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Chapter 1

Introduction and motivation

Throughout these notes we work over C and all varieties are normal and projective.
The main topic of this course is to understand the proof of the following recent

important result [CP11, CP15].

Theorem 1.1. Let X be a smooth projective variety with KX is pseudoeffective. Then
every torsion-free quotient of (Ω1

X )⊗m has a pseudoeffective determinant, for every
positive integer m.

Recall that a Cartier divisor D on a normal variety X is pseudoeffective if the
class of D in N1(X )R is a limit of classes of effective divisors; in other words, [D] ∈
N1(X )R in the the closure of the effective cone Eff(X ). Note that this is equivalent
to [D] being in the closure of the big cone Big(X ), see [Laz04] or [LazA2].

Theorem 1.1 has already had important consequences in problems surrounding
hyperbolicity and D-modules. However, our main goal in this course is an applica-
tion of the result to the Minimal Model Program.

Recall that the goal of the Minimal Model Program (MMP) is a birational clas-
sification of projective varieties with mild singularities. The definition of “mild sin-
gularities” is technical, and it basically says that the canonical class of the vari-
ety behaves well under pullbacks; the details for those who are interested are in
[LazA3]. The thing important for us is that if we start with a smooth variety, the
operations of the MMP (surgery operations) produce an output which is in general
no longer smooth, but has terminal singularities. This means that the ramification
formula for KX behaves just like the ramification formula for smooth varieties. In
particular, for every m sufficiently divisible we have

H0(Y ,mKY )' H0(X ,mKX ),

where Y → X is any resolution of X . We need two other technical facts: first, if X is
a terminal variety of dimension n, then the dimension of the singular locus of X is
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at most n−3; so in particular, if X is a threefold, the singularities of X are finitely
many isolated points. This is proved in [KM98, Corollary 5.18]. Second, terminal
singularities are rational: this means that for every resolution π : Y → X we have
R iπ∗OY = 0 for all i ≥ 1. This is proved in [KM98, Corollary 5.22]. As a consequence
of this and the Leray spectral sequence, we have

χ(Y ,π∗F )= χ(X ,F )

for every coherent sheaf F on X .
One of the main conjectures of the MMP is the following Nonvanishing conjec-

ture.

Conjecture 1.2. Let X be a smooth projective variety such that KX is pseudoeffec-
tive. Then KX is effective. In other words, there exists a positive integer m such that
H0(X ,mKX ) 6= 0.

By running the MMP, we may always modify X such that X is terminal (so we
lose smoothness), but on the positive side, X is minimal, i.e. KX is nef (hence we
gain positivity). Here, nef means that KX intersects every irreducible curve C on
X nonnegatively. This concept is very close to ampleness, see [LazA2, LazA3].

Our ultimate goal in this course is to prove this conjecture in dimension 3, fol-
lowing [LP16]. The original wonderful proof by Miyaoka is very difficult, but does
not generalise to higher dimensions. We will see how some parts of the new proof
generalise to all dimensions. Hence:

Theorem 1.3. Let X be a minimal terminal threefold. Then KX is effective.

One might wonder if varieties with mild singularities (so in particular terminal)
behave as well as smooth varieties. This is unfortunately not the case. To illustrate
this, we show that the statement is (much) easier if we replace “terminal” with
“smooth” (and even then is very hard; so much so, that we take some parts of the
proof for granted).

Theorem 1.4. Let X be a smooth minimal threefold. Then KX is effective.

Before the proof, we need several (difficult) results without proof, some of which
will also play a role in the proof in the terminal case. The first is the famous
Bogomolov-Miyaoka inequality for c2.

Theorem 1.5. Let X be a minimal terminal variety of dimension n and let π : Y → X
be a resolution of singularities. Then for any nef Q-Cartier divisors D1, . . . ,Dn−2 we
have c2(Y ) ·D1 · . . . ·Dn−2 ≥ 0.
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The proof is beautiful and not very difficult, once you know the theory of semista-
bility of vector bundles and the Mehta-Ramanathan theorem, see [MP97, pp. 68–
72]; some of this we will also cover in this course.

The second fact we need is that a smooth projective variety X is equipped with
the Albanese morphism to an abelian variety A, such that dim A = h1(X ,OX ) and a
universal property for this morphism holds. Furthermore, if B is a subvariety of an
abelian variety, and if C → B is a generically finite morphism, then κ(C)≥ 0.

The third fact is the subadditivity of the Kodaira dimension: if f : X → Z is
a morphism with connected fibres between normal projective varieties such that
dim X = 3, and if F is a general fibre of f , then κ(X )≥ κ(F)+κ(Z).

Now we are ready to give the proof of Theorem 1.4.

Proof of Theorem 1.4. The Riemann-Roch and Theorem 1.5 give

1−h1(X ,OX )−h3(X ,OX )≤ χ(X ,OX )=− 1
24

KX · c2(X )≤ 0,

hence h1(X ,OX ) 6= 0 or h3(X ,OX ) 6= 0. If h3(X ,OX ) 6= 0, then h0(X ,KX ) 6= 0 by Serre
duality, which gives the nonvanishing.

Otherwise, h1(X ,OX ) 6= 0, and the Albanese morphism α : X → A is non-trivial.
Let ρ : X → Z be its Stein factorisation. Then κ(Z)≥ 0 by a fact above. Additionally,
a general fibre of F is not covered by rational curves (since X is not; this is a general
fact [BDPP13]). By the classification of curves and surfaces, this implies κ(F) ≥ 0,
and we conclude by the subadditivity of the Kodaira dimension.

Note that the proof above fails for singular threefolds already at the beginning:
we might want to take a resolution of X and repeat the procedure on it, but we may
not invoke Theorem 1.5.

In order to attack Theorem 1.3, it is very convenient to introduce a new invari-
ant, the numerical dimension of a nef line bundle L on an n-dimensional projec-
tive variety X . We say that L has numerical dimension d and write ν(X ,L) = d if
d = max{k | Lk 6≡ 0}. It is immediate that ν(X ,L) ∈ {0,1, . . .n}, and ν(X ,L) = n if and
only if L is additionally a big line bundle by [Laz04, Theorem 2.2.16].

Now, in the context of Theorem 1.3, if ν(X ,KX )= 3, we are immediately done, as
big divisors are effective (this works in every dimension). If ν(X ,KX ) = 0, then we
also have KX ∼Q 0 by a result of Kawamata which also works in every dimension.
In dimension 3, we can also prove it as follows: if h1(X ,OX ) 6= 0, then we can argue
as in the proof of Theorem 1.4 (on a resolution of X ). Otherwise, if h1(X ,OX ) = 0,
then from the exponential sequence we obtain the injective map Pic(X )→ H2(X ,Z);
therefore, if KX ≡ 0, then KX ∼Q 0.

Therefore, it remains to consider the cases ν(X ,KX ) = 1 and ν(X ,KX ) = 2. We
start with a generalisation of the Kawamata-Viehweg vanishing.
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Lemma 1.6. Let X be a Q-factorial projective terminal variety of dimension n and
let D be a Cartier divisor on X such that D ∼Q KX +L, where L is a nef Q-divisor
with ν(X ,L)= k. Then

H i(X ,OX (D)
)= 0 for all i > n−k.

Proof. The proof is by induction on n; here we prove it only for n ≤ 3, and the proof
in all dimensions is similar, but a bit more involved. If k = n, then this is the usual
Kawamata-Viehweg vanishing [KMM87, Theorem 1-2-5 and Remark 1-2-6]. Now,
assume that k < n and let H be an irreducible very ample divisor on X which is
general in the linear system |H|. Consider the exact sequence

0→OX (D)→OX (D+H)→OH(D+H)→ 0. (1.1)

For i > n−k we have H i(X ,OX (D+H)
)= 0 by Kawamata-Viehweg vanishing. Since

H lies in the smooth locus of X , we have

(D+H)|H ∼Q KH +L|H
by the adjunction formula, and since ν(H,L|H)= k, we have

H i−1(H,OH(D+H)
)= 0

by induction. Then the result follows from the long exact sequence in cohomology
associated to (1.1).

Then we have:

Theorem 1.7. Let X be a minimal terminal threefold with ν(X ,KX ) = 2. Then KX
is effective.

Proof. Let π : Y → X be a resolution which is an isomorphism over the smooth locus
of X . Since X has terminal singularities, the singular locus of X is of dimension at
most n−3, hence

(π∗KX )3 = (π∗KX )2 ·KY = (π∗KX ) ·K2
Y = 0. (1.2)

Indeed, we may choose a representative (in the Q-linear equivalence class) of KX
which avoids the singularities of X , hence all three products “live” over the smooth
locus of X and equal K3

X = 0.
Let m be any positive integer such that mKX is Cartier. Then by Hirzebruch-

Riemann-Roch, by (1.2) and since X has rational singularities, we obtain

χ(X ,OX (mKX ))= χ(
Y ,OY (π∗(mKX ))

)= 1
12

m(π∗KX ) · c2(Y )+χ(Y ,OY ). (1.3)
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By Theorem 1.5 we have
(π∗KX ) · c2(Y )≥ 0.

Suppose first that (π∗KX ) · c2(Y )> 0. Since

H i(X ,OX (mKX )
)= 0 for i ≥ 2 (1.4)

by Lemma 1.6, by (1.3) we obtain h0(X ,OX (mKX )
)> 0 for m sufficiently divisible.

Therefore we may assume that (π∗KX ) · c2(Y )= 0, and hence

χ(X ,OX (mKX ))= χ(Y ,OY )

for all m sufficiently divisible. If χ(Y ,OY ) ≤ 0, then we conclude as in the proof of
Theorem 1.4. Otherwise, χ(Y ,OY )> 0, and we conclude as above.

In order to finish the proof of Theorem 1.3, it remains to consider the case
ν(X ,KX ) = 1. This is a consequence of the content of this course, and will be done
at the end (and much more). Stay tuned!
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Chapter 2

Semistability with respect to
movable classes

In this chapter we will study the semistability property of torsion-free coherent
sheaves on a smooth projective variety X . This is very similar to the classical
semistability of sheaves with respect to complete intersection curves. A big differ-
ence is that the important theorem of Mehta-Ramanathan does not work anymore
in this context; however, we will find ways to get around it. The ultimate goal of
this chapter are Theorem 2.27 and Corollary 2.28, which say that semistability is
preserved by tensor operations.

2.1 Torsion-freeness and reflexivity
We start with the definitions of torsion-free and reflexive sheaves.

Definition 2.1. A coherent sheaf F on a smooth variety X is torsion-free if a stalk
Fx is a torsion-free OX ,x-module for every x ∈ X , and it is reflexive if the natural
map F →F∗∗ is an isomorphism.

It is easy to see that for a coherent sheaf F on X , both kernel and cokernel of a
map F →F∗∗ are torsion sheaves on X , i.e. their supports are proper subsets of X .

One can show that a torsion-free sheaf is locally free outside of a set of codimen-
sion 2, see [Kob87, Corollary 5.15], and a reflexive sheaf is locally free outside of a
set of codimension 3, see [Har80, Corollary 1.4]. We will use these facts very often.
Any reflexive sheaf is torsion-free.

The following simple criterion is extremely useful.

Proposition 2.2. A coherent sheaf F on a smooth variety X is reflexive if and only
if locally it can be included in an exact sequence

0→F → E →G → 0, (2.1)
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where E is locally free and G is torsion-free.

Proof. Assume F is reflexive. Locally there exists a resolution of F∗ by locally free
sheaves

E2 → E1 →F∗ → 0,

and since the functor H om(·,OX ) is contravariant left-exact, taking duals gives an
exact sequence

0→F → E ∗
1 → E ∗

2 .

Set E = E ∗
1 and let G be the image of the map E ∗

1 → E ∗
2 . Since G is a subsheaf of a

locally free sheaf E ∗
2 , it is torsion free.

Conversely, suppose there is (locally) an exact sequence (2.1). Then F is torsion-
free as a subsheaf of a locally free sheaf, hence the natural map F → F∗∗ is injec-
tive. On the other hand, dualising the sequence (2.1) twice, we get the map F∗∗ → E

which coincides (generically) with F → E , hence is generically injective. Therefore
its kernel is a torsion subsheaf of F∗∗, hence zero since F∗∗ is locally free. Simi-
larly, the quotient F∗∗/F is a torsion sheaf which is a subsheaf of torsion-free sheaf
G , hence is a zero sheaf.

Another result we use often without explicit mention is the following [Har80,
Proposition 1.6]:

Proposition 2.3. A coherent sheaf F on a smooth variety X is reflexive if and only
if F is torsion-free, and for every open subset U ⊆ X and every big open subset V ⊆ X
the restriction map F (U)→F (U ∩V ) is an isomorphism.

Recall here, that an open subset U ⊆ X is big if its complement has codimension
at least 2 in X .

Definition 2.4. Let F be a coherent sheaf which is a subsheaf of a locally free sheaf
E . The saturation of F in E is the largest sheaf Fsat ⊆ E such that F ⊆ Fsat, the
ranks of F and Fsat are the same, and the quotient E /Fsat is torsion free.

The saturation Fsat in the previous definition always exists and is a reflexive
sheaf, see [OSS80, Lemma 1.1.16].

2.2 Semistability
Definition 2.5. A class α ∈ N1(X )R is movable if α ·D ≥ 0 for any effective Cartier
divisor D. The set of movable classes forms a closed, convex cone Mov(X )⊆ N1(X )R,
called the movable cone. A movable class α is big if it lies in the interior of the
movable cone.
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Therefore, the movable cone is the dual cone to Eff(X ) with respect to the inter-
section pairing. There is an alternative definition of this cone, which we probably
will not be using, but it might help you get an intuition for what this cone is. Recall
that a complete intersection curve C on a smooth projective variety of dimension n
is an intersection of n−1 very ample divisors on X . These are the curves with re-
spect to which one usually makes the semistability theory of coherent sheaves. It
is unfortunately not true that Mov(X ) is spanned by complete intersection curves.
However, one of the main results of [BDPP13] is that Mov(X ) is the closure of the
cone spanned by all classes of the form π∗C, where π : Y → X is a birational mor-
phism from a smooth projective variety Y and C is a complete intersection curve on
Y .

We come to the crucial definition of slope of a sheaf with respect to a movable
class.

Definition 2.6. Let X be a smooth projective variety and let α ∈ Mov(X ). If E 6= 0
is a torsion-free coherent sheaf on X , the slope of E with respect to α

µα(E ) := c1(E ) ·α
rkE

.

We say that E is α-semistable (respectively α-stable) if µα(F )≤µα(E ) for any nonzero
coherent subsheaf F ⊆ E (respectively if µα(F ) < µα(E ) for any nonzero coherent
subsheaf F ⊆ E with rkF < rkE ). We define

µmax
α (E ) := sup

{
µα(F ) | 0 6=F ⊆ E a coherent subsheaf

}
and

µmin
α (E ) := inf

{
µα(Q) | E �Q a torsion-free quotient

}
.

A few remarks are in order. In this definition, c1(F ) is the first Chern class
of a coherent sheaf [Har77, p. 435]. Alternatively, one can define c1(F ) as the
determinant of F ,

detF =
( r∧

F
)∗∗

,

where r is the generic rank of F . There is an alternative definition of the determi-
nant via locally free resolutions of F , see [Kob87, pp. 162–166], which in particular
shows that the above definitions of c1(F ) coincide.

Remark 2.7. Let X be a smooth projective variety, let α ∈ Mov(X ), and let E 6= 0
be a torsion-free coherent sheaf on X . Then there exists a big open subset X ◦ of
X such that E |X ◦ is locally free, hence µα(E ) = µα(E ∗∗), µmax

α (E ) = µmax
α (E ∗∗) and

µmin
α (E )=µmin

α (E ∗∗) by Proposition 2.3.
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Remark 2.8. Let X be a smooth projective variety and let α ∈ Mov(X ). If we have
a short exact sequence

0→G →F → E → 0

of torsion-free coherent OX -modules, then clearly

rkFµα(F )= rkGµα(G )+rkEµα(E ).

Proposition 2.9. Let X be a smooth projective variety and let α ∈ Mov(X ). Let E

and F be torsion-free coherent sheaves on X .

(i) If F ⊆ E and rkE = rkF , then µα(F )≤µα(E ). In particular, µα(F )≤µα(Fsat).

(ii) An α-stable sheaf is α-semistable.

(iii) We have µmax
α (E )=−µmin

α (E ∗).

Proof. We have detF ⊆ detE , and since detE and detF are line bundles, there
exists an effective Cartier divisor D such that

detF ⊗OX (D)' detE .

In particular, we have c1(F )+D = c1(E ). Since α is movable, we have that D ·α≥ 0,
and (i) follows. The claim (ii) is an obvious consequence of (i).

For (iii), since the functor H om( · ,OX ) is contravariant left-exact, every torsion-
free quotient E ∗�Q gives rise to an inclusion Q∗ ,→ E ∗∗. Therefore,

µmax
α (E )+µα(Q)=µmax

α (E ∗∗)−µα(Q∗)≥ 0 for every Q,

hence µmax
α (E )+µmin

α (E ∗) ≥ 0. Conversely, every inclusion F ⊆ E of torsion-free
sheaves gives rise to a map E ∗ → F∗, which is surjective on a big open subset of
X on which both E and F are locally free. Therefore, by (i) we have

µmin
α (E ∗)+µα(F )=µmin

α (E ∗)−µα(F∗)≤ 0 for every F ,

hence µmax
α (E )+µmin

α (E ∗)≤ 0, which proves (iii).

Proposition 2.10. Let X be a smooth projective variety and let α ∈Mov(X ). If E , F

and G are torsion-free coherent sheaves on X , then the following holds:

(i) if F is an α-semistable sheaf and if γ : F → E is a morphism of torsion-free
OX -modules, then µα(γ(F ))≥µα(F ),

(ii) if F is α-semistable and if µα(F )>µmax
α (E ), then Hom(F ,E )= 0,
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(iii) if F and E are torsion free coherent sheaves such that µmin
α (F )>µmax

α (E ), then
Hom(F ,E )= 0,

(iv) if F = E ⊕G , then F is α-semistable if and only if E and G are α-semistable
with µα(E )=µα(G ),

(v) if F is a saturated subsheaf of E and if µα(F )=µmax
α (E ), then

µmax
α (E /F )≤µα(F )=µmin

α (F ).

Proof. For (i), let G = kerγ and E ′ = γ(G ). Then µα(G ) ≤ µα(F ) and rkF = rkG +
rkE ′, and (i) follows from Remark (2.8), whereas (ii) is an immediate consequence
of (i).

For (iii), if there is a non-trivial morphism γ : F → E , then µα(γ(F ))≥µmin
α (F )>

µmax
α (E ), a contradiction.

For (iv), if F is α-semistable, the exact sequence 0 → G → F → E → 0 im-
plies Hom(F ,E ) 6= 0, hence (ii) shows that µα(F ) = µmax

α (E ), and similarly µα(F ) =
µmax
α (G ). Combined with Remark 2.8, this yields µα(E )=µmax

α (E )=µα(G )=µmax
α (G ).

Conversely, assume E and G are α-semistable with µα(E ) = µα(G ), and assume
F is not α-semistable. Then there exists an α-semistable subsheaf A ⊆ F with
µα(A ) > µα(F ); this is an easy consequence of Proposition 2.9(i) by descending in-
duction on the rank of A . Without loss of generality, we may assume that the map
γ : A ⊆F → E is not zero. Then (i) shows that

µα(E )≥µα(γ(A ))≥µα(A )>µα(F ),

but Remark 2.8 gives µα(E )=µα(F ), a contradiction.
For (v), let F �Q be a quotient and let F ′ ⊆ F be its kernel. Then µα(F ′) ≤

µα(F ), hence Remark 2.8 gives µα(F )≤µα(Q). Since this holds for any quotient Q,
we obtain µα(F )≤µmin

α (F ). This then implies that µα(F )=µmin
α (F ) by (iii).

Similarly, for any subsheaf Q ⊆ E /F we have Q = E ′/F for some sheaf E ′ ⊆ E

containing F . Then µα(E ′) ≤ µα(F ), hence Remark 2.8 gives µα(Q) ≤ µα(F ). This
implies µmax

α (E /F )≤µα(F ), which finishes the proof.

Corollary 2.11. Let X be a smooth projective variety. If H is a line bundle on X
and if r is a positive integer, then H ⊕r is semistable with respect to any movable
class.

Proof. By Proposition 2.10(iv), it suffices to show that H is semistable with respect
to any movable class. But this follows from Proposition 2.9.
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2.3 Maximal destabilisers
Lemma 2.12. Let X be a smooth projective variety and let F1 and F2 be two dif-
ferent saturated subsheaves of a torsion free coherent sheaf E which have the same
rank r. Then:

(i) F1 6⊆F2, F2 6⊆F1 and rk(F1 +F2)> r,

(ii) if µα(Fi)≥µmax
α (E )− ε

2 for i = 1,2 and some ε≥ 0, then µα(F1+F2)≥µmax
α (E )−ε.

Proof. If F1 ⊆F2, then we would have an inclusion F2/F1 ⊆ E /F1 of a torsion sheaf
into a torsion-free sheaf, hence F2/F1 = 0, a contradiction; and similarly if F2 ⊆F1.
In particular, F2 6= F1 +F2. If rk(F1 +F2) = r, we would have an inclusion (F1 +
F2)/F1 ⊆ E /F1 of a torsion sheaf into a torsion-free sheaf, hence (F1+F2)/F1 = 0, a
contradiction which shows (i).

For (ii), the exact sequence

0→F1 ∩F2 →F1 ⊕F2 →F1 +F2 → 0 (2.2)

gives

c1(F1 +F2)= c1(F1)+ c1(F2)− c1(F1 ∩F2) and rk(F1 +F2)= 2r−rk(F1 ∩F2).

Then we have

rk(F1 +F2)µα(F1 +F2)= rµα(F1)+ rµα(F2)−rk(F1 ∩F2)µα(F1 ∩F2)
≥ r

(
2µmax

α (E )−ε)−rk(F1 ∩F2)µmax
α (E )

= rk(F1 +F2)µmax
α (E )− rε,

which by (i) yields the claim.

Given a torsion-free sheaf E and a movable class α, the α-slope of subsheaves
F ⊆ E cannot be arbitrarily large:

Proposition 2.13. Let X be a smooth projective variety, let α ∈ Mov(X ), and let E

be a torsion-free coherent sheaf of positive rank on X . Then µmax
α (E ) < ∞ and the

supremum µmax
α (E ) is a maximum. In other words, there exists a non-zero coher-

ent subsheaf F ⊆ E such that µmax
α (E ) = µα(F ). Moreover, there exists an α-stable

reflexive sheaf F ′ ⊆ E of slope µα(F ′)=µmax
α (E ).

Proof. Let H be an ample line bundle on X such that the sheaf E ∗⊗H is globally
generated. This means that there is a surjective morphism O⊕N

X → E ∗⊗H for some
N, and hence a surjective morphism (H −1)⊕N → E ∗. Dualising, we obtain an injec-
tive morphism E ⊆ E ∗∗ → H ⊕N . If F ⊆ E is any coherent subsheaf, it follows from
Corollary 2.11 that µα(F )≤µα(H ⊕N)=H ·α for every α ∈Mov(X ).
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For the second claim, arguing by contradiction assume that µα(F )<µmax
α (E ) for

any non-zero coherent subsheaf F ⊆ E . Then there exists a sequence of pairwise
different subsheaves (Fi)i∈N which are saturated in E and of the same rank r, such
that

lim
i→∞

µα(Fi)=µmax
α (E );

here we used Proposition 2.9. In addition, we can assume that the rank r is maximal
among all sequences of sheaves satisfying these conditions.

Pick a sequence (εn) of positive rational numbers such that lim
n→∞εn = 0. For each

εn, and pick indices in < jn such that

µα(F jn)>µα(Fin)>µmax
α (E )− εn

2
.

Setting Gεn := Fin +F jn , we have rkGεn > r and µα(Gεn) ≥ µmax
α (E )− ε by Lemma

2.12, which contradicts the choice of r and proves the first claim.
Now, let F1 be a non-zero coherent subsheaf F1 ⊆ E such that µmax

α (E )=µα(F1).
If F1 is not stable, then there exists a sheaf F2 ⊆F1 such that µmax

α (E )=µα(F2) and
rkF2 < rkF1. After finitely many iterations of this process, we reach the desired
sheaf.

Corollary 2.14. Let X be a smooth projective variety, let α ∈ Mov(X ), and let E

be a torsion-free coherent sheaf of positive rank on X . Then there exists a unique
sheaf F ⊆ E , maximal with respect to the inclusion, such that µα(F )= µmax

α (E ). The
sheaf F is the “maximal destabilising subsheaf”, and it is clearly semistable and
saturated in E .

Proof. By Proposition 2.13, there exists a saturated sheaf F1 ⊆ E of maximal slope,
and whose rank r1 is maximal among all such subsheaves. If F2 is any other satu-
rated subsheaf of maximal slope and of rank r2, from the exact sequence (2.2) we ob-
tain c1(F1+F2)= c1(F1)+c1(F2)−c1(F1∩F2) and rk(F1+F2)= r1+r2−rk(F1∩F2).
Then we have

rk(F1 +F2)µα(F1 +F2)= r1µα(F1)+ r2µα(F2)−rk(F1 ∩F2)µα(F1 ∩F2)
≥ (r1 + r2)µmax

α (E )−rk(F1 ∩F2)µmax
α (E )= rk(F1 +F2)µmax

α (E ),

hence µα(F1 +F2) = µmax
α (E ), and consequently the α-slope of the saturation (F1 +

F2)sat is also maximal by Proposition 2.9. Therefore the rank of (F1 +F2)sat must
be r1 by assumption, which contradicts Lemma 2.12 unless (F1 +F2)sat = F1 and
hence F2 ⊆F1.

Corollary 2.15. Let X be a smooth projective variety, let α ∈ Mov(X ), and let E

be a torsion-free coherent sheaf of positive rank on X . Then there exists a unique
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“Harder-Narasimhan-filtration”, that is, a filtration 0= E0 ( E1 ( · · ·( Er = E where
each quotient Qi := E i/E i−1 is torsion-free, α-semistable, and where the sequence of
slopes µα(Qi) is strictly decreasing.

Proof. The proof of the existence is by induction on the rank of E . Let E1 be the
maximal destabilising subsheaf of E . By induction, E /E1 has a Harder-Narasimhan
filtration 0 = G0 ⊆ G1 ⊆ ·· · ⊆ Gr−1 = E /E1, and denote by E i+1 ⊆ E the preimage of
Gi. It remains to show that µα(E1) > µα(E2/E1): indeed, otherwise we would have
µα(E2)>µα(E1) by Remark 2.8, which would contradict the maximality of E1.

For uniqueness, assume that we have two Harder-Narasimhan filiations E• and
E ′• of E . Without loss of generality, we may assume that µα(E ′

1)≥µα(E1), and let j be
the minimal index such that E ′

1 ⊆ E j. Then the map E ′
1 → E j → E j/E j−1 is a non-zero

morphism between semistable sheaves, hence

µα(E j/E j−1)≥µα(E ′
1)≥µα(E1)≥µα(E j/E j−1)

by the properties of the Harder-Narasimhan filtration and by Proposition 2.10(i).
In particular, µα(E1) = µα(E j/E j−1) and thus j = 1 by the definition of the Harder-
Narasimhan filtration. Therefore, E ′

1 ⊆ E1 and µα(E ′
1) ≤ µα(E1) by the semistability

of E1. Reversing the roles of E1 and E ′
1, we obtain E ′

1 = E1. By induction on the
rank, the uniqueness holds for the Harder-Narasimhan filtrations of E /E1, hence
E i/E1 = E ′

i/E1 and consequently E i = E ′
i, which was to be proved.

Corollary 2.16. Let X be a smooth projective variety, let α ∈ Mov(X ), and let E be
a torsion-free coherent sheaf of positive rank on X . If E is α-semistable, then there
exists a “Jordan-Hölder-filtration”, that is, a filtration 0 = E0 ( E1 ( · · · ( Er = E

where each quotient Qi := E i/E i−1 is torsion-free, α-stable, and with slopes µα(Qi) =
µα(E ).

Proof. Exercise!

Remark 2.17. Let X be a smooth projective variety, let α ∈ Mov(X ), and let E be
a torsion-free coherent sheaf of positive rank on X . Combining Harder-Narasimhan
and Jordan-Hölder filtrations, one obtains a “refined Harder-Narasimhan-filtration”
0= E0 ( E1 ( · · ·( Er = E where each quotient Qi := E i/E i−1 is torsion-free, α-stable,
and where the sequence of slopes µα(Qi) is non-increasing.

2.4 Openness of semistability
Definition 2.18. Let X be a smooth projective variety and let α ∈ Mov(X ) be a
movable class. If E is any torsion-free coherent sheaf of OX -modules with rkE ≥ 2,
write

µ
max,sc
α (E ) := sup

{
µα(F ) | 0 6=F ⊆ E coherent with rkF < rkE

}
.
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Clearly µmax,sc
α (E )≤µmax

α (E ).

Proposition 2.19. Let X be a smooth projective variety and let α ∈ Mov(X ) be a
movable class which is big or rational. Then there exists a coherent subsheaf F ⊆ E

such that rkF < rkE and µ
max,sc
α (E )=µα(F ). In particular, E is α-stable if and only

if µmax,sc
α (E )<µmax

α (E )

Proof. Step 1. We first deal with the case when α is big. If ‖ · ‖ is any norm on the
vector space N1(X )R, there exists a constant C > 0 such that

D ·α≥ C · ‖D‖ for D ∈Eff(X ). (2.3)

Since the statement of the proposition is invariant under taking tensor product
of E with line bundles, we may replace E by a tensor product with a sufficiently
ample line bundle and assume that there exist a positive integer N and a surjec-
tion O⊕N

X → E . In particular, for any torsion-free quotient E → Q of positive rank,
c1(Q)= detQ is pseudoeffective.

Assume that the number µmax,sc
α (E ) is not attained. Then there exists a sequence

of saturated subsheaves F j ⊆ E of the same rank such that the sequence of slopes
µα(F j) is strictly increasing and converges to µ

max,sc
α (E ). Denote Q j = E /F j. The

it follows from Remark 2.8 that the set
{
µα(Q j) | j ∈ N}

is infinite, hence the set{
c1(Q j) | j ∈N}

is infinite since α is big and all c1(Q j) are pseudoeffective. In par-
ticular, (2.3) implies that the sequence

(
µα(Q j)

)
j∈N is unbounded, and hence so is(

µα(F j)
)

j∈N, a contradiction.

Step 2. If α is rational, pick a positive integer m such that mα is integral. Then
for every subsheaf F ⊆ E of positive rank we have µα(F ) ∈ 1

m(rkE )!Z, and the claim
is obvious.

We need the following version of the so called Grothendieck lemma.

Theorem 2.20. Let X be a smooth projective variety and let β ∈ Mov(X ) be a big
class. Further, let E be a torsion-free coherent sheaf on X and let c ∈R. Then the set

Sc = {c1(F ) |F ⊆ E any positive-rank subsheaf with µβ(F )≥ c}⊆ N1(X )Q

is finite.

Proof. Choose a sufficiently ample bundle H and an embedding E ,→H ⊕r as in the
proof of Proposition 2.13. It suffices to show the claim when E =H ⊕r. Since slopes
behave linearly under twists by line bundles, we may further assume that E =O⊕r

X .
For F ∈ Sc, consider its saturation Fsat ⊆ E and the torsion-free quotient Q =

E /Fsat. Then Q is globally generated, hence detQ ' OX (D′) for some effective
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Cartier divisor D′. This implies detFsat ' OX (−D′), and since detF ,→ detFsat,
there exists an effective Cartier divisor D such that detF 'OX (−D). We then have

c ≤µβ(F )=− 1
rkF

D ·β≤ 0.

Since β is a big class, the set {L ∈ Eff(X ) | 0 ≤ L ·β ≤ rc} is compact and the result
follows.

We now show that stability is an open property, at least within the interior of
the movable cone.

Definition 2.21. Let X be a smooth projective variety and let E be a non-trivial
torsion-free sheaf on X . Define

Stab(E ) := {α ∈Mov(X ) | E is α-stable}.

This set is clearly convex.

Theorem 2.22. Let X be a smooth projective variety and let E be a non-trivial
torsion-free sheaf on X . If α ∈ Stab(E ) is big, then Stab(E ) contains an open neigh-
bourhood U ⊆Mov(X ).

Proof. The statement if clear if rkE = 1, hence we assume that rkE ≥ 2. Choose a
bounded open neighbourhood V of α in Mov(X ). By the proof of Proposition 2.13,
there exists an ample line bundle A such that µmax

β
(E ) ≤ c1(A ) ·β for every β ∈

Mov(X ). Setting H =A ⊗rkE , it is easy to check that

µmax
β (E )−µβ(E )≤ (

c1(H )− c1(E )
) ·β (2.4)

for every β ∈Mov(X ). Since µmax,sc
α (E )<µα(E ) by Proposition 2.19, then (2.4) implies

that there exists a rational number 0< e ¿ 1 such that for all 0≤ ε≤ e and all β ∈V
we have

ε
(
µmax
β (E )−µβ(E )

)< (1−ε)(µα(E )−µmax,sc
α (E )

)
.

Therefore, for any coherent subsheaf F ⊆ E with rkF < rkE , any β ∈ V and any
0< ε≤ e this implies

µ(1−ε)α+εβ(F )= (1−ε)µα(F )+εµβ(F )≤ (1−ε)µmax,sc
α (E )+εµmax

β (E )

< (1−ε)µα(E )+εµβ(E )=µ(1−ε)α+εβ(E ).

We set U := e(V −α)+α.

Theorem 2.23. Let X be a smooth projective variety, let E be a non-trivial torsion-
free sheaf on X , and let α ∈Stab(E ) and β ∈Mov(X )◦. Then:
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(i) there exists a positive rational number e such that α+ εβ ∈ Stab(E ) for any
ε ∈ [0, e],

(ii) there exists a sequence of big rational classes βi ∈Stab(E ) with limβi =α.

Proof. Note that (ii) follows by combining (i) with Theorem 2.22, so we only need to
show (i). By Theorem 2.20, the set

S := {(
c1(F ),rkF

) |F ⊆ E such that µβ(F )≥µβ(E )
}

is finite, hence there exist subsheaves F j ⊆ E such that

S = {(
c1(F1),rkF1

)
, . . . ,

(
c1(Fn),rkFn

)}
.

For ε ∈ [0,1], denote Φ(ε) = max
{
µ(1−ε)α+εβ(F j) | 1 ≤ j ≤ n

}
. Then Φ is a continuous

function in ε and Φ(0) < µα(E ), hence there exists a positive rational number e
such that Φ(ε) < µ(1−ε)α+εβ(E ) for all ε ∈ [0, e]. Consider a subsheaf F ⊆ E with
rkF < rkE . If

(
c1(F ),rkF

) ∉ S, then µα(F )<µα(E ) and µβ(F )<µβ(E ) imply

µ(1−ε)α+εβ(F )<µ(1−ε)α+εβ(E ) for ε ∈ [0, e],

whereas if
(
c1(F ),rkF

) ∈ S, then there exists F j such that c1(F ) = c1(F j) and
rkF = rkF j, hence

µ(1−ε)α+εβ(F )=µ(1−ε)α+εβ(F j)<µ(1−ε)α+εβ(E ) for ε ∈ [0, e].

This finishes the proof.

2.5 Tensor products of semistable sheaves
In this section we prove the main results of the chapter.

First some notation. Given two coherent OX -modules A and B on a smooth
variety X , and any resolution of singularities π : X̃ → X , denote by:

(a) A �B := (A ⊗B)∗∗ the reflexive tensor product of A and B,

(b) Sym[q] A := (
Symq A

)∗∗ the q-th reflexive symmetric power of A ,

(c)
∧[q] A := (∧q A

)∗∗ the q-th reflexive exterior power of A ,

(d) π[∗]A = (π∗A )∗∗.

We note for the later use the following result.
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Lemma 2.24. Let π : X →Y be a flat morphism between smooth varieties, and let F

be a torsion-free sheaf on Y .

(a) If F is reflexive, then π∗F is reflexive.

(b) If π is finite, then Sym[q]π∗F =π∗Sym[q] F for every positive integer q.

Proof. We start with an observation. Let Q be a torsion-free sheaf on X . Then,
locally, there exists a locally free sheaf E and an injection Q → E . Since π is flat,
the induced map π∗Q → π∗E is also injective, hence π∗Q is torsion free since π∗E

is locally free.
Now, locally there exist a locally free sheaf E , a torsion-free sheaf Q and an

exact sequence
0→F → E →Q → 0.

Since π is flat, we obtain the induced exact sequence

0→π∗F →π∗E →π∗Q → 0.

Since π∗Q is torsion-free by above, this implies that π∗F is reflexive, which proves
(a).

For (b), let Y ◦ be a big open subset of Y on which F is locally free. Then the
sheaves Sym[q]π∗F and π∗Sym[q] F coincide on the big open subset π−1(Y ◦) of X .
Since they are both reflexive by (a), they coincide on the whole X .

If X is a projective variety and if π : X̃ → X is any resolution of singularities,
then it is easy to see that a pullback of a movable class on X is again movable on X̃ .

Lemma 2.25. Let X be a smooth projective variety and let α ∈Mov(X ) be a movable
class. If F and G are torsion-free coherent sheaves of positive rank on X . Let π : X̃ →
X be any resolution of singularities. Then the following holds.

(i) The sheaf F is α-stable if and only if π[∗]F is π∗α-stable.

(ii) The sheaf F�G is α-semistable if and only if π[∗]F�π[∗]G is π∗α-semistable.

Proof. For (i), let E be a torsion-free subsheaf of π[∗]F . Then E and π∗π∗E agree
away from the exceptional locus, hence if E i are the prime exceptional divisors on
X̃ , there integers λi such that

c1(E )=π∗c1(π∗E )+∑
λiE i.

Therefore µπ∗α(E ) = µα(π∗E ). Conversely, let G be a torsion-free subsheaf of F .
Then µπ∗α(π[∗]G )=µα(π∗π[∗]G ) by what we just proved. Since π∗π[∗]G and G agree
on a big open subset of X , we have c1(π∗π[∗]G ) = c1(G ), and hence µα(π∗π[∗]G ) =
µα(G ). Now (i) follows (exercise), and (ii) is similar.
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Theorem 2.26. Let X be a smooth projective variety and let α ∈ Mov(X ) be a mov-
able class. If F and G are α-stable torsion-free coherent sheaves of positive rank on
X , then F �G is α-semistable.

Proof. By [Ros68, Theorem 3.5], there is a smooth projective variety X̃ and a bi-
rational morphism π : X̃ → X such that π[∗]F and π[∗]G are both locally free. By
Lemma 2.25, it suffices to establish π∗α-semistability of π[∗]F ⊗π[∗]G . Replacing X
by X̃ , we may hence assume that the sheaves F and G are locally free.

Let A ⊆F ⊗G be a proper subsheaf. By Theorem 2.23, there exists a sequence
of big, rational classes βi ∈ Stab(F )∩Stab(G ) with limβi = α. A result of Toma1

[CP11, Proposition 6.1] implies

µα(A )= lim
i→∞

µβi (A )≤ lim
i→∞

µβi (F ⊗G )=µα(F ⊗G ),

which was to be shown.

Theorem 2.27. Let X be a smooth projective variety and let α ∈ Mov(X ) be a mov-
able class. If F and G are torsion-free coherent sheaves of positive rank on X , then:

(i) µmax
α (F �G )=µmax

α (F )+µmax
α (G ),

(ii) if F and G are α-semistable, then F �G is α-semistable.

Proof. Step 1. Since numerical classes and slopes are unaffected when modifying
F and G along a subset of codimension at least two, by replacing these sheaves by
their double duals we may assume that F and G are reflexive.

Combining the Harder-Narasimhan filtration and a Jordan-Hölder-filtration as
in Remark 2.17, choose a filtration of F , say 0 = F0 ⊆ F1 ⊆ ·· · ⊆ Fk = F such that
where each quotient Qi :=Fi/Fi−1 is torsion-free, α-stable, and where the sequence
of slopes µα(Qi) is non-increasing. There exists a big open subset X ◦ ⊆ X on which
all sheaves F , G , Fi and Qi are locally free.

Taking reflexive tensor products with G , we obtain a filtration of F �G :

0=F0�G ⊆F1�G ⊆ ·· · ⊆Fk�G =F �G .

Note that (Fi+1⊗G )/(Fi⊗G ) coincides with Qi+1⊗G on X ◦ for each i, hence Fi�G

and its saturation in Fi+1�G coincide on X ◦, and thus coincide on X . In particular,

(a) the quotient (Fi+1�G )/(Fi�G ) is torsion-free,

(b)
(
(Fi+1�G )/(Fi�G )

)∗∗ =Qi+1�G , and

(c) µα(Qi+1�G )=µα(Qi+1)+µα(G )≤µα(Q1)+µα(G )≤µmax
α (F )+µmax

α (G ).

1The proof of this result uses the Yang-Mills theory and is beyond the scope of this course.
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Step 2. In this step we prove (i). Let G1 be the maximal destabiliser of G , and
note that F1�G1 ⊆F �G . By the construction of the refined Harder-Narasimhan
filtration, we have µα(F1)=µmax

α (F ), hence

µα(F1�G1)=µα(F1)+µα(G1)=µmax
α (F )+µmax

α (G ),

which shows that µmax
α (F �G ) ≥ µmax

α (F )+µmax
α (G ). Now, let A be the maximal

destabiliser of F �G , and assume that µα(A ) > µmax
α (F )+µmax

α (G ). We derive a
contradiction in Steps 3 and 4.

Step 3. Assume first that G is α-stable. By (a) and (b), we have the composition

φ : A ,→Fk�G → (Fk�G )/(Fk−1�G ) ,→ (
(Fk�G )/(Fk−1�G )

)∗∗ =Qk�G (2.5)

By Theorem 2.26, Qk �G is α-semistable, and therefore the inequality (c) and
Proposition 2.10(ii) imply that φ must be zero, hence A ⊆ Fk−1�G . Continuing
this process analogously, we obtain A = 0, a contradiction.

Step 4. By (a) and (b), we have the map φ as in (2.5). Since Qk is α-stable, Step
3 shows that

µmax
α (Qk�G )=µmax

α (Qk)+µmax
α (G )≤µmax

α (F )+µmax
α (G ).

Therefore Proposition 2.10 implies that φ must be zero, hence A ⊆Fk−1�G . Con-
tinuing this process analogously, we obtain A = 0, a contradiction which finishes
the proof of (i).

Step 5. Now for (ii), by (i) we have

µmax
α (F �G )=µmax

α (F )+µmax
α (G )=µα(F )+µα(G )=µα(F �G ),

which finishes the proof.

Corollary 2.28. Let X be a smooth projective variety and let α ∈ Mov(X ) be a mov-
able class. If F is a torsion-free coherent sheaf of positive rank on X and q is a
positive integer, then:

(i) µmax
α

(
Sym[q] F

)= qµmax
α (F ) and µmax

α

(∧[q] F
)= qµmax

α (F ),

(ii) if F is α-semistable, then Sym[q] F and
∧[q] F are α-semistable.

Proof. Let A be the maximal destabiliser of F , and let X ◦ be a big open subset of
X such that F |X ◦ and A |X ◦ are locally free. Then the direct sum decompositions

F |⊗q
X ◦ =Symq F |X ◦ ⊕ (

F |⊗q
X ◦

/
Symq F |X ◦

)
and F |⊗q

X ◦ =
∧q

F |X ◦ ⊕ (
F |⊗q

X ◦
/∧q

F |X ◦
)
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extend to
F�q =Sym[q] F ⊕ (

F⊗q/
Symq F

)∗∗ (2.6)

and
F�q =∧[q]

F ⊕ (
F⊗q/∧q

F
)∗∗. (2.7)

In particular,
µmax
α

(
Sym[q] F

)≤µmax
α

(
F�q)= qµmax

α (F )

and
µmax
α

(∧[q]
F

)≤µmax
α

(
F�q)= qµmax

α (F )

by Theorem 2.27(i). On the other hand, note that

c1
(
Sym[q] A

)= (
r+ q−1

q−1

)
c1(A ) and c1

(∧[q]
A

)= (
r−1
q−1

)
c1(A ),

and

rk
(
Sym[q] A

)= (
r+ q−1

q

)
and rk

(∧[q]
A

)= (
r
q

)
.

Since Sym[q] A ⊆Sym[q] F and
∧[q] A ⊆∧[q] F , the relations above give

qµmax
α (F )= qµα(A )=µα

(
Sym[q] A

)≤µmax
α

(
Sym[q] F

)
and

qµmax
α (F )= qµα(A )=µα

(∧[q]
A

)≤µmax
α

(∧[q]
F

)
,

which shows (i). We deduce (ii) from (2.6) and from Theorem 2.27(ii) and Proposition
2.10(iv).
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Chapter 3

Weak positivity

Corollary 3.1. Let X be a smooth projective variety and let f : X → Z be a morphism
with connected fibred such that Z is smooth and such that KF is pseudoeffective for
a general fibre F of f . Then the divisor

KX /Z −Ram( f )

is pseudoeffective.
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Chapter 4

Foliations

In this chapter we study the main objects of this course: the foliations. The main
result is Theorem 4.21, which gives a criterion for when a foliation (which is by
definition an analytic object) actually comes from an algebraic construction. We will
then use it to give a quick proof of Theorem 1.1, as promised in the introduction.

4.1 Preliminary definitions
We start with a definition.

Definition 4.1. Let X be a smooth variety. A (singular) foliation is a saturated
subsheaf F ⊆ TX which is closed under the Lie bracket, i.e. [F ,F ] ⊆ F . The sin-
gularity locus Sing(F ) of F is the subset of X on which F is not locally free, and
it has codimension at least 2 in X . A leaf of F is the maximal connected, locally
closed submanifold L ⊆ Xreg such that TL =F |L.

Recall that the Lie bracket is a map [· , ·] : TX ×TX → TX such that for any two
vector fields – or two local sections – f1, f2 ∈ TX and a local section s ∈ OX we have
[ f1, f2](s)= f1

(
f2(s)

)− f2
(
f1(s)

)
.

Remark 4.2. Let X be a smooth variety and let F ⊆ TX be a saturated subsheaf.
The map [· , ·] : F ×F → TX is not OX -bilinear. Indeed, for two local sections f1, f2 ∈
F and a local section s ∈OX we have

[s f1, f2]= s[ f1, f2]− f2(s) f1 and [ f1, s f2]= s[ f1, f2]+ f1(s) f2.

This implies that the induced map [· , ·] : F ×F → TX /F is OX -bilinear and anti-
commutative, hence induces an OX -linear map

∧2 F → TX /F , hence an OX -linear
map

(∧2 F
)/

(torsion)→ TX /F . Therefore, F is a foliation if and only if this map is
the zero map.
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The remark allows us to produce a general example of a foliation.

Lemma 4.3. Let X be a smooth variety, let α ∈Mov(X ) and let F ⊆ TX be the maxi-
mal destabiliser with respect to α. If µα(F )> 0, then F is a foliation.

Proof. Since F is reflexive, Proposition 2.9(iii) and Remark 2.7 give

µmin(F )=−µmax(F∗) and µmin
α

(∧[2]
F

)
=−µmax

α

(∧[2]
F∗

)
. (4.1)

By Remark 2.7, by Proposition 2.10(v) we have

µmin
α

((∧2
F

)/
(torsion)

)
=µmin

α

(∧[2]
F

)
=−µmax

α

(∧[2]
F∗

)
=−2µmax(F∗)

= 2µmin
α (F )= 2µα(F )>µα(F )≥µmax

α (TX /F ).

Therefore, any morphism
(∧2 F

)/
(torsion) → TX /F is the zero map by Proposition

2.10(ii), and the conclusion follows from Remark 4.2.

A central result is the following theorem of Frobenius from differential geometry,
which is beyond the scope of this course.

Theorem 4.4. Let X be a smooth variety of dimension n and let F ⊆ TX be a singu-
lar foliation of rank r. Then for every point x ∈ X \ Sing(F ) there exists an analytic
neighbourhood U 'Cr×Cn−r of x in X \Sing(F ) such that the vectors p∗

1(∂/∂xi) form
a basis of F |U , where x1, . . . , xr are the local coordinates on Cr and p1 : U →Cr is the
first projection.

Note that, in the context of this theorem, the sheaf F |U can be identified with
the relative tangent bundle of the smooth fibration p2 : U → Cq, where q = n− r.
The integer q is the codimension of F .

The theorem of Frobenius shows that through every point x ∈ X \Sing(F ) there
exists a neighbourhood U of x and a submanifold N ⊆U such that F |U is identified
with the tangent bundle TN : this is just (locally) the fibre of the projection p2 above
containing x. The manifold N is locally a leaf passing through x. It is clear that
this construction glues, which motivates the following definition.

Definition 4.5. Let X be a smooth variety of dimension n and let F ⊆ TX be a
singular foliation of rank r. A leaf of F is the maximal connected, locally closed
submanifold L ⊆ X \Sing(F ) such that TL =F |L.

Example 4.6. To have an idea of what is going on here, it is instructive to con-
sider real manifolds. For instance, let T = R2/Z2 be the torus and consider the one-
dimensional foliation on T given by parallel lines. If their slope is rational, then
each leaf is diffeomorphic to S1. If the slope is irrational, then each leaf is diffeo-
morphic to R and moreover standard results from diophantine approximation show
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that the leafs are all dense in T. Here is to note that when the slope is irrational,
the subspace topology induced from T does not agree with the topology that makes
the family of lines a manifold.

Using Frobenius’ theorem, we can construct an analytic graph of a foliation:

Lemma 4.7. Let F be a foliation of rank r on a smooth variety X of dimension n
and denote X ◦ = X \Sing(F ). Let ∆⊆ X ◦× X ◦ be the diagonal, and let p1 and p2 be
the projections of X ◦× X ◦ onto the factors.

Then there exists a smooth locally closed analytic submanifold V ⊆ X ◦× X ◦ con-
taining ∆ such that p2|V is smooth and such that its fibres are analytic open sub-
sets of the leaves of the foliation p∗

1F |X ◦ passing through points of ∆. Moreover,
N∆/V ' F |X ◦ . The analytic germ of V along ∆ is the analytic graph of the foliation
F .

Proof. Applying the theorem of Frobenius to the smooth foliation p∗
1F |X ◦ ⊆ p∗

1TX ◦ ⊆
p∗

1TX ◦ ⊕ p∗
2TX ◦ = TX ◦×X ◦ , for every point x ∈∆ there exists an open neighbourhood

U ' Cr ×Cn−r ×W for some W ' Cr ×Cn−r ⊆ X ◦ such that p∗
1F |U is spanned by the

vectors ∂/∂xi, where xi are the coordinates on Cr. Consider the set

V |U = {
(x, y, z, y) ∈U | x ∈Cr, (z, y) ∈W

}'Cr ×∆|U .

It is clear that these sets glue to give a locally closed manifold V such that N∆/V '
F |X ◦ .

4.2 Algebraic integrability of foliations
Definition 4.8. Let F be a foliation of rank r on a smooth variety X of dimension
n. A leaf L of F is algebraic if it is open in its Zariski closure L

Zar
, and if dimL =

dimL
Zar

. A foliation F on X is algebraically integrable if every leaf passing through
a general point of X is algebraic.

Lemma 4.9. Let F be a foliation of rank r on a smooth variety X of dimension n,
and let V ⊆ X ×X be any locally closed analytic manifold whose germ is an analytic
graph of F . If dimV

Zar = n+ r, then F is algebraically integrable.

Proof. Consider the projection π= p2|V Zar : V
Zar → X . Since ∆⊆V

Zar
, the morphism

π is surjective, and the general fibre of π has dimension dimV
Zar −n. If dimV

Zar =
n+ r, let X0 ⊆ X be the set such that each fibre over a point in X0 has dimension r.
In particular, for each leaf L passing through a point in π−1(X0), the Zariski closure
L of L∩π−1(X0) has dimension r. Since there are uncountably many such cycles
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L and Chow(X ) has countably many irreducible components, there exists a closed
subvariety W of Chow(X ) such that the universal cycle over W dominates X , and
the subset of points in W parametrizing such L (viewed as reduced and irreducible
cycles in X ) is Zariski dense in W . Let U ⊆ W × X be the universal cycle over W .
Then as in the proof of Lemma 4.12 below, one can show that L∩ (X \Sing(F )) is a
leaf of F for all such L, and the conclusion follows.

Now we come to the first major result of this section [BM01, CP15], which shows
that in a favourable situation a foliation is automatically algebraically integrable.

Theorem 4.10. Let X be a smooth projective variety of dimension n and let F ⊆ TX
be a foliation of rank r. Assume that there exists α ∈ Mov(X ) such that µmin

α (F ) > 0.
Then F is algebraically integrable.

Proof. Let X ◦ = X\Sing(F ), and note that X ◦ is a big open subset of X . Let V ⊆ X ◦×
X ◦ be a locally closed analytic manifold as in Lemma 4.7 containing the diagonal ∆.
By Lemma 4.9, it suffices to show that dimV

Zar = n+r. Since clearly dimV
Zar ≥ n+r,

it suffices to prove the converse inequality.
To this end, fix an ample line bundle L on X ×X , and let L be the restriction of

L to the diagonal in X × X . It suffices to show that there exists a constant C > 0
such that

h0
(
V

Zar
,L ⊗k

)
≤ Ckn+r for all k ≥ 0.

Note that the restriction of (holomorphic) sections gives the inclusion

H0
(
V

Zar
,L ⊗k

)
→ H0(V ,L ⊗k).

Indeed, if a section in H0
(
V

Zar
,L ⊗k

)
vanishes on V , then it vanishes on V

Zar
, since

these sections are algebraic by Serre’s GAGA theorems. Hence, it is enough to prove
that there exists a constant C > 0 such that

h0(V ,L ⊗k)≤ Ckn+r for all k ≥ 0. (4.2)

If I is the ideal of ∆ in V , then for all non-negative integers m and k we have

0→L ⊗k|V ⊗I m+1 →L ⊗k|V ⊗I m → L⊗k|∆⊗I m/I m+1 → 0.

Since I m/I m+1 = Symm(I /I 2) = Symm N∗
∆/V ' Symm F∗|X ◦ by Lemma 4.7, and as

∆' X ◦, we obtain

h0(V ,L ⊗k)≤ ∑
m≥0

h0(X ◦,L⊗k ⊗Symm F∗|X ◦
)= ∑

m≥0
h0(X ,L⊗k ⊗Sym[m] F∗)

, (4.3)
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where the last equality follows by the analytic analogue of Proposition 2.3, see
[Kob87, Proposition V.5.21]. Then by (4.2) it suffices to show that there exists a
constant C > 0 such that∑

m≥0
h0(X ,L⊗k ⊗Sym[m] F∗)≤ Ckn+r for all k ≥ 0. (4.4)

Denote N =
⌈

L·α
µmin
α (F )

⌉
. Since

µmax
α

(
L⊗k ⊗Sym[m] F∗)= kL ·α−mµmin

α (F )

by Theorem 2.27(i), Corollary 2.28(i) and Proposition 2.9(iii), for m > kN we have

H0(X ,L⊗k ⊗Sym[m] F∗)'Hom
(
OX ,L⊗k ⊗Sym[m] F∗)= 0, (4.5)

Proposition 2.10(ii), hence the sum on the left hand side of (4.4) is finite.
Consider the natural projection p : ProjX (SymF∗) → X . Let Y ′ be the normali-

sation of the irreducible component of ProjX (SymF∗) which contains p−1(X ◦), and
let Y → Y ′ be a resolution of singularities. Let D be a pullback of OProjX (SymF∗)(1)
to Y and denote by π : Y → X denote the composite morphism. Then by [Nak04,
Lemma III.5.10(c)] there exists a divisor M on Y such that for every positive integer
m we have

(π∗OY (mD))∗∗ 'π∗OY (mM).

Since π∗OY (mD)|X ◦ 'Symm F∗|X ◦ , this implies Sym[m] F∗ 'π∗OY (mM) for all pos-
itive integers m, hence

H0(X ,L⊗k ⊗Sym[m] F∗)' H0(Y ,π∗L⊗k ⊗OY (mM)
)
. (4.6)

Pick an ample line bundle A on Y such that A⊗π∗L−1 and A⊗OY (−M) are ample.
Then by (4.5) and (4.6) we have

∑
m≥0

h0(X ,L⊗k ⊗Sym[m] F∗)≤ kN∑
m=0

h0(Y ,π∗L⊗k ⊗OY (mM)
)

≤ (kN +1)h0(Y , A⊗k(N+1))≤ (kN +1)C′kn+r−1,

where C′ is a positive constant. This implies (4.4).

The main example of algebraically integrable foliations is contained in the fol-
lowing definition.

Definition 4.11. Let f : X →Y be a morphism of normal projective varieties. Then
the kernel of the differential d f : TX → f ∗TY defines a foliation F on X , and we say
that F is induced by f . It is clear that this foliation is algebraically integrable.
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The following result proves a kind of a converse:

Lemma 4.12. Let X be a smooth projective variety and let F an algebraically in-
tegrable foliation on X . Then there is a unique irreducible closed subvariety W
of Chow(X ) whose general point parametrizes the closure of a general leaf of F

(viewed as a reduced and irreducible cycle in X ). In other words, if U ⊆ W × X is
the universal cycle with projections π : U → W and e : U → X , then e is birational
and e

(
π−1(w)

)⊆ X is the closure of a leaf of F for a general point w ∈W .

U π //

e
��

W

X

Then there exists a foliation F̂ on the normalisation ν : Uν→U induced by π◦ν and
which coincides with F on (e ◦ν)−1(X ◦), where X ◦ is a big open subset of X .

Proof. Since F has uncountably many leaves and Chow(X ) has countably many
irreducible components, there exists a closed subvariety W of Chow(X ) such that:

(a) the universal cycle over W dominates X , and

(b) the subset W ′ of points in W parametrizing leaves of F (viewed as reduced
and irreducible cycles in X ) is Zariski dense in W .

Let U ⊆ W × X be the universal cycle over W , denote by p : W × X → W and q : W ×
X → X the projections, and set π= p|U and e = q|U . It is clear that e is birational.

Let X ◦ ⊆ X be a big open subset such that F |X ◦ and (TX /F )|X ◦ are locally
free, and denote W◦ ⊆ π

(
e−1(X ◦)

)
. We claim that for every point w ∈ W◦, Lw :=

e
(
π−1(w)

) ⊆ X is the closure of a leaf of F ; by assumption, this holds on a dense
subset of W◦. If r is the rank of F , the map ηX : Ω1

X →F∗ induces a map

η̃U : Ωr
W×X

∣∣
U =

r∧(
p∗Ω1

W ⊕ q∗Ω1
X

)∣∣
U → e∗Ωr

X → e∗detF∗.

Since ηX is surjective on X ◦, the map
∧r ηX is surjective on X ◦. Therefore, if K

is the kernel of the natural surjective map θ : Ωr
W×X

∣∣
U�Ω

r
U , then the composite

map K → Ωr
W×X

∣∣
U → e∗detF∗ vanishes on a dense subset π−1(W ′) of U : indeed,

every element of the dual K∗ represents normal vectors to U inside W × X , and in
particular is orthogonal to each π−1(w) for w ∈W ′; since π−1(w) is a closure of a leaf
of F , the claim follows by the construction of η̃U . Since e∗F∗ is a line bundle, hence
torsion-free, this implies that this last map vanishes everywhere, hence we obtain
a factorisation

Ωr
W×X

∣∣
U

η̃U //

θ

��

e∗detF∗

Ωr
U .

η̂U

88
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Analogously, by using that the restriction of F to a leaf is the tangent bundle of the
leaf, we have a factorisation

Ωr
U

η̂U //

��

e∗detF∗

Ωr
U /W ,

ηU

99 (4.7)

and note that ηU is an isomorphism on a dense subset of U . Fix a point w ∈W◦, let
x ∈ Lw∩X ◦, and let v1, . . . ,vr be the local generators of F on an affine neighbourhood
V ⊆ X ◦ of x. Then it suffices to show that vi(x) ∈ TLw,x for all i ∈ {1, . . . , r}. Observe
that ηU |V : Ωr

V → (e∗detF∗)|V is given by

H0(V ,Ωr
V ) −→ H0(V , (e∗detF∗)|V )
α 7−→ α(v1, . . . ,vr)ω,

where ω ∈ H0(V , (e∗detF∗)|V ) is such that ω(v1, . . . ,vr)= 1. Let f be a local function
on V vanishing on Lw∩V , and let β be any local (r−1)-differential form on V . Then
be restricting (4.7) to Lw ∩V we obtain (d f ∧β)(v1, . . . ,vr) = 0, hence d f (vi) = 0 for
any i ∈ {1, . . . , r}. But this yields vi(x) ∈ TLw,x for all i ∈ {1, . . . , r}, which was to be
proved.

The last claim is clear from the construction.

We will need the following lemma later.

Lemma 4.13. Let f : X → Y be a morphism with connected fibres between normal
projective varieties and let F be the foliation on X induced by f . Assume G is
another foliation on X such that F ⊆ G . Then for a general point y ∈ Y there exists
an analytic open neighbourhood V of y in Y and an exact sequence

0→F |U →G |U →O
⊕q
U → 0

for some positive integer q, where U = f −1(V ).

Proof. Consider an open subset Y ◦ ⊆ Y such that the morphism f is smooth over
Y ◦, consider a point x ∈ f −1(Y ◦) which belongs to the regular locus of both F and G

and let y= f (x). Let Fy be the fibre of f over y. By the theorem of Frobenius, there
exists an open neighbourhood U of x in X such that G |U can be identified with the
kernel of the differential of the projection map π : CrkG ×Cdim X−rkG → Cdim X−rkG .
Since F ⊆G , the fibre Gx of π containing x is covered by open subsets of the fibres of
f (i.e. by open subsets of the leaves of F in a neighbourhood U of x). In other words,
we may write CrkG =CrkF ×CrkG−rkF such that the fibres of the map π|CrkG−rkF are
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open subsets of the leaves of F . Hence there exists a submanifold Nx 'CrkG−rkF of
Gx which contains x and is transversal to Fx∩U . The images of all these manifolds
in Y define a foliation H on the open neighbourhood f (U) of y in Y : indeed, this is
the subsheaf generated by the tangent vectors to f (Nx) for every x ∈ U . By possi-
bly shrinking U , we may assume that U = f −1( f (U)) and that H ' O

⊕q
f (U) for some

positive integer q. It is clear that this implies the statement.

4.3 Canonical bundle of a foliation
Let X be a smooth projective variety and let F ⊆ TX be a foliation. Then the canon-
ical class of F is any Cartier divisor KF on X such that OX (KF ) := detF∗; we
already saw this sheaf in action in the proof of Lemma 4.12. The sheaf NF :=
(TX /F )∗∗ is the normal sheaf of F and is of rank q. On the big open subset
X ◦ := X \Sing(F )⊆ X we have the short exact sequence

0→F |X ◦ → TX ◦ → NF |X ◦ → 0,

hence
OX (KF )'OX (KX )⊗det NF .

Definition 4.14. Let π : X → Y be a morphism between smooth varieties or an
equidimensional morphism of normal varieties. The ramification divisor of π is

Ram(π) := ∑
D⊆Y

(
π∗D− (π∗D)red

)
,

where D runs through all the prime divisors on Y . The set π
(
Ram(π)

)
is the branch

locus of π.

Note that if π : X →Y is an equidimensional morphism of normal varieties, and
if D is a Weil Q-divisor on Y , then the pullback π∗D is defined as the unique Q-
divisor on X whose restriction to π−1(Yreg) is

(
π|π−1(Yreg)

)∗(
D|Yreg

)
.

Lemma 4.15. Let f : X → Y be an equidimensional dominant morphism of smooth
varieties, and let F be a foliation on X induced by f . Then

KF ∼Q KX /Y −Ram( f ).

Proof. By removing a codimension 2 subset of Y , we may assume that the branch
locus of f is the disjoint union of prime divisors in Y ; note that this does not affect
the result. We have the exact sequence

0→F → TX →Q → 0,
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where Q ⊆ f ∗TY . Let D be a prime divisor on Y such that f ∗D = kD′ for a prime
divisor D′, and fix points P ∈ D′ and Q ∈ D such that f (P)=Q. We may choose local
coordinates x1, . . . , xn around P and y1, . . . , ym around Q such that yi = xi for i =
1, . . . ,m−1, and ym = uxk

m, where u is a unit in OX ,P and k is a positive integer; here
xm and ym are the local equations of D′ and D, respectively. Then from the definition
of the differential map between tangent spaces we obtain that Q is generated by
the vectors

∂

∂y1
, . . . ,

∂

∂ym−1
, xk−1

m
∂

∂ym
,

hence detQ = ( f ∗ωY )∗⊗OX (−(k−1)D′). The conclusion easily follows from the exact
sequence above.

Recall that if we have a morphism f : X → Y between varieties, a divisor E on
X is f -exceptional if codimY f (E)≥ 2.

Lemma 4.16. Let f : X →Y be a morphism of projective varieties. Then there exists
a birational morphism τ : Y ′ → Y from a smooth variety Y ′ and a resolution X ′ of
the main component of X ×Y Y ′ so that we have the induced diagram

X ′ f ′ //

τ′
��

Y ′

τ
��

X
f // Y

and such that every f ′-exceptional divisor is also τ′-exceptional.

Proof. By Hironaka’s resolution of singularities and by [Ray72] there exists a bi-
rational morphism τ : Y ′ → Y from a smooth variety such that, if X ′′ is the main
component of X ×Y Y ′ so that we have the induced diagram

X ′′ f ′′ //

τ′′
��

Y ′

τ
��

X
f // Y ,

then f ′′ is flat, and in particular equidimensional. Letting X ′ be any resolution of
X ′′, the result follows.

With notation from Lemma 4.12, note that the proof shows that X and U are
isomorphic on X ◦ = X \ Sing(F ). By blowing up normalisations of U and W , there
exists a modification ϕ : X̂ → X and a fibration f : X̂ → Z with X̂ and Z smooth, and
the foliation F̂ induced by f . The foliation F̂ agrees with F on ϕ−1(X ◦), and we
call F̂ the pullback of F to X̂ . This shows that

π∗KF̂ = KF and KF̂ −π∗KF is a π-exceptional divisor. (4.8)
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Then we have:

Proposition 4.17. Let X be a smooth projective variety and let F be an alge-
braically integrable foliation on X . Then there exists a modification ϕ : X̂ → X and
a morphism with connected fibres f : X̂ → Z with X̂ and Z smooth, such that all
f -exceptional divisors are ϕ-exceptional, and we have

KF ∼Q ϕ∗
(
K X̂ /Z −Ram( f )

)
.

Proof. The proof follows by combining (the proof of) Lemma 4.16, Lemma 4.15 and
(4.8).

4.4 MRC fibration
We say that a smooth variety is rationally connected if every two general points
can be connected by a rational curve; Fano manifolds are examples of rationally
connected varieties by [KMM92]. Here we need an important result of [Cam92,
KMM92], which says that it is possible to take a quotient of a variety by an equiv-
alence relation, in which each two general points can be connected by a chain of
rational curves.

Theorem 4.18. Let X be a smooth projective variety. Then there exists a dominant
rational map π : X 99K Z to a projective variety Z and an open subset X ′ ⊆ X such
that the following holds:

(a) there exists an open subset Z′ ⊆ Z such that the induced map π|X ′ : X ′ → Z′ is
a proper morphism,

(b) a general fibre of π is irreducible and rationally connected,

(c) all rational curves which meet a general fibre F of π are contained in F.

Any such a map π is called a maximal rationally connected fibration or MRC fibra-
tion, and is unique up to birational equivalence.

The name of these maps comes from the following universal property: if π̂ : X 99K
Ẑ is another rationally connected fibration (i.e. a map satisfying (a) and (b) in the
definition above), then there exists a map ζ : Ẑ 99K Z such that π= ζ◦ π̂.

An important property of MRC fibrations is contained in the following main
result of [GHS03], combined with the main result of [BDPP13]:

Theorem 4.19. Let π : X 99K Z an MRC fibration. Then KZ is pseudoeffective.
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The following is a refinement of Theorem 4.18 in the relative setting, which
follows from [Kol96, Theorem 5.9] by using Chow’s lemma and resolution of singu-
larities.

Theorem 4.20. Let f : X → Y be a morphism between smooth projective varieties.
Then there exists a dominant rational map π : X 99K Z to a smooth projective variety
Z over Y such that for a general point y ∈ Y , the induced map πy : X y 99K Zy is an
MRC fibration of X y, where X y ⊆ X and Zy ⊆ Z are the fibres over y.

X π //

f ''

Z

��
Y .

Any such a map π is called a relative maximal rationally connected fibration or
relative MRC fibration of f .

4.5 Rational connectedness of a foliation
The following is the main result of this section [CP15].

Theorem 4.21. Let X be a smooth projective variety and let F ⊆ TX be a foliation. If
there exists α ∈Mov(X ) such that µmin

α (F )> 0, then F is an algebraically integrable
foliation with rationally connected leaves.

Proof. Algebraic integrability was shown in Theorem 4.10, hence it remains to show
the rational connectedness of the leaves of F .

Consider a birational model ϕ : X̂ → X on which the foliation F̂ is induced by a
fibration f : X̂ →Y to a smooth variety Y . In particular, by the proof of Lemma 2.25
we have

µmin
ϕ∗α

(
F̂

)=µmin
α (F )> 0. (4.9)

Assume that a general fibre of f is not rationally connected. By Theorem 4.20, there
exists a relative MRC fibration of f :

X̂
ϕ

��

π //

f &&

Z
g
��

X Y .

Possibly blowing up X̂ and Z further, by Lemma 4.16 we may assume that:

(a) π is a morphism,
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(b) all f -exceptional divisors are ϕ-exceptional,

(c) all π-exceptional divisors are ϕ-exceptional, and

(d) the map π is flat over a big open subset Z◦ ⊆ Z.

We have the exact sequence

0→ F̂ → TX̂
d f−→ f ∗TY .

Let G be the foliation induced by g, so that we have the exact sequence

0→G → TZ
dg−→ g∗TY .

Note that d f = (π∗dg)◦dπ, and let G ′ ⊆ π∗TZ be the image of F̂ under dπ, so that
by (4.9) we have

µϕ∗α(G ′)> 0. (4.10)

Since (π∗dg)(G ′) = 0, by (d) the sheaves G ′ and π∗G coincide over π−1(Z◦). In par-
ticular, c1(G ′) and c1(π∗G ) coincide away from an exceptional set of ϕ by (c), which
together with (4.10) gives

µϕ∗α(π∗G )> 0. (4.11)

Note that det(π∗G ) and π∗OZ(−KG ) coincide away from an exceptional set of π,
hence they coincide away from an exceptional set of ϕ by (c), so that

µϕ∗α(π∗G )=− 1
rkG

π∗KG ·ϕ∗α. (4.12)

Now, the same proof as that of Lemma 4.15 shows that

KG = KZ/Y −Ram(g)+E,

where the divisor E is g-exceptional, thus π∗E is ϕ-exceptional by (b). For a general
fibre F of g the divisor KF is pseudoeffective by Theorem 4.19, hence the divisor
KZ/Y −Ram(g) is pseudoeffective by Corollary 3.1. Therefore,

π∗KG ·ϕ∗α=π∗(
KZ/Y −Ram(g)+E

) ·ϕ∗α=π∗(
KZ/Y −Ram(g)

) ·ϕ∗α≥ 0,

which contradicts (4.11) and (4.12), and finishes the proof.

Theorem 4.21 allows the following characterisation of uniruled varieties.

Corollary 4.22. A smooth projective variety X is uniruled if and only if there exists
α ∈Mov(X ) such that µmax

α (TX )> 0.
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Proof. If there exists a movable class α such that µmax
α (TX ) > 0, consider the maxi-

mal destabiliser F of TX for α. Then F is a foliation with µmin
α (F ) > 0 by Lemma

4.3 and Proposition 2.10(v), and Theorem 4.21 then implies that X is uniruled.
Conversely, if X is uniruled, then KX is not pseudoeffective by [BDPP13], hence

there exists α ∈Mov(X ) such that

µα(TX )=− 1
dim X

KX ·α> 0.

This finishes the proof.

Finally, we obtain a generalisation of our main Theorem 1.1.

Theorem 4.23. Let X be a smooth projective variety, let F be a foliation with KF

pseudoeffective and let m be a positive integer. Then every quotient of (F∗)�m has a
pseudoeffective determinant. In particular, if KX is pseudoeffective, every quotient of
(Ω1

X )⊗m has a pseudoeffective determinant.

Proof. Arguing by contradiction, assume that there exists α ∈ Mov(X ) such that
µmin
α

(
(F∗)�m)< 0. Then by Proposition 2.9 and Theorem 2.27 we have

0<−µmin
α

(
(F∗)�m)=µmax

α (F�m)= mµmax
α (F ).

The maximal destabiliser G of F for the class α is therefore a foliation by Lemma
4.3 with µmin(G )> 0 by Proposition 2.10(v). Therefore, G is algebraically integrable
with rationally connected leaves by Theorem 4.21. By blowing up X , we may as-
sume that G is induced by a fibration f : X → Z. By Lemma 4.13 for a general
point z ∈ Z there exist an analytic open neighbourhood V of z such that, denoting
U = f −1(V ), we have the short exact sequence

0→G |U →F |U →O
⊕q
U → 0

for some positive integer q. In particular, for a general fibre F of f we have KF |F ∼
KG |F ∼ KF . However, for a very general fibre F the restriction KF |F is pseudoeffec-
tive, hence so is KF : indeed, there exist effective divisors E i such that the numerical
class of KF is the limit of the numerical classes of E i. Then for each i, a general
fibre F of f is not contained in SuppE i, hence E i|F is also effective.

This implies that F is not uniruled by [BDPP13], which contradicts Theorem
4.21.
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Chapter 5

Nonvanishing for threefolds and
other applications

Recall from Chapter 1 that what remains in order to finish to proof of Theorem 1.3
is to consider the case ν(X ,KX )= 1. We first make some additional simplifications.

Let X be a minimal terminal threefold. We may assume that h1(X ,OX ) = 0
and h3(X ,OX ) = 0: otherwise, if π : Y → X is a resolution, then h1(Y ,OY ) 6= 0 or
h3(Y ,OY ) 6= 0 as X has rational singularities. In the first case we may conclude
as in the proof of Theorem 1.4, and in the second case the Serre duality gives
h0(Y ,KY ) 6= 0, hence κ(X ) ≥ 0, as desired. In particular, we may assume that
χ(X ,OX )= h0(X ,OX )+h2(X ,OX )> 0.

Therefore, to complete the proof of Theorem 1.3, we have to show:

Theorem 5.1. Let X be a minimal terminal threefold such that ν(X ,KX ) = 1 and
χ(X ,OX )> 0. Then KX is effective.

In fact, what we will prove in this chapter is much stronger [LP16]:

Theorem 5.2. Let X be a minimal terminal n-fold such that ν(X ,KX ) = 1 and
χ(X ,OX ) 6= 0. Then KX is effective.

5.1 Hodge index theorem

We will need the following version of the Hodge index theorem [Rei97].

Theorem 5.3. Let X be a smooth projective surface, and let D1 and D2 be two R-
divisors on X . If there exist λ,µ ∈R such that (λD1+µD2)2 > 0, then D2

1D2
2 ≤ (D1D2)2,

with equality if and only if αD1 +βD2 ≡ 0 for some real α and β, not both zero.
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Proof. Fix an ample divisor H on X . If HD1 = HD2 = 0, then (λD1 +µD2)H = 0,
hence (λD1 +µD2)2 ≤ 0 by the standard formulation of the Hodge index theorem, a
contradiction. Thus, without loss of generality we may assume that HD1 6= 0. Set-
ting α=−HD2/HD1, then (αD1 +D2)H = 0, hence again (αD1 +D2)2 ≤ 0. Consider
the real quadratic form

f (x, y)= (xD1 + yD2)2 = x2D2
1 +2xyD1D2 + y2D2

2.

Since f (λ,µ)> 0 and f (α,1)≤ 0, the discriminant D = (D1D2)2−D2
1D2

2 must be non-
negative, which proves the first claim. Moreover,

D = 0 if and only if f (x, y)= D2
1
(
x+ D1D2

D2
1

y
)2,

hence f (x, y) ≥ 0 for all x, y since f (λ,µ) > 0. In particular we have (αD1 +D2)2 = 0,
which implies αD1+D2 ≡ 0 by the Hodge index theorem. Conversely, if αD1+D2 ≡ 0,
then immediately D = 0.

Another consequence of the Hodge index theorem is:

Lemma 5.4. Let X be a smooth projective surface, and let L and M be divisors on
X such that

L2 = M2 = L ·M = 0.

If L and M are not numerically trivial, then L and M are numerically proportional.

Proof. Let H be an ample divisor on X . By the Hodge index theorem we have
λ = L ·H 6= 0 and µ = M ·H 6= 0, and set D = λM −µL. Then D2 = D ·H = 0, hence
D ≡ 0 again by the Hodge index theorem.

5.2 Nakayama-Zariski decomposition
Recall first the Zariski decomposition on surfaces.

Theorem 5.5. Let X be a smooth projective surface and let D be a pseudoeffective
Q-divisor on X . Then there is a unique decomposition D = P+N, where P and N are
Q-divisors (the positive and negative parts of D) such that

(i) P is nef,

(ii) N = ∑r
i=1 niNi ≥ 0, and if N 6= 0, then the (r × r)-matrix (Ni · N j) is negative

definite,

(iii) P ·Ni = 0 for every i = 1, . . . , r.
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This theorem is an extremely useful tool to study the geometry of surfaces. Un-
fortunately, an analogous statement fails in higher dimensions. However, Nakaya-
ma [Nak04] defined a generalisation of this decomposition to higher dimensional
varieties, which still enjoys some pleasurable properties.

First, for an effective divisor D on a smooth projective variety X , i.e. for divisor
such that |kD| 6= ; for some positive integer k, and for every prime divisor Γ on X
we define

oΓ(D)= inf
{
multΓD′ | D ∼Q D′ ≥ 0

}
.

Then we define:

Definition 5.6. Let X be a smooth projective variety, let A be an ample Q-divisor,
and let Γ be a prime divisor. If D ∈DivR(X ) is pseudo-effective, set

σΓ(D)= lim
ε↓0

oΓ(D+εA) and Nσ(D)=∑
ΓσΓ(D) ·Γ,

where the sum runs over all prime divisors Γ on X .

There are several remarks in order. Nakayama shows several things: (a) if D is
big, then σΓ(D)= oΓ(D), (b) the definition of σΓ(D) does not depend on the choice of
A, (c) if D ≡ D′, then σΓ(D) = σΓ(D′), (d) Nσ(D) is a divisor, i.e. has finitely many
components.

Set Pσ(D) = D−Nσ(D). Then one can also show that Pσ(D) is a pseudoeffective
divisor, and if X is a surface, then the decomposition D = Pσ(D)+ Nσ(D) recovers
the Zariski decomposition. Note that the divisors Pσ(D) and Nσ(D) in general have
real coefficients.

Remark 5.7. Unfortunately, Pσ(D) is in general not nef. However, if S is the inter-
section of dim X −2 general very ample divisors on X , then the divisor Pσ(D)|S is
nef on S by [Nak04, Remark III.2.8 and paragraph after Corollary V.1.5]. We will
need this fact in the proof of Theorem 5.8 below.

5.3 Divisors of numerical dimension 1
The following is a simple, but key technical observation needed in the proof of The-
orem 5.2.

Theorem 5.8. Let X be a projective Q-factorial variety of dimension n, and let L be
a nef divisor on X such that ν(X ,L) = 1. Assume that there exist a pseudoeffective
Q-divisor F and a non-zero Q-divisor D ≥ 0 on X such that

D+F ∼Q L.

Then there exists a Q-divisor E ≥ 0 such that L ≡ E.
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Proof. Let f : Y → X be a resolution of X , and denote L′ = f ∗L, D′ = f ∗D and F ′ =
f ∗F, so that D′+F ′ ∼Q L′. Let P = Pσ(F ′) and N = Nσ(F ′) ≥ 0, so that we have the
Nakayama-Zariski decomposition

F ′ = P +N.

Assume first that P 6≡ 0. Let S be a surface in Y cut out by n−2 general hyper-
plane sections. Then P|S is nef by Remark 5.7, and in particular

(P|S)2 ≥ 0. (5.1)

On the other hand, since ν(Y ,L′)= 1, we have

0= (L′|S)2 = L′|S ·P|S +L′|S ·N|S +L′|S ·D′|S,

hence
L′|S ·P|S = L′|S ·N|S = L′|S ·D′|S = 0.

Now Theorem 5.3 implies (P|S)2 ≤ 0, and hence (P|S)2 = 0 by (5.1). Then Lemma 5.4
yields P|S ≡ λL′|S for some real number λ> 0, and hence P ≡ λL′ by the Lefschetz
hyperplane section theorem. Note that D′ 6= 0 implies λ< 1. Therefore, setting

E′ = 1
1−λ (N +D′)≥ 0,

we obtain
L′ ≡ E′.

Let E1, . . . ,Er be the components of E′ and let π : DivR(Y )→ N1(Y )R be the standard
projection. Then π−1(π(L′)

)∩∑
R+E i is a rational affine subspace of

∑
RE i ⊆Div(Y )R

which contains E′, hence there exists a rational point

0≤ E′′ ∈π−1(π(L′)
)∩∑

R+E i.

Setting E = f∗E′′, we have L ≡ E and E ≥ εD, which proves the result in the case
P 6≡ 0.

If P ≡ 0, denote E′ = N +D′ ≥ 0, so that L′ ≡ E′. We conclude as above.

Corollary 5.9. Let X be a Q-factorial projective terminal variety such that KX is
nef and ν(X ,KX ) = 1. Assume that there exist a pseudoeffective Q-divisor F and a
non-zero Q-divisor D ≥ 0 on X such that KX ∼Q D+F. Then κ(X ,KX )≥ 0.

Proof. By Theorem 5.8 applied to L = KX , there exists an effective Q-divisor E on
X such that KX ≡ E. By [CKP12, Theorem 0.1] we have κ(X ,KX )≥ κ(X ,E), and the
result follows.
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5.4 Singular metrics
We need a few facts about singular metrics on line bundles and associated multi-
plier ideals. A good general source for these ideas is [Dem01].

Definition 5.10. Let L be a holomorphic line bundle on a complex manifold X of
dimension n. A singular hermitian metric on L is a metric which is given in every
trivialization θ : L|U 'U ×C by

‖ξ‖ = |θ(ξ)|e−ϕ(x), x ∈U , ξ ∈ Lx,

where ϕ ∈ L1
loc(U) (locally integrable function on U), called the weight of the metric

with respect to the trivialization θ. The curvature current of L is given formally by
the closed (1,1)-current Θh(L)= ddcϕ on U ; the assumption ϕ ∈ L1

loc(U) guarantees
that Θh(L) exists in the sense of distribution theory. A (1,1)-current Θ is semi-
positive if for every choice of smooth (1,0)-forms α1, . . . ,αn−1 on X the distribution
Θ∧ iα1 ∧α1 ∧·· ·∧ iαn−1 ∧αn−1 is a positive measure.

Definition 5.11. A function ϕ : U → [−∞,∞) defined on an open set U ⊆ Cn is
plurisubharmonic if it is upper semi-continuous, and for every a ∈ U and ξ ∈ Cn

satisfying |ξ| < inf
{|a− x| | x ∈ Cn \U

}
, the function ϕ satisfies the mean value in-

equality

ϕ(a)≤ 1
2π

∫ 2π

0
ϕ

(
a+ eiθξ

)
dθ.

If X is an n-dimensional complex manifold, a function ϕ : X → [−∞,∞) is plurisub-
harmonic if there exists an open cover X =⋃

i∈I Ui by coordinate patches such that
ϕ|Ui is plurisubharmonic on Ui for every i.

There is a dictionary between positivity statements in algebraic geometry and
the corresponding differential-geometric counterparts. A line bundle L on a projec-
tive variety X with a fixed Kähler form ω is:

(a) pseudoeffective if and only if there exists a singular metric h on L whose
weight is a plurisubharmonic function if and only if there exists a singular
metric h on L such that Θh(L)≥ 0,

(b) ample if and only if there exists a smooth metric h on L such that Θh(L)> 0,

(c) nef if and only if for each ε> 0 there exists a smooth metric hε on L such that
Θhε(L)≥−εω,

(d) big if and only if there exists a singular metric h on L and ε > 0 such that
Θh(L)≥ εω.
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We also need the following very useful definition.

Definition 5.12. Let ϕ be a plurisubharmonic function on a complex manifold X .
Then the multiplier ideal sheaf I (ϕ)⊆OX is defined by

Γ(U ,I (ϕ))= {
f ∈OX (U) | | f |2e−2ϕ ∈ L1

loc(U)
}

for every open set U ⊆ X .

Therefore, I (ϕ) collects all the locally L2-integrable holomorphic sections of X
with respect to a metric whose weight is ϕ. It is well-known that I (ϕ) is an analytic
coherent ideal sheaf on X ; in particular, by GAGA theorems, if X is projective, then
this sheaf is always an algebraic coherent sheaf.

One of the reasons why multiplier ideals are very useful to us is the following
important result [DPS01, Theorem 0.1], which is an extension of the hard Lefschetz
theorem.

Theorem 5.13. Let X be a compact Kähler manifold of dimension n with a Kähler
form ω. Let L be a pseudoeffective line bundle on X with a singular hermitian
metric h such that Θh(L )≥ 0. Then for every non-negative integer q the morphism

H0(X ,Ωn−q
X ⊗L ⊗I (h)

) ωq∧• // Hq(
X ,Ωn

X ⊗L ⊗I (h)
)

is surjective.

5.5 Proof of Theorem 5.2
We have all the tools to prove Theorem 5.2. We start with the following impor-
tant step; the need for the sheaves appearing in the following result is justified by
Theorem 5.13.

Theorem 5.14. Let X be a minimal Q-factorial projective terminal variety of dimen-
sion n. Assume that ν(X ,KX ) = 1. Let π : Y → X be a resolution of X , and assume
that for infinitely many m 6= 0 sufficiently divisible and for some 0≤ p ≤ n we have

H0(Y ,Ωp
Y ⊗OY (mπ∗KX )

) 6= 0.

Then κ(X ,KX )≥ 0.

Proof. We first note that we have KX 6≡ 0 by hypothesis.
Arguing by contradiction, assume that there exists p ≥ 1 and an infinite set

T ⊆Z such that
H0(Y ,Ωp

Y ⊗OY (mπ∗KX )
) 6= 0
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for all m ∈T . Denote Z =P(Ωp
Y ) with the projection f : Z →Y . First note that

H0(Y ,Ωp
Y ⊗OY (mπ∗KX )

)' H0(Z,OZ(1)⊗ f ∗OY (mπ∗KX )
)
,

hence it is immediate that there are only finitely many negative integers in T since
KX 6≡ 0. Therefore, we may assume that T ⊆N.

Every nontrivial global section of the sheaf Ωp
Y ⊗OY (mπ∗KX ) gives an inclusion

OY (−mπ∗KX )→Ω
p
Y , and let F ⊆Ωp

Y be the image of the map⊕
m∈T OY (−mπ∗KX )→Ω

p
Y .

Then F is quasi-coherent by [Har77, Proposition II.5.7], and therefore a torsion free
coherent sheaf as it is a subsheaf of the torsion free coherent sheaf Ωp

Y . Let r be the
rank of F . We may assume that there exist infinitely many r-tuples (m1, . . . ,mr)
such that the image of the map

OY (−m1π
∗KX )⊕·· ·⊕OY (−mrπ

∗KX )→F (5.2)

has rank r: indeed, if this is not the case, we replace T by a suitable infinite subset,
and the rank of F is smaller than r. Taking determinants in (5.2) yields inclusions

OY
(−(m1 +·· ·+mr)π∗KX

)→ detF ⊆
r∧
Ω

p
Y . (5.3)

There is a Cartier divisor FY such that OY (−FY ) is the saturation of detF in
∧rΩ

p
Y .

Then by (5.3) there exists an infinite set S ⊆N such that

H0(Y ,mπ∗KX −FY ) 6= 0 for all m ∈S . (5.4)

Consider the exact sequence

0→OY (−FY )→
r∧
Ω

p
Y →Q → 0.

Since OY (−FY ) is saturated in
∧rΩ

p
Y , the sheaf Q is torsion free, and hence F̃Y =

c1(Q) is pseudoeffective by Theorem 1.1. From the above exact sequence, there
exists a positive integer ` such that `KY ∼ F̃Y −FY .

From (5.4), for every m ∈ S we obtain an effective divisor Ñm+` such that
Ñm+` ∼ mπ∗KX −FY , and hence

Ñm+`+ F̃Y ∼ mπ∗KX +`KY . (5.5)

Denote Nm+` = π∗Ñm+` and F = π∗F̃Y ; note that Nm+` is effective and that F is
pseudoeffective. Pushing forward the relation (5.5) to X , we get

Nm+`+F ∼Q (m+`)KX . (5.6)

Now Corollary 5.9 gives a contradiction.
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Finally, we have:

Proof of Theorem 5.2. Assume first that there exist a resolution π : Y → X , such
that for every positive integer m such that mKX is Cartier, and for every singular
metric hm on π∗OX (mKX ) with semipositive curvature current, we have I (hm) =
OY . Arguing by contradiction, assume that κ(X ,KX )=−∞. Then by Theorem 5.14,
for all p ≥ 0 and for all m sufficiently divisible we have

H0(Y ,Ωp
Y ⊗π∗OX (mKX )

)= 0.

Theorem 5.13 implies that for all p ≥ 0 and for all m > 0 sufficiently divisible,

Hp(
Y ,OY (KY +mπ∗KX ))

)= 0,

or by Serre duality:
Hn−p(

Y ,OY (−mπ∗KX ))
)= 0.

Then we immediately have

χ
(
Y ,OY (−mπ∗KX )

)= 0 (5.7)

for all m > 0 sufficiently divisible. Since the Euler characteristic is a polynomial in
m, for m = 0 we obtain χ(Y ,OY )= 0. Since X has rational singularities, this implies
χ(X ,OX )= 0, a contradiction.

Hence, it remains to consider the case when there exists a resolution π : Y →
X , a positive integer m such that mKX is Cartier, and a singular metric h on
π∗OX (mKX ) with semipositive curvature current such that I (h) 6= OY . Let V ⊆ Y
be the subspace defined by I (h), and let y be a closed point in V with ideal sheaf
Iy in y. Let µ : Ŷ → Y be the blow-up of Y at y and let E = π−1(y) be the excep-
tional divisor. Let ĥ be the induced metric on L := (π ◦µ)∗OX (mKX ). By [Dem01,
Proposition 14.3], we have

I (ĥ)⊆µ−1I (h) ·OŶ ⊆µ−1Iy ·OŶ =OŶ (−E).

By [DEL00, Theorem 1.10] there exists an ample line bundle G on Ŷ such that

OŶ (G+kL)⊗I (ĥ⊗k)

is globally generated for all k ≥ 1. Since

I (ĥ⊗k)⊆I (ĥ)k ⊆OŶ (−kE),

where the first inclusion follows from [DEL00, Theorem 2.6], for all k ≥ 1 we have

H0(Ŷ ,G+k(L−E)
) 6= 0.

Hence L−E = lim
m→∞

1
m

(
m(L−E)+G

)
is pseudoeffective. Then Corollary 5.9 implies

κ(X ,KX )= κ(
Ŷ ,KŶ

)= κ(
Ŷ ,L

)≥ 0.
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[LP16] V. Lazić and Th. Peternell, Abundance for varieties with many differen-
tial forms, arXiv:1601.01602.

[MP97] Y. Miyaoka and Th. Peternell, Geometry of higher-dimensional algebraic
varieties, DMV Seminar, vol. 26, Birkhäuser Verlag, Basel, 1997.

50



[Nak04] N. Nakayama, Zariski-decomposition and abundance, MSJ Memoirs,
vol. 14, Mathematical Society of Japan, Tokyo, 2004.

[OSS80] C. Okonek, M. Schneider, and H. Spindler, Vector bundles on complex
projective spaces, Progress in Mathematics, vol. 3, Birkhäuser, Boston,
Mass., 1980.

[Ray72] M. Raynaud, Flat modules in algebraic geometry, Compositio Math. 24
(1972), 11–31.

[Rei97] M. Reid, Chapters on algebraic surfaces, Complex algebraic geometry
(Park City, UT, 1993), IAS/Park City Math. Ser., vol. 3, Amer. Math.
Soc., Providence, RI, 1997, pp. 3–159.

[Ros68] H. Rossi, Picard variety of an isolated singular point, Rice Univ. Studies
54 (1968), no. 4, 63–73.

51


	Introduction and motivation
	Semistability with respect to movable classes
	Torsion-freeness and reflexivity
	Semistability
	Maximal destabilisers
	Openness of semistability
	Tensor products of semistable sheaves

	Weak positivity
	Foliations
	Preliminary definitions
	Algebraic integrability of foliations
	Canonical bundle of a foliation
	MRC fibration
	Rational connectedness of a foliation

	Nonvanishing for threefolds and other applications
	Hodge index theorem
	Nakayama-Zariski decomposition
	Divisors of numerical dimension 1
	Singular metrics
	Proof of Theorem 5.2

	Bibliography

