Φ is rational affine on G.

By Gordan’s lemma and by definition of D, there exist Gi ∈ G ∩ DivQ(X) and
di ∈ Q+, with i = 1, . . . , q, such that

Di = di(KX + S + A+Gi) are generators of D ∩Div(X).

By Theorem 2.43, there exists a positive integer ` such that Φm(G) = Φ(G) for
every G ∈ G ∩ DivQ(X) and every m ∈ N such that mG/` ∈ Div(X). Pick a
positive integer k such that all kdi/` ∈ N and kdiGi/` ∈ Div(X). For each nonzero
α = (α1, . . . , αq) ∈ Nq, denote

dα =
∑

αidi, Gα =
1

dα

∑
αidiGi, Dα =

∑
αiDi = dα(KX + S + A+Gα),

and note that kdαGα/` ∈ Div(X) and Φ(Gα) = 1
dα

∑
αidiΦ(Gi). Then, by Corol-

lary 2.39 we have

resS H
0(X,OX(mkDα)) = H0

(
S,OS(mkdα(KS + A|S + Φmkgα(Gα)))

)
= H0

(
S,OS(mkdα(KS + A|S + Φ(Gα)))

)
for all α ∈ Nq and m ∈ N, and thus

resS R(X; kD1, . . . , kDq) = R(S; kd1D
′
1, . . . , kdqD

′
q),
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where D′i = KS + A|S + Φ(Gi). Since the last ring is a Veronese subring of the
adjoint ring R(S;D′1, . . . , D

′
q), it is finitely generated by Theorem An−1 and by

Lemma 2.13(i). Therefore resS R(X;D1, . . . , Dq) is finitely generated by Lemma
2.13(ii), and since there is the natural projection of this ring onto resS R(X,D), this
last ring is also finitely generated.

Step 2. In this step, we show that Step 1 implies the result in general.

For every i pick a Q-divisor Gi ∈ V such that A − Gi is ample and Bi + Gi is
in the interior of L(V ). Let A′ be an ample Q-divisor such that every A−Gi − A′
is also ample, and pick Q-divisors Ai ≥ 0 such that Ai ∼Q A − Gi − A′, bAic = 0,
(X,S +

∑p
i=1 Si +

∑m
i=1 Ai) is log smooth, and the support of

∑m
i=1 Ai does not

contain any of the divisors S, S1, . . . , Sp. Let V ′ ⊆ DivR(X) be the vector space
spanned by V and by the components of

∑m
i=1Ai. Let ε > 0 be a rational number

such that

A′′ = A′ − ε
m∑
i=1

Ai

is ample, and such that

B′i = Bi +Gi + Ai + ε
m∑
i=1

Ai

is in the interior of L(V ′) for every i. Note that we have

KX + S + A+Bi ∼Q KX + S + A′′ +B′i for every i. (2.37)

Let B ≥ 0 be a Q-divisor such that bBc = 0 and B ≥ B′i for all i. By Lemma
2.38, there exists a log resolution f : Y → X such that

KY + T + C = f ∗(KX + S +B) + E,

where the Q-divisors C,E ≥ 0 have no common components, E is f -exceptional,
bCc = 0, the components of C are disjoint, and T = f−1

∗ S * SuppC. Then there
are Q-divisors 0 ≤ Ci ≤ C and f -exceptional Q-divisors Ei ≥ 0 such that

KY + T + Ci = f ∗(KX + S +B′i) + Ei, (2.38)

and in particular, all pairs (T,Ci|T ) are terminal. Let V ◦ be the subspace of DivR(Y )
spanned by the components of C and by all f -exceptional prime divisors. There
exists a Q-divisor F ≥ 0 on Y such that, if we denote

A◦ = f ∗A′′ − F and C◦i = Ci + F, (2.39)
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then A◦ is ample, every C◦i is in the interior of L(V ◦), and every pair (T,C◦i|T ) is

terminal. It follows from (2.37), (2.38) and (2.39) that

KY + T + A◦ + C◦i ∼Q f
∗(KX + S + A+Bi) + Ei.

Since the ring

resT R(Y ;KY + T + A◦ + C◦1 , . . . , KY + T + A◦ + C◦m)

is finitely generated by Step 1, we conclude by Lemma 2.13(iii).

Proof of Theorem 2.43(i)

Step 1. For (i), fix a prime divisor T ∈ W , and consider the map ΦT : P∩DivQ(X)→
[0, 1] defined by

ΦT (B) = multT Φ(B) for every B ∈ P ∩DivQ(X).

In order to show that Φ extends to a rational piecewise affine function on P , it
suffices to prove that each function ΦT extends to a rational piecewise affine function
on P .

Let RT be the closure of the set

R′T = {B ∈ P ∩DivQ(X) | ΦT (B) 6= 0} ⊆ P ∩DivQ(X).

Note that

ΦT (B) 6= 0 ⇒ ΦT (B) = multT
(
B|S − FixS(KX + S + A+B)

)
,

and since FixS is a convex map on P , the set RT is convex, and ΦT is concave on
RT . Now it is clear that ΦT extends to a rational piecewise affine on P if and only
if:

(a) RT is a rational polytope, and

(b) ΦT extends to a rational piecewise affine function on RT .

Step 2. In this step we show (a). Let Q′i be the sets as in Proposition 2.40(ii), let
Qi be the convex hull of Q′i, and let Pi ⊆ V be the image of Qi through the first
projection. Recall from the proof of Proposition 2.40(iii) that each Pi is a rational
polytope and P =

⋃Pi.
We show that RT is a union of some of the sets Pi: this then implies that RT is

a rational polytope since it is convex.
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Let B be any rational point of R′T . From the proof of Proposition 2.40(iii) we
have

(
B,Φm(B)

)
∈ ⋃Qi for every m sufficiently divisible, hence by compactness,(

B,Φ(B)
)
∈ Qi for some i.

Since multT Φ(B) > 0, the image of the polytope Qi through the second projection
is not zero, which implies that multT C > 0 for every rational point (B,C) in the
relative interior of Qi. It is enough to show that for every such a point (B,C) we
have multT Φ(B) > 0: indeed, by looking at the first projection, this then implies
that every rational point in the relative interior of Pi belongs to RT , hence Pi ⊆ RT

as the set of such points is dense in Pi.
To prove the claim, fix a rational point (B,C) in the relative interior of Qi. Note

that this implies (B,C) ∈ Q′i, so Theorem 2.37 gives

Fix(KS + A|S + C) + (B|S − C) ≥ FixS(KX + S + A+B).

On the other hand, multT C > 0 yields multT Fix(KS+A|S+C) = 0 by the definition
of the set Q′i, and thus

multT
(
B|S − FixS(KX + S + A+B)

)
≥ multT C > 0.

In particular, ΦT (B) = multT
(
B|S − FixS(KX + S + A + B)

)
, which shows the

claim.

Step 3. In this step we show (b). Let (Bj, Cj) be the extreme points of all Qi for
which Pi ⊆ RT . Since Qi is the convex hull of Q′i, it follows that (Bj, Cj) ∈

⋃Q′i,
and in particular

multT Cj ≤ multT Φ(Bj) = ΦT (Bj). (2.40)

Fix a rational point B ∈ RT . Then
(
B,Φ(B)

)
∈ Qi for some i by the proof of

Proposition 2.40(iii), hence there exist rj ∈ R+ such that∑
rj = 1 and

(
B,Φ(B)

)
=
∑

rj(Bj, Cj).

Thus ΦT (B) = multT Φ(B) =
∑
rj multT Cj, so by concavity of ΦT and by (2.40)

we have ∑
rjΦT (Bj) ≤ ΦT (B) =

∑
rj multT Cj ≤

∑
rjΦT (Bj).

Therefore

ΦT (Bj) = multT Cj ∈ Q for any j and ΦT (B) =
∑

rjΦT (Bj).

Now by the following lemma, ΦT extends to a rational piecewise affine map on RT .
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Lemma 2.44. Let P ⊆ RN be a rational polytope, and denote PQ = P ∩ QN . Let
f : PQ → R be a bounded convex function, and assume that there exist x1, . . . , xq ∈
PQ such that:

(i) f(xi) ∈ Q for all i,

(ii) for any x ∈ PQ there exists (r1, . . . , rq) ∈ Rq
+ such that∑

ri = 1, x =
∑

rixi and f(x) =
∑

rif(xi).

Then f can be extended to a rational piecewise affine function on P.

Proof. Pick C ∈ Q+ such that −C ≤ f(x) ≤ C for all x ∈ PQ. Let Q ⊆ RN+1 be
the convex hull of all the points

(
xi, f(xi)

)
and (xi, C), and set

Q′ = {(x, y) ∈ PQ × R | f(x) ≤ y ≤ C}.

We first claim that Q ∩ QN+1 = Q′ ∩ QN+1, and in particular Q = Q′. Indeed,
since f is convex, and all

(
xi, f(xi)

)
and (xi, C) are contained in Q′, it follows that

Q∩QN+1 ⊆ Q′. Conversely, fix (u, v) ∈ Q′∩QN+1. Then there exists t ∈ [0, 1] such
that v = tf(u) + (1 − t)C, and as u ∈ PQ, there exist ri ∈ R+ such that

∑
ri = 1,

u =
∑
rixi and f(u) =

∑
rif(xi). Therefore

(u, v) =
∑
tri
(
xi, f(xi)

)
+
∑

(1− t)ri(xi, C),

and hence (u, v) ∈ Q, which proves the claim. Now, define F : P → [−C,C] as

F (x) = min{y ∈ [−C,C] | (x, y) ∈ Q}.

Then F extends f , and it is rational piecewise affine as Q is a rational polytope.

Proof of Proposition 2.43(ii)

From Proposition 2.43(i) we have Φ(B) ∈ DivQ(S) for every P ∈ P ∩DivQ(X), and
by subdividing P , we may assume that Φ extends to a rational affine map on P .
By Theorem 1.10 there exists a positive integer k with the property that

Fix(KS + A|S + E) =
1

m
Fix |m(KS + A|S + E)|

for every rational E ∈ EA|S(W ) and every m ∈ N such that mA/k and mE/k are
integral. By Gordan’s lemma, the monoid R+(S+P)∩Div(X) is finitely generated,
and let bi(S + Bi) be its generators for some bi ∈ Q+ and Bi ∈ P ∩ DivQ(X). Pick
a positive integer w such that wbiΦ(Bi) ∈ Div(S) for every i, and set ` = wk.
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Fix B ∈ P ∩DivQ(X) and a positive integer m such that mB/` ∈ Div(X). Then
there are non-negative integers αi are such that

m(S +B)/` =
∑

αibi(S +Bi).

In particular, we have m/` =
∑
αibi, and therefore

mΦ(B)/` =
∑

αibiΦ(Bi)

since Φ is an affine map. Hence mΦ(B)/k =
∑
αiwbiΦ(Bi) ∈ Div(S), so

Fix(KS + A|S + Φ(B)) =
1

m
Fix |m(KS + A|S + Φ(B))|

by the choice of k. Recall that
(
B,Φ(B)

)
∈ ⋃iQi by the proof of Proposition

2.40(iii), hence Φ(B) ∧ Fix |m(KS + A|S + Φ(B))| = 0. In particular,

Φ(B) ∧ Fix |m(KS + A|S + Φ(B))| = 0. (2.41)

Now Theorem 2.37 gives

Fix |m(KS + A|S + Φ(B))|+m(B|S −Φ(B)) ≥ Fix |m(KX + S + A+B)|S
≥ m(B|S ∧ 1

m
Fix |m(KX + S + A+B)|S) = m(B|S − Φm(B)).

This together with (2.41) implies Φm(B) ≥ Φ(B). But, by definition, Φ(B) ≥
Φm(B), and (ii) follows.

2.6 Proof of the Extension theorem

In this section we prove Theorem 2.37.
We will need the following easy consequence of Kawamata-Viehweg vanishing:

Lemma 2.45. Let (X,B) be a log smooth projective pair of dimension n, where B
is a Q-divisor such that bBc = 0. Let A be a nef and big Q-divisor.

(i) Let S be a smooth prime divisor such that S * SuppB. If G ∈ Div(X) is such
that G ∼Q KX + S + A+B, then |G|S| = |G|S.

(ii) Let f : X → Y be a birational morphism to a projective variety Y , and let
U ⊆ X be an open set such that f|U is an isomorphism and U intersects at
most one irreducible component of B. Let H ′ be a very ample divisor on Y
and let H = f ∗H ′. If F ∈ Div(X) is such that F ∼Q KX + (n+ 1)H +A+B,
then |F | is basepoint free at every point of U .
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Proof. Considering the exact sequence

0→ OX(G− S)→ OX(G)→ OS(G)→ 0,

Kawamata-Viehweg vanishing implies H1(X,OX(G − S)) = 0. In particular, the
map H0(X,OX(G))→ H0(S,OS(G)) is surjective. This proves (i).

We prove (ii) by induction on n. Let x ∈ U be a closed point, and pick a general
element T ∈ |H| which contains x. Then by the assumptions on U , it follows that
(X,T + B) is log smooth, and since F|T ∼Q KT + nH|T + A|T + B|T , by induction
F|T is free at x. Considering the exact sequence

0→ OX(F − T )→ OX(F )→ OT (F )→ 0,

Kawamata-Viehweg vanishing implies that H1(X,OX(F − T )) = 0. In particular,
the map H0(X,OX(F ))→ H0(T,OT (F )) is surjective, and (ii) follows.

Lemma 2.46. Let (X,S+B) be a projective pair, where X is smooth, S is a smooth
prime divisor and B is a Q-divisor such that S * SuppB. Let A be a nef and big
Q-divisor on X. Assume that D ∈ Div(X) is such that D ∼Q KX +S+A+B, and
let Σ ∈ |D|S|. Let Φ ∈ DivQ(S) be such that the pair (S,Φ) is klt and B|S ≤ Σ + Φ.

Then Σ ∈ |D|S.

Proof. Let f : Y → X be a log resolution of the pair (X,S+B), and write T = f−1
∗ S.

Then there are Q-divisors Γ ≥ 0 and E ≥ 0 on Y with no common components such
that T * Supp Γ, E is f -exceptional, and

KY + T + Γ = f ∗(KX + S +B) + E.

Let C = Γ− E and

G = f ∗D − bCc = f ∗D − bΓc+ dEe. (2.42)

Then

G− (KY + T + {C}) ∼Q f
∗(KX + S + A+B)− (KY + T + C) = f ∗A

is nef and big, and Lemma 2.45(i) implies that

|G|T | = |G|T . (2.43)

Moreover, since E ≥ 0 is f -exceptional, we have

|G|T + bΓc|T = |f ∗D − bΓc+ dEe|T + bΓc|T (2.44)

⊆ |f ∗D + dEe|T = |f ∗D|T + dEe|T .
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Denote g = f|T : T → S. Then

KT + C|T = g∗(KS +B|S) and KT + Ψ = g∗(KS + Φ),

for some Q-divisor Ψ on T , and note that bΨc ≤ 0 since (S,Φ) is klt. Therefore

g∗(B|S − Φ) = C|T −Ψ. (2.45)

By assumption we have that B|S ≤ Σ+Φ, that g∗Σ is integral, and that the support
of C + T has normal crossings, so this together with (2.45) gives

g∗Σ ≥ g∗Σ + bΨc = bg∗Σ + Ψc ≥ bg∗(B|S − Φ) + Ψc
= bC|T c = bCc|T = (f ∗D)|T −G|T .

Denote
R = G|T − (f ∗D)|T + g∗Σ.

Then R ≥ 0 by the above, and g∗Σ ∈ |(f ∗D)|T | implies R ∈ |G|T | = |G|T by (2.43).
Therefore R+bΓc|T ∈ |f ∗D|T +dEe|T by (2.44), and this together with (2.42) yields

g∗Σ = R + (f ∗D)|T −G|T = R + bΓc|T − dEe|T ∈ |f ∗D|T ,
hence the claim follows.

Lemma 2.47. Let (X,S + B + D) be a log smooth projective pair, where S is a
prime divisor, B is a Q-divisor such that bBc = 0 and S * SuppB, and D ≥ 0 is
a Q-divisor such that D and S + B have no common components. Let P be a nef
Q-divisor and denote ∆ = S +B + P . Assume that

KX + ∆ ∼Q D.

Let k be a positive integer such that kP and kB are integral, and write Ω = (B+P )|S.
Then there is a very ample divisor H such that for all divisors Σ ∈ |k(KS + Ω)|

and U ∈ |H|S|, and for every positive integer l we have

lΣ + U ∈ |lk(KX + ∆) +H|S.
Proof. For any m ≥ 0, let lm = bm

k
c and rm = m − lmk ∈ {0, 1, . . . , k − 1}, define

Bm = dmBe − d(m− 1)Be, and set Pm = kP if rm = 0, and otherwise Pm = 0. Let

Dm =
m∑
i=1

(KX + S + Pi +Bi) = m(KX + S) + lmkP + dmBe,

and note that Dm is integral and

Dm = lmk(KX + ∆) +Drm . (2.46)

By Serre vanishing, we can pick a very ample divisor H on X such that:
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(i) Dj +H is ample and basepoint free for every 0 ≤ j ≤ k − 1,

(ii) |Dk +H|S = |(Dk +H)|S|.
We claim that for all divisors Σ ∈ |k(KS + Ω)| and Um ∈ |(Drm +H)|S| we have

lmΣ + Um ∈ |Dm +H|S.

The case rm = 0 immediately implies the lemma.
We prove the claim by induction on m. The case m = k is covered by (ii). Now

let m > k, and pick a rational number 0 < δ � 1 such that Drm−1 + H + δBm is
ample. Note that 0 ≤ Bm ≤ dBe, that (X,S + B + D) is log smooth, and that
D and S + B have no common components. Thus, there exists a rational number
0 < ε� 1 such that, if we define

F = (1− εδ)Bm + lm−1kεD, (2.47)

then (X,S + F ) is log smooth, bF c = 0 and S * SuppF . In particular, if W is a
general element of the free linear system |(Drm−1 +H)|S| and

Φ = F|S + (1− ε)W, (2.48)

then (S,Φ) is klt.
By induction, there is a divisor Υ ∈ |Dm−1 +H| such that S * Supp Υ and

Υ|S = lm−1Σ +W.

Denoting C = (1− ε)Υ + F , by (2.47) we have

C ∼Q (1− ε)(Dm−1 +H) + (1− εδ)Bm + lm−1kεD, (2.49)

and (2.48) yields

C|S = (1− ε)Υ|S + F|S ≤ lm−1Σ + Φ ≤ (lmΣ + Um) + Φ. (2.50)

By the choice of δ and since Pm is nef, the Q-divisor

A = ε(Drm−1 +H + δBm) + Pm (2.51)

is ample. Then by (2.46), (2.51) and (2.49) we have

Dm +H = KX + S +Dm−1 +Bm + Pm +H

= KX + S + (1− ε)Dm−1 + lm−1kε(KX + ∆) + εDrm−1 +Bm + Pm +H

∼Q KX + S + A+ (1− ε)Dm−1 + lm−1kεD + (1− εδ)Bm + (1− ε)H
∼Q KX + S + A+ C,

and thus lmΣ + Um ∈ |Dm +H|S by (2.50) and Lemma 2.46.
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Proof of Theorem 2.37. Let f : Y → X be a log resolution of the pair (X,S+B) and
of the linear system |qm(KX + ∆ + 1

m
A)|, and write T = f−1

∗ S. Then there are Q-
divisors B′, E ≥ 0 on Y with no common components, such that E is f -exceptional
and

KY + T +B′ = f ∗(KX + S +B) + E.

Note that

KT +B′|T = g∗(KS +B|S) + E|T ,

and since (Y, T + B′ + E) is log smooth and B′ and E do not have common com-
ponents, it follows that B′|T and E|T do not have common components, and in
particular, E|T is g-exceptional and g∗B

′
|T = B|S. Let Γ = T + f ∗A+B′, and define

Fq = 1
qm

Fix |qm(KY + Γ + 1
m
f ∗A)|, B′q = B′ −B′ ∧ Fq, Γq = T +B′q + f ∗A.

Since (Y, T +B′ + Fq) is log smooth, Mob
(
qm(KY + Γ + 1

m
f ∗A)

)
is basepoint free,

and T * Bs(KY + Γ + 1
m
f ∗A), by Bertini’s theorem there exists a Q-divisor D ≥ 0

such that

KY + Γq + 1
m
f ∗A ∼Q D,

the pair (Y, T + B′q + D) is log smooth, and D does not contain any component of
T + B′q. Let g = f|T : T → S. Since (S,C) is canonical, there is a g-exceptional
Q-divisor F ≥ 0 on T such that

KT + C ′ = g∗(KS + C) + F,

where C ′ = g−1
∗ C. We claim that C ′ ≤ B′q|T . Assuming the claim, let us show how

it implies the theorem.
By Lemma 2.47, there exists a very ample divisor H on Y such that for all

divisors Σ′ ∈ |qm(KT + (B′q + (1 + 1
m

)f ∗A)|T )| and U ∈ |H|T |, and for every positive
integer p we have

pΣ′ + U ∈ |pqm(KY + Γq + 1
m
f ∗A) +H|T .

Pick an f -exceptional Q-divisor G ≥ 0 such that bB′ + 1
m
Gc = 0 and f ∗A − G is

ample. In particular, (T, (B′ + 1
m
G)|T ) is klt. Let W1 ∈ |q(f ∗A)|T | and W2 ∈ |H|T |

be general sections. Pick a positive integer k � 0 such that, if we denote l = kq,
W = kW1 +W2 and Φ = B′|T + 1

m
G|T + 1

l
W , then the Q-divisor

A0 =
1

m
(f ∗A−G)− m− 1

ml
H (2.52)

is ample and the pair (T,Φ) is klt.
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Fix Σ ∈ |m(KS + A|S + C)|. Since C ′ ≤ B′q|T by the claim, it is easy to check
that

qg∗Σ + qm(F +B′q|T − C ′) +W1 ∈ |qm(KT + (B′q + (1 + 1
m

)f ∗A)|T )|.

Then, by the choice of H, there exists Υ ∈ |lm(KY + Γq + 1
m
f ∗A) + H| such that

T * Supp Υ and

Υ|T = lg∗Σ + lm(F +B′q|T − C ′) +W.

Denoting

B0 =
m− 1

ml
Υ + (m− 1)(Γ− Γq) +B′ +

1

m
G, (2.53)

relations (2.52) and (2.53) imply

m(KY + Γ) = KY + T + (m− 1)(KY + Γ + 1
m
f ∗A) + 1

m
f ∗A+B′ (2.54)

∼Q KY + T + m−1
ml

Υ + (m− 1)(Γ− Γq) + 1
m
f ∗A− m−1

ml
H +B′

= KY + T + A0 +B0.

Noting that Γ− Γq = B′ −B′q, we have

B0|T = m−1
m
g∗Σ + (m− 1)

(
F +B′q|T − C ′ + (Γ− Γq)|T

)
(2.55)

+ m−1
ml

W +B′|T + 1
m
G|T ≤ g∗Σ +m(F +B′|T − C ′) + Φ,

and since g∗Σ + m(F + B′|T − C ′) ∈ |m(KY + Γ)|T |, by (2.54), (2.55) and Lemma
2.46 we obtain

g∗Σ +m(F +B′|T − C ′) ∈ |m(KY + Γ)|T .
Pushing forward by g yields Σ+m(B|S−C) ∈ |m(KX+∆)|S and the lemma follows.

Now we prove the claim stated above. Since Mob
(
qm(KY + Γ + 1

m
f ∗A)

)
is

basepoint free and T is not a component of Fq, it follows that 1
qm

Fix |qm(KY + Γ +
1
m
f ∗A)|T = Fq|T and

B′q|T = B′|T − (B′ ∧ Fq)|T = B′|T −B′|T ∧ 1
qm

Fix |qm(KY + Γ + 1
m
f ∗A)|T .

Furthermore, we have

g∗ Fix |qm(KY + Γ + 1
m
f ∗A)|T = Fix |qm(KX + ∆ + 1

m
A)|S,

so

g∗C
′ = C ≤ B|S −B|S ∧ 1

qm
Fix |qm(KX + ∆ + 1

m
A)|S = g∗B

′
q|T .

Therefore C ′ ≤ B′q|T , since B′q|T ≥ 0 and C ′ = g−1
∗ C.
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Lemma 2.48. Let X be a smooth projective variety and let S be a smooth prime
divisor on X. Let D be a Q-divisor such that S * Bs(D), and let A be an ample
Q-divisor. Then

1

q
Fix |q(D + A)|S ≤ FixS(D)

for any sufficiently divisible positive integer q.

Proof. Let P be a prime divisor on S and let γ = multP FixS(D). It is enough to
show that

multP
1

q
Fix |q(D + A)|S ≤ γ

for some sufficiently divisible positive integer q.
Assume first that γ > 0. Let ε > 0 be a rational number such that εD + A is

ample, and pick a positive integer m such that

1− ε
m

multP Fix |mD|S ≤ γ.

Let q be a sufficiently divisible positive integer such that the divisor q(εD + A) is
very ample, and such that m divides q(1− ε). Then

1

q
multP Fix |q(D + A)|S =

1

q
multP Fix |q(1− ε)D + q(εD + A)|S

≤ 1

q
multP Fix |q(1− ε)D|S ≤

1− ε
m

multP Fix |mD|S ≤ γ.

Now assume that γ = 0. Let n = dimX and let H be a very ample divisor on
X. Pick a positive integer q such that qA and qD are integral, and such that

C = qA−KX − S − nH (2.56)

is ample. Then there exists a Q-divisor D′ ≥ 0 such that D′ ∼Q D, S 6⊆ SuppD′

and multP (D′|S) < 1
q
. Let f : Y −→ X be a log resolution of (X,S + D′) which is

obtained as a sequence of blowups along smooth centres. Let T = f−1
∗ S, and let

E ≥ 0 be the f -exceptional integral divisor such that

KY + T = f ∗(KX + S) + E.

Then, denoting F = qf ∗(D + A)− bqf ∗D′c+ E, by (2.56) we have

F ∼Q qf
∗A+ {qf ∗D′}+ E = KY + T + f ∗(nH + C) + {qf ∗D′},

and in particular |F|T | = |F |T by Lemma 2.45(i). Denote g = f|T : T → S and
let P ′ = g−1

∗ P . Since F|T ∼Q KT + g∗(nH|S) + g∗(C|S) + {qf ∗D′}|T and g is an
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isomorphism at the generic point of P ′, Lemma 2.45(ii) implies that the base locus
of |F|T | does not contain P ′. In particular, if V ∈ |F | is a general element, then
P * Supp f∗V .

Let U = V + bqf ∗D′c ∈ |qf ∗(D+A) +E|. Since E is f -exceptional, this implies
that f∗U ∈ |q(D + A)|, and since f∗bqf ∗D′c ≤ qD′, we have

multP (f∗U)|S = multP (f∗V )|S + multP (f∗bqf ∗D′c)|S ≤ multP qD
′
|S < 1.

Thus, multP (f∗U)|S = 0 and the lemma follows.
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