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Zusammenfassung

Als ‘Minimal Model Programm’ bezeichnet man in der algebraischen

Geometrie höherdimensionaler Varietäten ein Verfahren, welches alge-

braische Varietäten in ihre Grundbausteine zerlegt. Es handelt sich

um ein zentrales Projekt der algebraischen Geometrie, welches seit der

Fields-Medaille von Mori in 1990 für den dreidimensionalen Fall stetig

weiterentwickelt wurde. Aber gerade in den letzten zehn Jahren hat das

Gebiet enorme Fortschritte gemacht. Viele wichtige Resultate wurden

erzielt, die unser Verständnis wesentlich vertieft haben.

Wir wissen heute, dass das Minimal Model Program für glatte pro-

jektive Varietäten X zum Ziel führt (‘terminiert’), falls der kanonische

Divisor KX gross oder nicht pseudo-effektiv ist. Insbesondere hat jede

Varietät allgemeinen Typs ein birationales Modell, für welches der ka-

nonische Divisor semiample ist. Darüberhinaus ist bekannt, dass die

Anzahl solcher guten Modelle immer endlich ist.

Das zentrale ausstehende Problem der birationalen Geometrie ist es

nun, die in den letzten Jahren entwickelte Theorie auf allgemeine Vari-

etäten auszudehnen, das heißt die Existenz guter Modelle für möglichst

viele Varietäten zu beweisen, die nicht von allgemeinem Typ sind. Diese

Habilitationsschrift stellt sich als Aufgabe, mit den folgenden vier Re-

sultaten zur Lösung dieses Problems beizutragen:

(a) Die Existenz guter Modelle für klt Paare (X ,∆) mit pseudo-ef-

fektivem log-kanonischen Divisor KX +∆ ist die wichtigste ausstehende

Vermutung im Minimal Model Program für projektive klt Paare in ver-

schwindender Charakteristik. Es ist wohl bekannt, dass die Existenz

guter Modelle die Abundance-Vermutung impliziert, welche behauptet,

dass auf einem minimalen Modell der kanonische Divisor semiample ist.

Unser erstes Resultat reduziert das Problem der Existenz guter Mod-

elle für nicht-unigeregelte Paare auf den Fall von glatten Varietäten mit

effektiver kanonischer Klasse. Etwas präziser formuliert, die Existenz

guter Modelle für klt Paare in Dimensionen höchstens n−1 vorausge-
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setzt, wir zeigen, dass die Existenz guter Modelle für nicht-unigeregelte

klt Paare in Dimension n, die Existenz guter Modelle für unigeregelte

klt Paare in Dimension n impliziert. Dies ist die Verallgemeinerung der

Strategie, die für Varietäten der Dimension drei zum Ziel führte, und

stellt den ersten Schritt zum Beweis der Existenz guter Modelle dar.

(b) Die Form verschiedener Kegel im Néron-Severi Raum N1(X )R
einer Varietät X trägt wichtige Information über die Geometrie von X .

Aus Sicht der birationalen Geometrie sind die Kegel der nef Divisoren

und der beweglichen Divisoren von besonderem Interesse. Die Kegel-

Vermutung von Morrison und Kawamata sagt nun voraus, dass auf einer

Calabi-Yau Varietät beide Kegel modulo der Wirkung gewisser natür-

licher Gruppen rational polyedrisch sind.

Ein Ergebnis der vorliegenden Arbeit ist der Beweis der Kegel-Ver-

mutung für Calabi-Yau Mannigfaltigkeiten der Picardzahl 2 und un-

endlicher Gruppe Bir(X ) birationaler Automorphismen. Damit wird die

Kegel-Vermutung in großer Allgemeinheit und insbesondere für eine

breite Klasse von Dreifaltigkeiten bewiesen.

(c) Es ist eine wichtige und seit langem offene Vermutung, dass die

Anzahl minimaler Modelle einer glatten projektiven Varietät bis auf Iso-

morphie endlich ist. Die Kegel-Vermutung, zusammen mit der Existenz

guter Modelle, würde dies nun implizieren. Diese Anwendung kann man

als eigentliche Motivation für die Kegel-Vermutung betrachten. Wenn

die Endlichkeit nun bereits bekannt ist, ist es naheliegend nach der An-

zahl der minimalen Modelle zu fragen und weiter, ob diese eine rein

topologische Invariante ist.

Das dritte Resultat dieser Arbeit besagt, dass die Zahl der minimalen

Modelle bestimmter log-glatter Paare der Dimension drei nur vom topo-

logischen Typ dieser Paare abhängig ist. Zwei log-glatte Paare (X1,∆1)

und (X2,∆2) sind dabei vom selben topologischen Typ, falls ein Homöo-

morphismus ϕ : X1 → X2 existiert, der einen Homöomophismus zwis-

chen den Trägern von ∆1 und ∆2 induziert.

(d) Es gibt zwei Klassen projektiver Varietäten, deren birationale

Geometrie besonders interessant ist. Die erste Klasse enthält Varie-

täten, für die das klassische Minimal Model Program erfolgreich ausge-

führt werden kann. Die zweite Klasse enthält sogenannte ‘Mori Dream

Spaces’. Es ist bekannt, dass in beiden Fällen die birationale Geometrie

komplett durch gewisse endlich erzeugte Ringe bestimmt wird, aber a

priori sind die jeweiligen Ringe von ganz unterschiedlicher Gestalt und

Herkunft.
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In dieser Schrift behandeln wir nun beide Klassen von Varietäten

mit dem gleichen Ansatz. Wir identifizieren dabei die maximale Klasse

der Varietäten und deren Divisoren, die mit dem MMP behandelt wer-

den können.
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Chapter 1

Introduction

The objects of algebraic geometry are varieties, i.e. zeroes of systems of

polynomial equations defined over a certain field – in this work, that

field of definition is the field of complex numbers C. In this thesis we

are interested in projective varieties, which are sets given as common

zeroes of a system of homogeneous polynomials. These are fundamen-

tal objects in mathematics, which pop up also in differential geometry,

arithmetic geometry, number theory, topology and so on. As in every

other corner of mathematics, the principal goal of algebraic geometry is

to give a meaningful classification of its main objects. This thesis deals

with several questions related to a partly still conjectural programme of

classification of varieties: the Minimal Model Program (or the MMP), as

explained below.

One of the main tools to study algebraic varieties is to study be-

haviour of their subvarieties, and in particular two extreme cases are

very important:

(1) the case of curves, that is varieties of dimension 1,

(2) the case of prime divisors, that is subvarieties of codimension 1.

We concentrate here on the study of Q-Weil divisors on a variety X , i.e.

formal Q-linear combinations of prime divisors on X ; and on Q-Cartier

divisors on X , which are, up to a rational multiple, locally given by the

sum of zeroes and poles of a rational function on X . Then we have a

good intersection theory of Q-Cartier divisors with curves as explained

in [Ful98].

The most important sheaf on a, say, smooth projective variety X of

dimension n is its canonical line bundle

ωX =
n∧

(T∗
X )

1



2 CHAPTER 1. INTRODUCTION

(where TX is the tangent sheaf of X ), as well as the associated canonical

divisor (or canonical class) KX , which satisfies

OX (KX )≃ωX .

As its name says, it is canonical: its definition is intrinsic, and it is

naturally defined on every (smooth or normal) variety.

Ever since Riemann’s work on curves in the 19th century, the im-

portance of ωX has been realised: in part because of the Riemann-Roch

theorem, and in part because often it is very difficult to find reasonable

and useful divisors on X . Of course, in the 20th century it was under-

stood further that this line bundle is important because of Serre duality,

Kodaira vanishing and so on. Therefore, it is logical to concentrate on

ωX as the centre point of the MMP, apart from more profound further

reasons elaborated on below.

On the other hand, having ample divisors on a projective variety X

is extremely important: they give embeddings of X into some projective

space, and their cohomological and numerical properties are as nice as

one can hope for. The crux of the Minimal Model Program is the study

of the question – when can one make the canonical bundle ample.

The Minimal Model Program has seen tremendous progress in the

last decade, which is measurable both in scope of the results achieved,

as well as in the depth of our understanding of the subject. The seminal

paper [BCHM10], building on earlier results of Mori, Reid, Kawamata,

Kollár, Shokurov, Siu, Corti, Nakayama and many others, settled many

results and advanced hugely our knowledge of the theory. The main re-

sult of that paper is that the Minimal Model Program for a smooth pro-

jective variety X terminates if either KX is a big divisor (in other words,

the dimensions of the vector spaces H0(X , mKX ) grow maximally with

m – like mdim X ) or if it is not pseudoeffective (in other words, KX is nu-

merically not a limit of divisors whose multiples have global sections).

In particular, all varieties with big canonical bundle have a birational

model Y on which a multiple of KY is a big basepoint divisor free. Fur-

thermore, the number of such models Y is finite up to isomorphism.

The main outstanding problem in birational geometry is to prove that

models with similar properties exist if X is not necessarily of general

type. Progress towards the solution of this problem is the topic of this

thesis.
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1.1 Classification of curves and surfaces

The classification of curves is classical and was done in the 19th century.

The rough classification is according to the genus of a smooth projective

curve.

The situation with surfaces is already more complicated. If we start

with a smooth projective surface, and want our classification procedure

to simplify it in tangible ways, we would therefore want some basic in-

variants, like the Picard number (i.e. the rank of the group of Cartier

divisors modulo numerical equivalence) to be as minimal as possible.

To this end, recall that if π : Y → X is a blow up of a point on a smooth

surface X , then the exceptional divisor E ⊆Y is a (−1)-curve, that is

E ≃P1 and E2 =−1.

The starting point of the classification of surfaces is the following Castel-

nuovo’s theorem [Har77, Theorem V.5.7], which says that if we start with

a (−1)-curve on Y , we can invert the blowup construction:

Theorem 1.1. Let Y be a nonsingular projective surface containing a

(−1)-curve E.

Then there exists a birational morphism f : Y → X to a smooth pro-

jective surface X such that E is contracted to a point, and moreover, f is

a blowup of X at f (E).

Now it is easy to see how the classification works in dimension 2.

Once we have our smooth surface, we ask whether the surface obtained

has a (−1)-curve. If not, we have our relatively minimal model. If yes,

then we use Castelnuovo contraction to contract a (−1)-curve. We repeat

the process for the new surface. The process is finite since after each

step, the Picard number drops, as well as the second beti number.

Note however, that the criterion “does X have a (−1)-curve” does not

have a meaningful generalisation to higher dimensions. Also, it is not

clear that it gives the right notion – in other words, it is not obvious that

this is an intrinsic notion of X with special implications on the geometry

of X .

However, note that, by the adjunction formula, E is a (−1)-curve on

X if and only if

E ≃P1 and KX ·E < 0.

Recall that a divisor D on a variety X is nef if D ·C ≥ 0 for every irre-

ducible curve C on X ; such divisors are (numerically) limits of ample
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Q-divisors. Therefore, if X has a (−1)-curve, then its canonical class can-

not be nef.

There are three possibilities for the relatively minimal model X . If

KX is nef, then a further fine classification gives that it is actually semi-

ample, i.e. some multiple of KX is basepoint free. Then, by a result of

Iitaka, any high multiple of KX defines a fibration X → Z to another

projective variety Z, and we can further analyse X with the aid of this

map. In this case, we also say that X is the (absolute) minimal model.

If KX is not nef, then one can show that either there exists a mor-

phism ϕ : X → Z to a smooth projective curve Z such that X is a P1-

bundle over Z via ϕ, or X ≃P2. In these last two cases, one says that X

is a Mori fibre space.

This gives the following hard dichotomy for surfaces: the end prod-

uct of the classification is either a minimal model (unique up to isomor-

phism) if κ(X )≥ 0 or a Mori fibre space if κ(X ) =−∞.

START

X nonsingular

projective surface

KX nef? X minimal model
YES

END

φ : X → Z

contraction of

extremal ray

NO

dim Z < dim X?
φ : X → Z

Mori fibre space

YES
END

φ : X → Z

Castelnuovo

contraction

NO

X := Z

FLOWCHART 1.1: Minimal Model Program in dimension 2
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1.2 What is the Minimal Model Program?

I sketch briefly what is understood by a good minimal model theory. The

presentation differs from the classical one in the sense that it stresses

different properties, and it allows to consider the theory for divisors

which are not necessarily (close to being) canonical.

One of the ingenious insights of Mori was introducing a new criterion

for determining whether a variety X is a minimal model:

Is KX nef?

There are many reasons why this is a meaningful question to pose.

First, it makes sense by analogy with surfaces, as presented above. Sec-

ond, on a random (smooth, projective) variety X it is usually very hard

to find any useful divisors, especially those which carry essential infor-

mation about the geometry of X – the only obvious candidate is KX , by

its very construction.

Further, in an ideal situation we would have that KX is ample –

indeed, this would mean that some multiple of KX itself gives an em-

bedding into a projective space, and that it enjoys many nice numerical

and cohomological properties.

Therefore, from now on we assume that KX is pseudoeffective. Then,

a reasonable question to pose is:

Question. Is there a birational map f : X 99K Y such that the divisor

f∗KX is ample?

Here the map f is a birational contraction – in other words, f −1

should not contract divisors. This is an important condition since the

variety Y should be in almost every way simpler than X ; in particular,

as in the case of surfaces, some of its main invariants, such as the Pi-

card number, should not increase. Likewise, we would like to have the

equality

KY = f∗KX ,

and this will almost never happen if f extracts divisors.

What we almost always have to sacrifice is smoothness – in other

words, we cannot expect that the variety Y is smooth, even if we start

with a smooth variety X . This issue is by now well understood, and

it presents more a philosophical (or psychological) than a technical ob-

stacle. The varieties we allow are in some sense pretty close to being
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smooth, in the sense of singularities of pairs which will be explained

below.

Further, we impose that f should preserve global sections of all pos-

itive multiples of KX . This is also important, since global sections are

something we definitely want to keep track of, if we want the divisor

KY = f∗KX to bear any connection with KX . Another way to state this is

as follows. Consider the canonical ring of X :

R(X ,KX )=
⊕

m∈N
H0(X , mKX ).

Then we require that f induces an isomorphism

R(X ,KX )≃ R(Y ,KY ).

We immediately see that the answer to the question above is in gen-

eral “no” – the condition would imply that KX is a big divisor. In fact, and

perhaps surprisingly, the converse is true by a theorem of Reid [Rei80,

Proposition 1.2] – a similar statement is given in Lemma 5.8 below.

We now return to Question above, in order to see if we can modify it to

something more probable. We can settle for something weaker, but still

sufficient for our purposes: we require that the divisor KY is semiample.

Then we would have the associated Iitaka fibration g : Y → Z and an

ample Q-divisor A such that KY ∼Q g∗A.

X Y

Z

f

g

The composite map X 99K Z, which is now not necessarily birational,

would give

R(X , pKX )≃
⊕

n∈N
H0(Z, npA)

for some positive integer p. In particular, this would imply that the

canonical ring R(X ,KX ) is finitely generated.

This would clearly be astonishing: we would be able to construct the

projective variety

Z =ProjR(X ,KX )

just from the geometric data on X . In fact, the wish that the canonical

ring is finitely generated predates the modern Minimal Model Program,
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and goes back to the seminal work of Zariski [Zar62]. This is now a the-

orem, settled first in [BCHM10, HM10] by the methods of the Minimal

Model Program, and then in [CL12] by a self-contained induction.

Theorem 1.2. Let X be a smooth projective variety over C. Then the

canonical ring

R(X ,KX )=
⊕

n∈N
H0(X , nKX )

is finitely generated as a C-algebra.

By analogy with surfaces, the search for a map f as above splits into

two problems:

(a) find a birational map f : X 99KY such that the divisor KY = f∗KX

is nef (Y is a minimal model),

(b) prove that the nef divisor KY is semiample (Y is a good model).

Part (b) is the Abundance conjecture, and I discuss in Section 1.4 to

which extent it is known.

Finally, if we start with a smooth variety X on which the divisor KX

is not pseudoeffective, then one would hope that sort of the opposite to

the above holds – that there exists a birational map f : X 99KY together

with a morphism g : Y → Z such that the a general fibre of g is a Fano

variety, i.e. the canonical sheaf of the fibre is anti-ample.

X Y

Z

f

g

In this case we call Y a Mori fibre space. This is indeed now a theorem

[BCHM10].
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1.3 Pairs and their singularities

It has become clear in the last several decades that sometimes varieties

are not the right objects to look at – often, it is much more convenient

to look at pairs (X ,∆), where X is a normal projective variety and ∆ is

a Weil Q-divisor on X such that KX +∆ is Q-Cartier. There are at least

two very good reasons why this is the right setup:

(a) we expect the proofs in the field should go by induction on the di-

mension, and if one wants to use adjunction formula, one has to

consider pairs; and

(b) crucially, one cannot consider only the canonical bundle of a vari-

ety, if one leaves the category of varieties of general type.

To see (b), consider a good model X and a morphism ϕ : X → Z, which

is the Iitaka fibration of the semiample divisor KX . When KX is not big,

it is in general hopeless to expect that KX ∼Q ϕ∗KZ. However, it can be

shown that there exists an effective Q-divisor ∆ on Z such that the pair

has nice properties (in the sense explained a bit below) and such that

KX ∼Q ϕ∗(KZ +∆),

cf. [Amb05].

Now assume we are given a pair (X ,∆), and let f : Y → X be a log

resolution of the pair, i.e. the variety Y is smooth, the set Exc f is a

divisor, and the support of the divisor Exc f ∪ f ∗∆ has simple normal

crossings. Then there exists a unique Q-divisor R on Y such that

KY ∼Q f ∗(KX +∆)+R,

where the divisor R is supported on the proper transform of ∆ and on

the exceptional divisors of f . For every prime divisor E on Y , we denote

the coefficient of E in R by a(E, X ,∆), called the discrepancy of E with

respect to the pair (X ,∆).

If we set

d(X ,∆)= inf{a(E, X ,∆)},

where the infimum is over all prime divisors E lying on some birational

model Y → X , then it is easy to see that d(X ,∆) ≤ 1, and there is the

following dichotomy:

either d(X ,∆)≥−1 or d(X ,∆)=−∞,
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cf. [KM98].

This is the first indication that the pairs which satisfy d(X ,∆) ≥ −1

behave better than other pairs. The following is an example of a pair

with d(X ,∆) < −1 whose canonical ring is not finitely generated, hence

no reasonable definition of the Minimal Model Program can work for

such (X ,∆).

Example 1.3. Let E be an elliptic curve, let D be a non-torsion divisor

of degree 0, and let A be an ample divisor on E of large degree, so that

H0(E, kD+ A) 6= 0 for all k ≥ 0. Set

Y =P(OE(D)⊕OE(A)) and M =OY (1).

If R i, j = H0(E, iD+ jA), then

H0(Y , M⊗k)≃
⊕

i+ j=k

R i, j.

This implies that the section ring R(Y , M) is not finitely generated: in-

deed, since Rk,0 = 0 for all k > 0, each Rk,1 consists of minimal generators

of R(Y , M).

Set

L = M⊗ω−1
Y ⊗OY (1) and E = L⊕OY (1)⊕3,

and let Z =P(E ) with the projection map π : Z → Y . Thus, Z is a smooth

P3-bundle over Y , and denote ξ=OZ(1). Then

ωZ =π∗(ωY ⊗detE )⊗ξ⊗−4 =π∗(ωY ⊗L⊗OY (3))⊗ξ⊗−4.

Consider the linear system |ξ⊗π∗OY (−1)|. It contains smooth divisors

S1,S2,S3 corresponding to the quotients E → L⊕OY (1)⊕2, and note that

P = S1 ∩S2 ∩S3 is a codimension 3 cycle corresponding to the quotient

E → L. In particular, the base locus of |(ξ⊗π∗OY (−1))⊗4| is contained in

P.

X Z Y

E

π

Let X be a general member of |(ξ⊗π∗OY (−1))⊗4|. Then X is smooth in

codimension 1, and since Z is smooth, we have that X is normal and

Gorenstein. The adjunction formula [K+92, Proposition 16.4] gives

ωX =ωZ ⊗OZ(X )⊗OX = (π|X )∗(ωY ⊗L⊗OY (−1))= (π|X )∗M.
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In particular, the canonical ring

R(X ,ωX )≃ R(Y , M)

is not finitely generated, and it is easy to check that d(X ,0)<−1.

Hence, we have to restrict ourselves to pairs with d(X ,∆) ≥ −1. We

need the following definition.

Definition. A pair (X ,∆) has log canonical singularities (respectively

klt, canonical, terminal) if d(X ,∆)≥−1 (respectively if >−1, ≥ 0, > 0).

Therefore, according to this definition and the previous example, the

class of log canonical pairs is the largest class where the Minimal Model

Program can be possibly expected to work. All smooth varieties X ,

viewed as pairs (X ,0), clearly belong to this class – indeed, they have

terminal singularities.

Our experience of working in the Minimal Model Program shows that

klt pairs behave much better than pairs with d(X ,∆) = −1; moreover,

currently we know many more results for klt pairs than for log canonical

pairs in general. Also of importance for us is that being klt is an open

condition, in the following sense. Say you have at hand a klt pair (X ,∆)

with X being Q-factorial, and that you have an effective Q-divisor D on

X . Then for all rational 0≤ ε≪ 1, the pair (X ,∆+εD) is again klt. This

is easy to see from the definition.

By what is said thus far, divisors of the form KX +∆ are of special

importance for us, and they are called adjoint divisors. We set up the

Minimal Model Program in the case of pairs in exactly the same way as

before, replacing KX by KX +∆ everywhere. We can now give a precise

definition of minimal (or log terminal) models and of good models.

Definition 1.4. Let (X ,∆) be a Q-factorial klt pair, and let f : X 99K Y

be a birational contraction to a Q-factorial variety.

(i) The map f is a log terminal model for (X ,∆) if KY + f∗∆ is nef, and

if there exists a resolution (p, q) : W → X ×Y of the map f

W

X Y

p q

f

such that

p∗(KX +∆)= q∗(KY + f∗∆)+E,

where E ≥ 0 is a q-exceptional Q-divisor which contains the whole

f -exceptional locus in its support.
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(ii) If additionally KY + f∗∆ is semiample, the map f is a good model

for (X ,∆).

1.4 Existence of good models

The existence of good models for klt pairs (X ,∆) with KX+∆ pseudoeffec-

tive is the main outstanding conjecture in the Minimal Model Program

for projective klt pairs in characteristic zero. It is well known that the

existence of good models implies the Abundance conjecture.

If the Minimal Model Program holds, then the previous discussion

shows that the study of all pairs (X ,∆) can be split into three main build-

ing blocks: when the divisor KX +∆ is

(i) ample (this happens when we study the base of the Iitaka fibration

on a good model),

(ii) trivial (this happens when we study a general fibre of the Iitaka

fibration on a good model), or

(iii) anti-ample (this happens when we study a general fibre of a Mori

fibre space).

The existence of good models for surfaces is classical, as explained

above. For terminal threefolds, minimal models were constructed in

[Mor88, Sho85], whereas minimal models of canonical fourfolds exist by

[BCHM10, Fuj05].

In higher dimensions, the existence of minimal models for klt pairs

of log general type is proved in [HM10, BCHM10], and by different

methods in [CL12, CL13], whereas abundance holds for such pairs by

[Sho85, Kaw85a]. Minimal models for effective klt pairs exist assum-

ing the Minimal Model Program in lower dimensions [Bir11]. The abun-

dance conjecture was proved in [Miy87, Miy88b, Miy88a, Kaw92] for ter-

minal threefolds, and extended to log canonical threefold pairs (X ,∆) in

[KMM94].

If proved, the existence of good models would imply that if (X ,∆) is a

klt pair, then

KX +∆ is pseudoeffective if and only if it is effective,

i.e. some multiple of KX +∆ has global sections. This is analogous to

the hard dichotomy on surfaces mentioned in Section 1.1. This state-

ment, also known as nonvanishing, presents a large part of proving the

existence of good models.
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So far, we know the following result [BDPP13, Corollary 0.3].

Theorem 1.5. Let X be a projective variety with canonical singularities.

Then X is uniruled if and only if KX is not pseudoeffective.

Recall that a variety X of dimension n is uniruled if there is a domi-

nant rational map

P1 ×Y 99K X ,

for some variety Y with dimY = n−1. This property is preserved in the

birational equivalence class of X . We say that a pair (X ,∆) is uniruled if

the underlying variety X is so, and similarly for a non-uniruled pair.

Therefore, it is a natural problem to try to prove the existence of

good models for non-uniruled and uniruled pairs separately. To a certain

extent, this was a strategy employed for threefold pairs in [KMM94].

The proof in [KMM94] proceeds by running a certain KX -MMP which is

(KX +∆)-trivial, to end up either with a Mori fibre space, or with a model

(Y ,∆Y ) on which KY + (1−ε)∆Y is nef for every 0≤ ε≪ 1.

In the Mori fibre space case one is almost immediately done by induc-

tion on the dimension (even when one runs a similar strategy in higher

dimensions), whereas in the second case one uses Chern classes, the

geometry of surfaces and the case by case analysis of the numerical Ko-

daira dimension – the argument follows closely the proof for terminal

threefolds by Miyaoka and Kawamata. A variation of the Mori fibre

space case was implemented in higher dimensions in [DHP13], and we

recall it in Theorem 2.16 below. However, this does not cover all uniruled

pairs, as we explain in Remark 2.17.

In Chapter 2 we take a different approach to reduce to the case of

smooth varieties with effective canonical class. We show that it suffices

to prove the existence of good models and the abundance conjecture for

non-uniruled pairs. More precisely:

Theorem A. Assume the existence of good models for klt pairs in dimen-

sions at most n−1.

If the abundance conjecture holds for non-uniruled klt pairs in di-

mension n, then the abundance conjecture holds for uniruled klt pairs in

dimension n.

Theorem B. Assume the existence of good models for klt pairs in dimen-

sions at most n−1.

Then the existence of good models for non-uniruled klt pairs in di-

mension n implies the existence of good models for uniruled klt pairs in

dimension n.
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By taking a suitable partial resolution, every klt pair can be trans-

formed into a terminal pair, cf. Theorem 2.4. Then by Theorem 1.5,

Theorems A and B show that it suffices to prove the existence of good

models and the abundance conjecture for terminal pairs (X ,∆) with KX

pseudoeffective. Therefore, this is a proper generalisation of the strat-

egy employed for threefolds, and is the first reduction step towards the

proof of the existence of good models.

In fact, we prove a much stronger result, which implies Theorems A

and B.

Theorem 1.6. Assume the existence of good models for klt pairs in di-

mensions at most n−1.

If good models exist for log smooth klt pairs (X ,∆) of dimension n

such that the linear system |KX | is not empty, then good models exist for

uniruled klt pairs in dimension n.

1.5 The Cone conjecture

Recall again that, conjecturally, the study of algebraic varieties splits

into three distinct cases: when KX is either ample, anti-ample, or a tor-

sion divisor. Much is known about the geometry (at least of moduli) in

the first two cases. The third case, which I here call varieties of Calabi-

Yau type, form a rich and extensively studied class.

If X is a variety, we denote by N1(X )R the real vector space of R-

Cartier divisors modulo numerical equivalence. Then it is a basic ques-

tion what the shape of interesting cones in N1(X )R is.

From the point of view of birational geometry, the interesting cones

are the cone of nef divisors Nef(X ) and the movable cone Mov(X ) – this is

the closure of the cone spanned by all effective Cartier divisors without

divisors in their base loci. The nef cone is interesting as elements on

its boundary give all morphisms to other varieties, and elements of the

movable cone give all maps to other varieties.

In general, these cones can be very wild. However, it follows from

Mori’s Cone theorem that the nef cone of a Fano manifold is rational

polyhedral, and the Minimal Model Program implies the same for the

movable cone of a Fano manifold. We give another proof in Theorem 3.2,

which rests on the finite generation of certain rings.

Of course, Calabi-Yau manifolds behave less well than Fano mani-

folds: for instance, it is not too difficult to construct examples of Calabi-
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Yau manifolds for which the nef or the movable cone are not rational

polyhedral; one such convenient example is Example 1.7. However, the

Cone conjecture – introduced below – gives a description of these cones

which is the best that we can ever hope for: it predicts that the nef and

the movable cones on a Calabi-Yau manifold are rational polyhedral up

to the action of natural groups acting on them.

Example 1.7. The following slight generalisation of [Ogu14, Proposition

6.1] is an example of a Calabi-Yau manifold whose movable cone is not

rational polyhedral.

Let X be the complete intersection

H1 ∩H2 ∩·· ·∩Hn−1 ∩Q ⊆Pn ×Pn,

where n ≥ 3, where Hi are general hypersurfaces of bidegree (1,1), and

where Q is a general hypersurface of bidegree (2,2). Then X is a simply

connected Calabi-Yau n-fold with Picard number two. More precisely,

Pic(X )=ZL1⊕ZL2,

where L1 and L2 are pullbacks of the hyperplane classes of factors Pn.

Consider the two birational involutions ι1, ι2 induced by the two nat-

ural projections of X to Pn. Then the boundary rays of the pseudoeffec-

tive cone (which, in this case, is the same as the movable cone) are both

irrational, and ι1ι2 is a birational automorphism of X of infinite order.

The last statement can be checked by computing (ι1ι2)∗L i as in [Ogu14,

Proposition 6.1].

Consider a variety X of Calabi-Yau type, and denote by Aut(X ) the

automorphism group and by Bir(X ) the group of birational automor-

phisms. Note that every element of Bir(X ) is an automorphism in co-

dimension 1, which is an easy consequence of Lemma 1.27 below. We

have a natural homomorphism

r : Bir(X )→GL(N1(X ))

given by g 7→ g∗. We set

A (X )= r
(
Aut(X )

)
and B(X )= r

(
Bir(X )

)
.

Remark 1.8. In general, on a variety X it is more convenient, in the

context of the discussion on Fano manifolds below, to consider the group

PsAut(X ) of pseudo-automorphisms acting on N1(X ) instead of the gro-

up of birational isomorphisms Bir(X ): here, elements of PsAut(X ) are

birational automorphisms which are isomorphisms in codimension 1.
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Thus, the question is – interesting on its own – how Aut(X ) and

Bir(X ), or equivalently A (X ) and B(X ), act on certain cones in N1(X )R.

The first thing to notice is that B(X ) preserves the effective cone Eff(X )

(this is the cone in N1(X )R spanned by the numerical classes of effective

Cartier divisors on X ) and the movable cone Mov(X ), and that A (X )

preserves the nef cone Nef(X ). A precise answer to the question above is

suggested by the following Cone conjecture.

But first we need a definition.

Definition 1.9. Let V be a real vector space equipped with a rational

structure, and let C be a cone in V . Let Γ be a subgroup of GL(V ) which

preserves C . A rational polyhedral cone Π⊆C is a fundamental domain

for the action of Γ on C if the following holds:

(1) C =
⋃

g∈Γ gΠ,

(2) intΠ∩ int gΠ=; if g 6= id.

Conjecture I. Let X be a variety of Calabi-Yau type.

(1) There exists a rational polyhedral cone Π which is a fundamental

domain for the action of A (X ) on Nef(X )∩Eff(X ).

(2) There exists a rational polyhedral cone Π′ which is a fundamental

domain for the action of B(X ) on Mov(X )∩Eff(X ).

A version of the first part of the conjecture was formulated by Mor-

rison [Mor93] and was inspired by developments in mirror symmetry.

Later it was extended to a version of the second part of the conjecture

in [Mor96]. It was presented in the form as above in [Kaw97], and there

is a formulation which involves klt pairs and pseudo-automorphisms in

[Tot10]. More discussion about these versions of Conjecture I and their

consequences is in Section 3.2 below.

The conjecture in its general form seems very difficult, and very little

is known. The starting point is the proof of the conjecture on Calabi-

Yau surfaces [Ste85, Nam85, Kaw97]. This was generalised by Totaro

[Tot10] to klt Calabi-Yau pairs – the proof reinterprets the problem by

using hyperbolic geometry. For abelian varieties, the proof is in [PS12].

A version for the movable cone on projective hyperkähler manifolds

is in [Mar11], and a version for the nef cone on projective hyperkäh-

ler manifolds is in [AV14]. The proof of Conjecture I for the nef cone

on projective hyperkähler manifolds of K3[n]-type is in [MY14]. Oguiso
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[Ogu11] gave a proof of the conjecture for the movable cone of generic

hypersurfaces of multi-degree (2, . . . ,2) in (P1)n for n ≥ 4.

In Chapter 3 we present the proof of the Cone conjecture for Calabi-

Yau n-folds with Picard number 2 and infinite group Bir(X ) from [LP13].

Theorem C. Let X be a Calabi-Yau manifold with Picard number 2. If

the group Bir(X ) is infinite, then the Cone conjecture holds on X .

The proof rests on previous work of Oguiso [Ogu14] on the birational

automorphism group of Calabi-Yau manifolds with Picard number 2.

This is one of the first results to treat the Cone conjecture in such a

generality, and the first result to confirm it for a wide class of threefolds.

In fact, in Section 3.4 we explicitly calculate the groups A (X ) and

B(X ) on a Calabi-Yau manifold with Picard number 2. A flavour of it is

given in the following result.

Theorem 1.10. Let X be a Calabi-Yau manifold of Picard number 2.

Then

either |A (X )| ≤ 2 or A (X ) is infinite,

and

either |B(X )| ≤ 2 or B(X ) is infinite.

Further discussion. Let us return again to Fano manifolds. As men-

tioned above, in Theorem 3.2 we show that the nef and movable cones

on a Fano manifold X are rational polyhedral. Then the following re-

sult from convex geometry, applied to the vector space V = N1(X )R with

the standard lattice L given by the Néron-Severi group N1(X ) and the

induced rational structure, gives that “on a Fano manifold the Cone con-

jecture holds”, when either:

(a) the group Aut(X ) is acting on the nef cone of X ,

(b) the group PsAut(X ) is acting on the movable cone of X .

Proposition 1.11. Let V be a finite dimensional real vector space equip-

ped with a rational structure, and let L be a lattice in V . Let C be a

rational polyhedral cone in V of dimension dimV . Let Γ be a subgroup

of GL(V ) which preserves L and C .

Then Γ is a finite group, and there exists a rational polyhedral funda-

mental domain for the action of Γ on C .
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Proof. Let δ1, . . . ,δr be primitive classes on the extremal rays of the cone

C (in the sense that they are integral classes not divisible in L). Then

any element g ∈ Γ permutes these δi: this follows since g preserves C ,

and it sends a primitive class to a primitive class. Therefore, Γ is finite.

The proof of existence of a rational polyhedral fundamental domain

is a bit more involved. For every point x ∈V , let Σx denote the stabiliser

of x in Γ. Pick a point x0 ∈C such that

for every z ∈C we have |Σx0
| ≤ |Σz|.

Then Σx0
is actually trivial. Indeed, there exists 0 < ε ≪ 1 such that

if B(x0,ε) is the ε-ball around x0 (in the standard norm), then the sets

g
(
B(x0,ε)∩C

)
are pairwise disjoint for g ∉Σx0

. By the choice of x0, this

implies that

|Σx0
| = |Σz| for every z ∈B(x0,ε)∩C .

Hence, for every g ∈Σx0
we have that g stabilises B(x0,ε)∩C , and thus

g = id since there exists a basis of V which belongs to B(x0,ε)∩C .

If 〈 , 〉 denotes the standard scalar product on V ≃RN , for every x, y ∈
V set

d(x, y)=
∑

g∈Γ
〈gx, gy〉.

Then it is easy to check that d : V ×V → R is a scalar product, and that

d(x, y)= d(gx, gy) for every x, y ∈V and every g ∈Γ. Let

Π= {x ∈C | d(x, x0)≤ d(x, gx0) for every g ∈ Γ}.

Then Π is cut out from C by rational half-spaces, and hence Π is a ra-

tional polyhedral cone. I claim that Π is a fundamental domain for the

action of Γ on C . Indeed, take any w ∈ C . Then there exists h ∈ Γ such

that d(w, hx0)≤ d(w, gx0) for every g ∈Γ. This is equivalent to

d(h−1w, x0)≤ d(h−1w, h−1 gx0)

for every g ∈Γ, and hence h−1w ∈Π. Therefore,

C =
⋃

g∈Γ
gΠ.

Since Σx0
= {id}, we have intΠ∩ int gΠ=; unless g = id by definition of

Π. This completes the proof.

Finally, we discuss some of the formulations of the Cone conjecture,

and which consequences it has for the geometry of a Calabi-Yau. The

following result shows that the existence of good models and the Cone

conjecture are, in some sense, consistent.
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Proposition 1.12. Let X be an n-dimensional variety of Calabi-Yau

type. Assume either the existence of good models in dimension n, or the

Cone conjecture in dimension n.

Then the cones Nef(X )∩Eff(X ) and Mov(X )∩Eff(X ) are spanned by

rational divisors.

Proof. I only show the statements for Nef(X )∩Eff(X ), the rest is analo-

gous.

Assume the existence of good models in dimension n. Let D be an

R-divisor whose class is in Nef(X )∩ Eff(X ). Then we can write D ≡∑r
i=1δiD i for prime divisors D i and positive real numbers δi. Fix an

ample Q-divisor A on X . By Theorem 3.8, the ring

R(X ;D1, . . . ,Dr, A)

is finitely generated, and hence, the cone

N =π−1
(
Nef(X )

)
∩

∑
R+D i

is rational polyhedral by Proposition 3.5, where π : DivR(X )→ N1(X )R is

the natural map. Since π(D) ∈N , the result follows.

Now assume the Cone conjecture in dimension n. Let D be an R-

divisor whose class is in Nef(X )∩Eff(X ), and let Π be the fundamental

domain for the action of A (X ) on Nef(X )∩Eff(X ). Then there exists

g ∈ A (X ) such that D ∈ gΠ, and the conclusion follows since gΠ is a

rational polyhedral cone.

We end this discussion with a recent result of Looijenga [Loo14, The-

orem 4.1, Application 4.15]. The result belongs completely to the realm

of convex geometry; however, we will see that it has far-reaching conse-

quences in our situation.

Theorem 1.13. Let V be a real vector space equipped with a rational

structure V (Q), and let L be a lattice in V . Let C be an open cone in V .

Let Γ be a subgroup of GL(V ) which preserves L and C . Let C+ denote

the convex hull of the set C ∩V (Q). Assume that there exists a polyhedral

cone Π in C+ with C ⊆Γ ·Π.

Then Γ ·Π = C+, and there exists a rational polyhedral fundamental

domain for the action of Γ on C+.

This is a remarkable result: it shows that as long as we find a cov-

ering rational polyhedral cone, then the existence of the fundamental

domain is automatic.

Note that Theorem 1.13 in particular implies the following.
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Corollary 1.14. Assume Conjecture II in dimension n. Let X be an n-

dimensional variety with terminal singularities and of Calabi-Yau type.

Then every nef line bundle on X is semiample.

Note that this result implies something much stronger than the Ab-

undance conjecture: indeed, the Abundance conjecture implies semi-

ampleness of every effective nef line bundle on a terminal variety of

Calabi-Yau type.

This seems to be a believed conjecture, although it is not clear what

the evidence for it is. It is worth noting that the original form of the Cone

conjecture in [Mor93] did not involve the cone Nef(X )∩Eff(X ), but the

cone Nef(X )+ (i.e. the convex hull of the cone Nef(X )∩ N1(X )Q), which

is consistent with the convex-geometric Theorem 1.13. The cone Eff(X )

entered the formulation in [Kaw97].

We prove in Theorem 3.13 below that

Nef(X )∩Eff(X )⊆Nef(X )+.

The Cone conjecture would imply that this inclusion is actually an equal-

ity. In all known cases this is, of course, true.

1.6 Number of good models

In [Kaw97], Kawamata formulated the following generalisation of the

Cone conjecture in the relative setting.

Conjecture II. Let X be a normal projective variety of relative Calabi-

Yau type, i.e. assume there exists a fibration X → S such that KX ≡S 0.

(1) There exists a rational polyhedral cone Π which is a fundamental

domain for the action of A (X /S) on Nef(X /S)∩Eff(X /S).

(2) There exists a rational polyhedral cone Π′ which is a fundamental

domain for the action of B(X /S) on Mov(X /S)∩Eff(X /S).

Here, of course, all groups and cones are the relative analogues of the

absolute setting from before, where S was a point.

It is an important and long-standing conjecture that the number of

minimal models of a smooth projective variety is finite up to isomor-

phism. This is known for projective varieties of general type [BCHM10].

A positive answer to Conjecture II together with the existence of good
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models would imply that the number of minimal models of a terminal

variety is finite up to isomorphism; we show this in Theorem 3.11. This

gives the main motivation for the Cone conjecture in the realm of bira-

tional geometry.

Kawamata [Kaw97] gave a proof of (a weaker form of) Conjecture

II when X → S is a 3-fold over a positive-dimensional base. This, in

particular, showed that if X is a 3-fold with positive Kodaira dimension,

then the number of its minimal models is finite up to isomorphisms.

One might wonder how much of a birational geometry of a projective

variety is captured in its topology. One way to quantify this is to specu-

late that the number of minimal models of a smooth projective variety is

bounded with respect to its underlying topology as a complex manifold.

This belief also has roots in other results in the field. According to

philosophy starting with [Kol86], vanishing and injectivity theorems in

cohomology hold due to topological reasons, and Kollár’s effective base-

point freeness [Kol93] gives bounds that depend only on the dimension

of a variety. The finite generation of adjoint rings can be proved as a

consequence of the Kawamata-Viehweg vanishing theorem [CL12], and

this in turns implies finiteness of minimal models for a given pair of

log general type [CL13, KKL12]. More precisely, the number of mini-

mal models of a pair (X ,∆) is related to the number of generators of a

suitable adjoint ring.

The results of Chapter 4 represent the first attempt to bound the

number of minimal models of a given log smooth pair of dimension 3

with respect to the underlying topology as a complex manifold. Two log

smooth pairs (X1,∆1) and (X2,∆2) are said to be of the same topological

type if there is a homeomorphism ϕ : X1 → X2 which is a homeomophism

between Supp∆1 and Supp∆2. The main result of Chapter 4 is the fol-

lowing.

Theorem D. Let ε be a positive number. Let X be the collection of all log

smooth 3-fold terminal pairs (X ,∆=
∑p

i=1
δiS i) such that:

(1) X is not uniruled,

(2) ε≤ δi ≤ 1−ε for all i,

(3) S1, . . . ,Sp are distinct prime divisor not contained in

B(KX +
p∑

i=1

aiS i)
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for all 0≤ ai ≤ 1, and

(4) S i span DivR(X ) up to numerical equivalence.

Then for every (X0,∆0) ∈ X there exists a constant N such that for every

(X ,∆) ∈X of the topological type as (X0,∆0), the number of log terminal

models of (X ,∆) is bounded by N.

Here we refer to the definition of the stable base locus in Section

1.8. Theorem D combined with the Cone conjecture suggests that the

number of faces of the fundamental domain of the action of the group of

birational automorphisms on the movable cone of a Calabi-Yau manifold

X is determined by the topological type of X .

1.7 Finding a right general setup

As Example 1.3 shows, there are indeed situations where the classi-

cal Minimal Model Program cannot work for the canonical class. On

the other hand, there is a special class of varieties, called Mori Dream

Spaces, where we can do a version of the MMP for every effective divisor.

Definition 1.15. A projective Q-factorial variety X is a Mori Dream

Space if

(1) Pic(X )Q = N1(X )Q,

(2) Nef(X ) is the affine hull of finitely many semiample line bundles,

and

(3) there are finitely many birational maps f i : X 99K X i to projective

Q-factorial varieties X i such that each f i is an isomorphism in codi-

mension 1, each X i satisfies (2), and

Mov(X )=
⋃

f ∗i
(
Nef(X i)

)
.

If D1, . . . ,Dr is a basis of Pic(X )Q such that Eff(X )⊆
∑
R+D i, then

R(X ;D1, . . . ,Dr)=
⊕

(n1,...,nr )∈Nr

H0(X , n1D1 +·· ·+nrDr)

is a Cox ring of X . The finite generation of this ring is independent of

the choice of D1, . . . ,Dr.



22 CHAPTER 1. INTRODUCTION

The class of Mori Dream Spaces was introduced in [HK00]. It con-

tains, for instance, all toric varieties [HK00] or Fano varieties, see Corol-

lary 5.22. Of course, this is an exceptionally nice example, and we would

like to find, in some sense the maximal class of varieties where a version

of the Minimal Model Program can be performed.

Maybe it is too much to hope that there exists such a class which con-

tains both the setup of the classical MMP as well as Mori Dream Spaces,

since they can be, in some sense, unrelated or only loosely related. How-

ever, we will see in Chapter 5 that we can indeed build a theory which

contains both of these pictures as special instances.

Say we have a Q-factorial projective variety X and a Q-divisor D on

X ; note that here we allow X to be arbitrarily singular. Then the group

of global sections of D is

H0(X ,D)=
{

f ∈ k(X ) | div f +D ≥ 0
}
,

and the associated section ring is defined as

R(X ,D)=
⊕

m∈N
H0(X , mD).

Analogously to the case of adjoint divisors, we can give a good defini-

tion of a good model for D.

Definition 1.16. Let D ∈ DivR(X ) and let ϕ : X 99K Y be a contraction

map to a normal projective variety Y such that D′ =ϕ∗D is R-Cartier.

(1) The map ϕ is D-nonpositive (respectively D-negative) if it is bira-

tional, and for a common resolution (p, q) : W → X ×Y

W

X Y

p q

f

we can write p∗D = q∗D′ + E, where E ≥ 0 is q-exceptional (re-

spectively E ≥ 0 is q-exceptional and SuppE contains the strict

transform of the ϕ-exceptional divisors). In particular, H0(X ,D) ≃
H0(Y ,ϕ∗D) and

R(X ,D)≃ R(Y , f∗D).

(2) The map ϕ is an optimal model of D if ϕ is D-negative, Y is Q-

factorial and D′ is nef.
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(3) The map ϕ is a semiample model of D if ϕ is D-nonpositive and D′

is semiample.

(4) The map ϕ is a good model of D if ϕ is an optimal model such that

D′ is semiample.

(5) The map ϕ is the ample model of D if there exist a birational

contraction f : X 99K Z which is a semiample model of D, and a

morphism with connected fibres g : Z → Y such that ϕ= g ◦ f and

f∗D ∼Q g∗A, where A is an ample R-divisor on Y .

X Z

Y

f

ϕ
g

Remark 1.17. The ample model is unique up to isomorphism. Indeed,

with the notation from the definition, we have R(X , pD)≃ R(Z, pf∗D) for

some large positive integer p. This last ring is isomorphic to R(Y , pA),

and therefore Y ≃ProjR(X ,D).

We first notice that, if an MMP can be performed for our Q-divisor D

(in other words, if a good model for D exists), then D cannot be isolated in

the Néron-Severi space N1(X )R. The following lemma makes this more

precise, but first we need a definition.

Definition 1.18. If X is a normal projective variety, and if S ⊆DivQ(X )

is a finitely generated monoid, then

R(X ,S )=
⊕

D∈S

H0
(
X ,D)

is a divisorial S -graded ring. If C ⊆ DivR(X ) is a rational polyhedral

cone, then S = C ∩Div(X ) is a finitely generated monoid by Gordan’s

lemma, and we define

R(X ,C ) := R(X ,S ).

If D1, . . . ,Dr be Q-Cartier Q-divisors on X , then we have the associated

divisorial ring

R= R(X ;D1, . . . ,Dr)=
⊕

(n1,...,nr)∈Nr

H0(X , n1D1 +·· ·+nrDr).
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When all D i are adjoint divisors, then the ring R is an adjoint ring. The

support of R is the cone

SuppR= {D ∈
∑
R+D i | |D|R 6= ;}⊆DivR(X ),

and similarly for rings of the form R(X ,C ).

Lemma 1.19. Let X be a Q-factorial projective variety, and let D be a

Q-divisor on X . Assume that there exists a good model for D, and let

π : DivR(X )→ N1(X )R be the natural projection.

Then there exist Q-divisors D1, . . . ,Dr such that

(1) D ∈
∑
R+D i ⊆DivR(X ),

(2) dimπ(
∑
R+D i)= dim N1(X )R,

(3) the ring R(X ;D1, . . . ,Dr) is finitely generated.

Proof. We assume the notation as above. In particular, let f : X 99K Y

be a good model for D. Since f∗D is semiample, there exist semiample

Q-divisors G1, . . . ,Gm on Y such that:

(i) f∗D ∈
∑
R+G i ⊆DivR(Y ),

(ii) the dimension of the image of the cone
∑
R+G i in N1(Y )R is maxi-

mal, and

(iii) the ring R(Y ;G1, . . . ,Gm) is finitely generated.

Indeed, we take G1 = f∗D, and we can pick G2, . . . ,Gm to be ample.

If E1, . . . ,Eℓ are the prime divisors contracted by f , then we have

D = f ∗ f∗D+
∑

r iE i

for some r i ≥ 0. Now we define D1, . . . ,Dr, with r = m+ℓ, as follows. Set

D i = f ∗G i

for i = 1, . . . , m, and set

Dm+i = f ∗G1 +λiE i

for i = 1, . . . ,ℓ, where λi = ℓr i. Then it is easy to see that (1) and (2) hold.

It remains to show that the ring R(X ;D1, . . . ,Dr) is finitely generated.
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For non-negative integers k1, . . . , kr, denote Dk1,...,kr
=

∑
k iD i, and

note that

Dk1,...,kr
=

∑m
i=1

f ∗(k iG i)+
(∑r

i=m+1 k i

)
f ∗G1 +

∑r
i=m+1 k iλiE i.

This implies

H0(X ,Dk1,...,kr
)= H0

(
X ,

∑m
i=1

k iD i +
(∑r

i=m+1 k i

)
D1

)
,

and thus

R(X ;D1, . . . ,Dr)≃ R(X ;D1, . . . ,Dm,D1, . . . ,D1).

Now, this last ring is finitely generated by Lemma 1.21 below, as the ring

R(X ;D1, . . . ,Dm)≃ R(Y ;G1, . . . ,Gm)

is finitely generated.

Therefore, Lemma 1.19 says that unless we have a finitely generated

divisorial ring R such that D ∈ SuppR which is full (in the sense that

the image of SuppR in N1(X )R is maximal dimensional), then we stand

no chance of ever performing the Minimal Model Program for this D.

With notation from Lemma 1.19, we have the graded ring

R= R(X ;D1, . . . ,Dr),

and we want to determine sufficient conditions to allow us to perform

a Minimal Model Program for every divisor in SuppR. We will see in

Theorem 5.9 that there exist finitely many natural maps

ϕi : X 99K X i

associated to a certain decomposition of SuppR. A fundamental require-

ment is that all X i are Q-factorial varieties. The varieties X i are isomor-

phic to ProjR(X ,G i) for some Q-divisors G i in the interior of SuppR.

Let G′
i

be any Q-divisor such that G i ≡ G′
i
. If X i is Q-factorial, then

in particular, the divisor (ϕi)∗G′
i

is Q-Cartier. It is easy to show, see

Lemma 5.13, that in that case, the section ring R(X ,G′
i
) is also finitely

generated. Therefore, the divisors in the interior of SuppR must be

pretty special – it is not in general true that finite generation of section

rings is a numerical property, see Example 5.14. These divisors deserve

a special name.
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Definition 1.20. Let X be a Q-factorial projective variety. A Q-divisor

D is gen if for every Q-divisor D′ ≡ D, the section ring R(X ,D′) is finitely

generated.

Therefore, our last requirement must be that all the divisors in the

interior of SuppR are gen. The main result of Chapter 5 is the following.

Theorem E. Let X be a projective Q-factorial variety, let D1, . . . , Dr be

effective Q-divisors on X , and assume that the numerical classes of D i

span N1(X )R. Assume that the ring

R(X ;D1, . . . ,Dr)

is finitely generated, that the cone
∑
R+D i contains an ample divisor, and

that every divisor in the interior of this cone is gen.

Then there is a finite decomposition

∑
R+D i =

∐
Ni

into cones having the following properties:

(1) each Ni is a rational polyhedral cone,

(2) for each i, there exists a Q-factorial projective variety X i and a bi-

rational contraction ϕi : X 99K X i such that ϕi is a good model for

every divisor in Ni.

In fact, we prove a stronger result: we show that for any Q-divisor

D ∈
∑
R+D i, we can run a D-MMP which terminates, see Theorem 5.19

for the precise statement. The decomposition in Theorem E determines

a geography of optimal models associated to R(X ;D1, . . . ,Dr). This also

allows us to recover some of the main results of [BCHM10] and [HK00],

see Corollaries 5.21 and 5.22.

1.8 Notation and conventions

Throughout the manuscript, unless otherwise stated all varieties are

normal and projective, and everything happens over the complex num-

bers. We denote by R+ and Q+ the sets of non-negative real and rational

numbers. A pair (X ,∆) is log smooth if X is smooth and if the support of

∆ has simple normal crossings.

I follow notation and conventions from [Laz04], and anything which

is not explicitly defined here, can be found there.
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Apart from the notation introduced thusfar, we need several more

concepts. Additional notation will be introduced in each chapter if nec-

essary.

Divisors and line bundles. Let X be a normal projective variety and

let k ∈ {Z,Q,R}. We denote by Divk(X ) the group of k-Cartier k-divisors

on X , and ∼k and ≡ denote the k-linear and numerical equivalence of

R-divisors. If there is a morphism X → Y to another normal projective

variety, numerical equivalence over Y is denoted by ≡Y . We denote

Pic(X )k =Divk(X )/∼k and N1(X )k =Divk(X )/≡ .

As mentioned above, Nef(X ) ⊆ N1(X )R denotes the closed cone of nef

divisors, Big(X ) stands for the open cone of big divisors, Mov(X ) is the

closure of the cone generated by mobile divisors (that is, effective di-

visors whose base locus does not contain divisors), and Mov(X ) is its

interior. Finally, Eff(X ) is the effective cone, and Eff(X ) is the pseudo-

effective cone (the closure of the effective cone, or equivalently, the clo-

sure of the big cone).

If X is a normal projective variety and if D is an integral divisor on

X , we denote by Bs |D| the base locus of D, whereas Fix |D| and Mob(D)

denote the fixed and mobile parts of D. If S is a prime divisor on X such

that S * Bs |D|, then |D|S denotes the image of the linear system |D|
under restriction to S. If D is an R-divisor on X , we denote

|D|R = {D′ ∈DivR(X ) | D ∼R D′ ≥ 0} and B(D)=
⋂

D′∈|D|R
SuppD′,

and we call B(D) the stable base locus of D. If A is any ample divisor on

X , then

B+(D)=
⋂

ε>0

B(D−εA)

is the augmented base locus of D, and we clearly have

B(D)⊆B+(D).

Divisorial rings. In the manuscript, we use several properties of fi-

nitely generated divisorial rings without explicit mention, see [CL12,

§2.4]. The one we use most is recalled in the following lemma.

Lemma 1.21. Let X be a normal projective variety, let D1, . . . ,Dr be divi-

sors in DivQ(X ), and let p1, . . . , pr be positive rational numbers.

Then the ring R(X ;D1, . . . ,Dr) is finitely generated if and only if the

ring R(X ; p1D1, . . . , prDr) is finitely generated.
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Asymptotic valuations. A geometric valuation Γ on a normal variety

X is a valuation on the function field k(X ) given by the order of vanishing

at the generic point of a prime divisor on some proper birational model

f : Y → X ; by abusing notation, we identify Γ with the corresponding

prime divisor. If D is an R-Cartier divisor on X , we use multΓ D to denote

multΓ f ∗D. The set f (Γ) is the centre of Γ on X and is denoted by cX (Γ).

Definition 1.22. Let X be a normal projective variety, let D be an R-

Cartier divisor such that |D|R 6= ;, and let Γ be a geometric valuation

over X . The asymptotic order of vanishing of D along Γ is

oΓ(D)= inf{multΓ D′ | D′ ∈ |D|R}.

Finite generation of a divisorial ring R has important consequences

on the behavior of the asymptotic order functions, and therefore on the

convex geometry of its support SuppR, as observed in [ELM+06].

Theorem 1.23. Let X be a projective Q-factorial variety, and let C ⊆
DivR(X ) be a rational polyhedral cone. Assume that the ring R= R(X ,C )

is finitely generated. Then:

(1) SuppR is a rational polyhedral cone,

(2) if SuppR contains a big divisor, then all pseudo-effective divisors

in SuppR are in fact effective,

(3) there is a finite rational polyhedral subdivision SuppR=
⋃

C i such

that oΓ is linear on C i for every geometric valuation Γ over X , and

the cones C i form a fan,

(4) there is a positive integer d and a resolution f : X̃ → X such that

Mob f ∗(dD) is basepoint free for every D ∈ SuppR∩Div(X ), and

Mob f ∗(kdD)= kMob f ∗(dD)

for every positive integer k.

Proof. This is essentially [ELM+06, Theorem 4.1], see [CL13, Theorem

3.6].

Convex geometry. Let C ⊆ RN be a convex set. A subset F ⊆ C is a

face of C if it is convex, and whenever tu+ (1− t)v ∈ F for some u,v ∈C

and 0< t < 1, then u,v ∈ F. Note that C is itself a face of C . We say that

x ∈C is an extreme point of C if {x} is a face of C .
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The topological closure of a set S ⊆RN is denoted by S . The bound-

ary of a closed set C ⊆RN is denoted by ∂C .

A rational polytope in RN is a compact set which is the convex hull of

finitely many rational points in RN . A rational polyhedral cone in RN is a

convex cone spanned by finitely many rational vectors. The dimension of

a cone in RN is the dimension of the minimal R-vector space containing

it.

A finite rational polyhedral subdivision C =
⋃

C i of a rational polyhe-

dral cone C is a fan if each face of C i is also a cone in the decomposition,

and the intersection of two cones in the decomposition is a face of each.

We need some naturally defined convex sets on the space of divisors.

Definition 1.24. Let X be a projective Q-factorial variety, let S1, . . . , Sp

be distinct prime divisors on X , denote V =
∑p

i=1
RS i ⊆ DivR(X ), and let

A be an ample Q-divisor on X . We define

L (V )= {∆ ∈V | (X ,∆) is log canonical},

EA(V )= {∆ ∈L (V ) | |KX + A+∆|R 6= ;}.

It is easy to check that L (V ) is a rational polytope, cf. [BCHM10,

Lemma 3.7.2]. On the other hand, the fact that EA(V ) is a rational poly-

tope is much harder, see Corollary 1.26.

Finitely generated adjoint rings. Lemma 1.19 shows that the exis-

tence of good models implies finite generation of certain multi-graded

rings. In the case of adjoint divisors, this is indeed now a theorem,

proved in [BCHM10, HM10], and also in [CL12] by different methods.

Theorem 1.25. Let X be a Q-factorial projective variety, and let ∆1, . . . ,∆r

be Q-divisors such that all pairs (X ,∆i) are klt.

(1) If A1, . . . , Ar are ample Q-divisors, then the adjoint ring

R(X ;KX +∆1 + A1, . . . ,KX +∆r + Ar)

is finitely generated.

(2) If ∆i are big, then the adjoint ring

R(X ;KX +∆1, . . . ,KX +∆r)

is finitely generated.
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We then have the following easy corollary.

Corollary 1.26. Let X be a projective Q-factorial variety, let S1, . . . , Sp

be distinct prime divisors on X , denote V =
∑p

i=1
RS i ⊆ DivR(X ), and let

A be an ample Q-divisor on X . Let C ⊆L (V ) be a rational polytope such

that for every ∆ ∈C , the pair (X ,∆) is klt.

Then the set C ∩EA(V ) is a rational polytope, and the ring

R(X ,R+(KX + A+C ∩EA(V )))

is finitely generated.

Proof. Let B1, . . . ,Br be the vertices of C . Then the ring

R= R(X ;KX +B1 + A, . . . ,KX +Br + A)

is finitely generated by Theorem 1.25, which implies the second claim

since there is a natural surjection from R to R(X ,R+(KX+A+C∩EA(V ))).

Since

SuppR=R+(KX + A+C ∩EA(V )).

the first claim follows from Theorem 1.23(i).

Negativity Lemma. We recall the following important result known

as the Negativity lemma, see [K+92, Lemma 2.19].

Lemma 1.27. Let f : X → Y be a proper birational morphism, where X

is normal, and let E be an f-exceptional divisor on X . Assume that

E ≡Y H+D,

where H is f -nef and D ≥ 0 has no common components with E. Then

E ≤ 0.

The following corollary, cf. [BCHM10, Lemma 3.6.4], will be used in

Chapter 5.

Corollary 1.28. Let X → Z and Y → Z be projective morphisms of nor-

mal projective varieties. Let f : X 99K Y be a birational contraction over

Z, and let (p, q) : W → X ×Y be a resolution of f . Let D and D′ be R-

Cartier divisors on X such that f∗D and f∗D′ are R-Cartier on Y , and

assume that D ≡Z D′. Then

p∗D− q∗ f∗D = p∗D′− q∗ f∗D′.

In particular, f is D-nonpositive (respectively D-negative) if and only if f

is D′-nonpositive (respectively D′-negative).

Proof. The divisor E = p∗(D−D′)− q∗ f∗(D−D′) is q-exceptional since f

is a contraction, and we have E ≡Y 0. We conclude by Lemma 1.27.
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Chapter 2

The existence of good models

2.1 Introduction

The results of this chapter are taken from [DL14]. We prove the follow-

ing results announced in Chapter 1.

Theorem A. Assume the existence of good models for klt pairs in dimen-

sions at most n−1.

If the abundance conjecture holds for non-uniruled klt pairs in di-

mension n, then the abundance conjecture holds for uniruled klt pairs in

dimension n.

Theorem B. Assume the existence of good models for klt pairs in dimen-

sions at most n−1.

Then the existence of good models for non-uniruled klt pairs in di-

mension n implies the existence of good models for uniruled klt pairs in

dimension n.

We briefly explain the strategy of the proof. If (X ,∆) is a uniruled klt

pair, then by [DHP13, Proposition 8.7] we may assume that the adjoint

divisor KX +∆ is effective; we reprove this result below in Theorem 2.16.

We first show that we may furthermore assume that X is smooth and

∆ is a reduced simple normal crossings divisor, and that there exists an

effective Q-divisor D such that KX +∆ ∼Q D and the supports of ∆ and

D are the same. Then we use ramified covers, dlt models and log res-

olutions to construct a log smooth pair (W ,∆W ) and a generically finite

morphism w : W → X such that KW is an effective divisor – we do this by

carefully analysing the behaviour of valuations under finite morphisms.

We conclude by the construction of w and since the Kodaira dimension

33
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and the numerical Kodaira dimension are preserved under proper mor-

phisms, cf. Lemma 2.7.

In fact, our techniques lead to the following main technical result of

the chapter, which implies Theorems A and B.

Theorem 2.1. Assume the existence of good models for klt pairs in di-

mensions at most n−1.

If good models exist for log smooth klt pairs (X ,∆) of dimension n

such that the linear system |KX | is not empty, then good models exist for

uniruled klt pairs in dimension n.

As a by-product, we obtain in Lemma 2.22 a result which can be

viewed as a global version of the index one cover [Rei80, Corollary 1.9],

and might be of independent interest.

2.2 Previous results

In this section we gather previous results which will be used in Section

2.3. We pay special attention to the behaviour of discrepancies under

finite morphisms – this is also known, but we provide the details for the

benefit of the reader.

2.2.1 Terminal and dlt models

Terminal and dlt models allow us to make the singularities of pairs sim-

pler, in the first case by replacing klt by terminal singularities, and in

the second case by replacing log canonical by dlt singularities. For us,

particularly the dlt models and their precise definition will be useful.

Definition 2.2. Let (X ,∆) be a klt pair. A pair (Y ,Γ) together with a

proper birational morphism f : Y → X is a terminal model of (X ,∆) if the

following holds:

(i) the pair (Y ,Γ) is terminal,

(ii) Y is Q-factorial,

(iii) KY +Γ∼Q f ∗(KX +∆).

Definition 2.3. Let (X ,∆) be a log canonical pair. A pair (Y ,Γ) together

with a proper birational morphism f : Y → X is a dlt model of (X ,∆) if

the following holds:
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(i) the pair (Y ,Γ) is dlt,

(ii) the divisor Γ is the sum of f −1
∗ ∆ and all exceptional prime divisors

with discrepancy −1,

(iii) Y is Q-factorial,

(iv) KY +Γ∼Q f ∗(KX +∆).

The starting point is the following existence result.

Theorem 2.4. Let (X ,∆) be a pair.

(a) If (X ,∆) is klt, then a terminal model of (X ,∆) exists.

(b) If (X ,∆) is log canonical, then a dlt model of (X ,∆) exists.

Proof. For part (a), see [BCHM10, Corollary 1.4.3] and the paragraph

after that result. Part (b) is [KK10, Theorem 3.1].

2.2.2 Good models

Note that if (X ,∆) is a klt pair, then it has a good model if and only if

there exists a Minimal Model Program with scaling of an ample divisor

which terminates with a good model of (X ,∆), cf. [Lai11, Propositions 2.4

and 2.5].

Theorem 2.5. Assume the existence of good models for klt pairs in di-

mensions at most n−1.

Let (X ,∆) be a klt pair of dimension n which is projective over a pro-

jective variety Z such that KX +∆ is effective over Z. Then (X ,∆) has a

log terminal model over Z.

Proof. By [Bir11, Corollary 1.7 and the paragraph after Definition 2.2],

it is enough to show that every Q-factorial dlt pair (Y ,Γ) of dimension

at most n−1 such that KY +Γ is pseudoeffective has a minimal model

in the sense of Birkar and Shokurov, cf. [Bir11, Definition 2.1]. To this

end, note first that κ(Y ,KY +Γ) ≥ 0 by our assumption and by [Gon12,

Theorem 1.5] and [FG14, Theorem 5.5]. Then we conclude by induction

and by [Bir11, Corollary 1.7] again.

Kawamata [Kaw85b] was the first to realise that the numerical Ko-

daira dimension, in the case of nef divisors, plays a crucial role in the

abundance conjecture. The concept was generalised in [Nak04] to the

case of pseudoeffective divisors.
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Definition 2.6. Let X be a smooth projective variety and let D be a

pseudoeffective Q-divisor on X . If we denote

σ(D, A)= sup
{
k ∈N | liminf

m→∞
h0(X ,⌊mD⌋+ A)/mk > 0

}

for a Cartier divisor A on X , then the numerical Kodaira dimension of

D is

κσ(X ,D)= sup{σ(D, A) | A is ample}.

If X is a projective variety and if D is a pseudoeffective Q-Cartier Q-

divisor on X , then we set κσ(X ,D) = κσ(Y , f ∗D) for any birational mor-

phism f : Y → X from a smooth projective variety Y .

The function κσ behaves similarly to the Kodaira dimension under

proper pullbacks:

Lemma 2.7. Let D be a Q-divisor on a Q-factorial variety X , and let

f : Y → X be a proper surjective morphism. Then

κ(X ,D)= κ(Y , f ∗D) and κσ(X ,D)= κσ(Y , f ∗D).

If f is birational and E is an effective f -exceptional divisor on Y , then

κ(X ,D)= κ(Y , f ∗D+E) and κσ(X ,D)= κσ(Y , f ∗D+E).

Proof. The first three relations are [Nak04, Lemma II.3.11, Proposition

V.2.7(4)]. For the last one, we have Pσ( f ∗D +E) = Pσ( f ∗D) by [GL13,

Lemma 2.16], hence κσ(Y , f ∗D + E) = κσ(Y , f ∗D) by [Leh13, Theorem

6.7].

The following result generalises [Kaw85b, Theorem 6.1], and it will

be crucial in the proofs in the following section.

Lemma 2.8. Let (X ,∆) be a klt pair. Then (X ,∆) has a good model if and

only if κ(X ,KX +∆)= κσ(X ,KX +∆).

Proof. This is [GL13, Theorem 4.3].

Lemma 2.9. Let (X ,∆) and (X ,∆′) be pairs, and assume that there exist

Q-divisors D ≥ 0 and D′ ≥ 0 such that

KX +∆∼Q D ≥ 0, KX +∆′ ∼Q D′ ≥ 0 and SuppD′ =SuppD.

Then

κ(X ,KX +∆) = κ(X ′,KX ′ +∆′) and κσ(X ,KX +∆)= κσ(X ′,KX ′ +∆′)

Proof. There exist positive rational numbers t1 and t2 such that t1D ≤
D′ ≤ t2D, hence κ(X , t1D) ≤ κ(X ,D′) ≤ κ(X , t2D). This implies the first

equality, and the second is analogous.
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2.2.3 Valuations under finite morphisms

We first prove an easy algebraic result that we use in the proof of Propo-

sition 2.13.

Lemma 2.10. Let k ⊆ K be an algebraic extension of fields. Let (B, mB) be

a discrete valuation ring with the quotient field K , and let A = B∩k and

mA = mB ∩k. Then (A, mA) is a discrete valuation ring with the quotient

field k such that the field extension A/mA ⊆ B/mB is algebraic.

Proof. Let ν : K → Z∪ {∞} be the valuation function corresponding to

(B, mB). Then A = {a ∈ k | ν(a) ≥ 0} and mA = {a ∈ k | ν(a) > 0}, and it

is immediate that k is the quotient field of A. Let b ∈ B and denote

b = b+mB ∈ B/mB. Then there is a polynomial

p = Tn + rn−1Tn−1 +·· ·+ r0 ∈ k[T]

such that p(b) = 0, and fix j ∈ {0, . . ., n−1} such that ν(r j) ≤ ν(r i) for all

i. If ν(r j) ≥ 0, then p ∈ A[T] and b is algebraic over A/mA. If ν(r j) < 0,

then r−1
j

∈ mA and ν(r−1
j

r i)≥ 0 for all i. Therefore,

p = r−1
j p mod mA ∈ (A/mA)[T]

is a non-zero polynomial such that p(b)= 0, which proves the last claim.

It remains to show that mA 6= {0}. Fix b ∈B with ν(b)> 0 and let

p = anTn +an−1Tn−1 +·· ·+a0 ∈ A[T]

be a polynomial of minimal degree such that p(b)= 0, so that, in partic-

ular, a0 6= 0. Then we have

0< ν(b)≤ ν
(
b(anbn−1 +an−1bn−2 +·· ·+a1)

)
= ν(−a0),

hence a0 ∈ mA .

We make a couple of remarks on geometric valuations.

Remark 2.11. Let X be a variety and let Γ be a geometric valuation over

X which is a divisor on a birational model Y → X . Let R be a discrete

valuation ring with quotient field k(X ) which dominates the local ring

OX ,cX (Γ) ⊆ k(X ). Then there exists a morphism SpecR → X which sends

the generic point of SpecR to the generic point of X , and the closed point

of SpecR to the generic point of cX (Γ), cf. [Har77, Lemma II.4.4]. In

particular, this holds if R =OY ,Γ.
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Remark 2.12. Let X be a normal variety and let (R, m) be a discrete

valuation ring such that the quotient field of R is k(X ). Assume that

there is a morphism SpecR → X which sends the generic point of SpecR

to the generic point of X . Assume that trdegC(R/m)= dim X −1. Then by

a lemma of Zariski [KM98, Lemma 2.45], the corresponding valuation is

a geometric valuation on X .

Proposition 2.13. Let π : X ′ → X be a finite morphism of degree m be-

tween normal varieties, let ∆ be a Q-divisor on X such that (X ,∆) is a

pair, and let ∆′ be a Q-divisor on X ′ such that KX ′ +∆′ =π∗(KX +∆).

(i) For every geometric valuation E′ over X ′ there exists a geometric

valuation E over X and an integer 1≤ r ≤ m such that π(cX ′(E′))=
cX (E) and

a(E′, X ′,∆′)+1= r(a(E, X ,∆)+1).

(ii) For every geometric valuation E over X there exists a geometric val-

uation E′ over X ′ and an integer 1 ≤ r ≤ m such that π(cX ′(E′)) =
cX (E) and

a(E′, X ′,∆′)+1= r(a(E, X ,∆)+1).

In particular, the pair (X ,∆) is log canonical (respectively klt) if and only

if the pair (X ′,∆′) is log canonical (respectively klt).

Proof. This is [KM98, Proposition 5.20], and in the following we repro-

duce the proof with more details.

We claim that both in (i) and (ii) there is a commutative diagram

Y ′ Y

X ′ X

π′

f ′ f

π

(2.1)

where f and f ′ are birational morphisms, π′ is finite and there are prime

divisors E ⊆ Y and E′ ⊆ Y ′ such that π′(E′) = E. The claim immedi-

ately implies the proposition: indeed, let r = multE′(π′)∗E. Then locally

around the generic point of E′ we have

KY ′ − (r−1)E′ = (π′)∗KY ∼Q (π′)∗( f ∗(KX +∆)+a(E, X ,∆) ·E)

= ( f ′)∗(K ′
X +∆′)+ r ·a(E, X ,∆) ·E′

∼Q KY ′ −a(E′, X ′,∆′) ·E′+ r ·a(E, X ,∆) ·E′,

hence (i) and (ii) follow.
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To see the claim in the case (ii), let f : Y → X be a birational mor-

phism such that E ⊆ Y is a prime divisor, and let Y ′ be a component of

the normalisation of the fibre product X ′×X Y that maps onto Y . Then

we obtain the diagram (2.1), and since π′ is surjective, there is a prime

divisor E′ ⊆Y ′ with π′(E′)= E.

In the case (i), let (R′, mR′) be the discrete valuation ring correspond-

ing to the valuation E′, and let R = R′∩k(X ) and mR = mR′∩k(X ). Since

k(X ) ⊆ k(X ′) is an algebraic extension of fields, R is a discrete valua-

tion ring with quotient field k(X ) such that trdegC(R/mR)= dim X −1 by

Lemma 2.10. If E is the corresponding discrete valuation, then E is a

divisorial valuation by Remark 2.12. By Remark 2.11, there is a mor-

phism ρ′ : SpecR′ → X ′ which sends the generic point of SpecR′ to the

generic point of X ′, and the closed point of SpecR′ to the generic point η′

of cX ′(E′). If η=π(η′), then

OX ,η ⊆OX ′,η′ ∩k(X )⊆ R′∩k(X )= R,

hence by Remark 2.11 there is a morphism ρ : SpecR → X which sends

the generic point of SpecR to the generic point of X , and the closed point

of SpecR to η.

Let f : Y → X be a birational morphism such that E is a divisor on Y ,

and denote by X ′ a component of the normalization of the fibre product

X ′×X Y that maps onto Y , so that we have the diagram (2.1). By the

valuative criterion of properness, we have the diagram

Y ′ Y

SpecR′ X ′ X SpecR

π′

f ′ f

ρ′

ι

θ′

π

θ

ρ

where ι : SpecR′ →SpecR is the morphism induced by the inclusion R ⊆
R′. Since f is separated, we have π′ ◦θ′ = θ ◦ ι, and this just says that E′

is a prime divisor on Y ′ such that π′(cY ′(E′))= cY (E).

2.3 Good models for uniruled pairs

Lemma 2.14. Let (X ,∆) be a pair, and let f : X 99K Y be a birational

contraction to a normal projective variety such that KY + f∗∆ is Q-Cartier.

Then

κσ(X ,KX +∆) ≤ κσ(Y ,KY + f∗∆).
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Proof. Let (p, q) : W → X ×Y be a resolution of the map f . Write

KW +∆W ∼Q p∗(KX +∆)+E and KW +∆′
W ∼Q q∗(KY + f∗∆)+E′,

where ∆W ≥ 0 and E ≥ 0 have no common components, and ∆′
W

≥ 0 and

E′ ≥ 0 have no common components. Since f is a contraction, the divi-

sor ∆W −∆′
W

is q-exceptional, and there are effective q-exceptional Q-

divisors E+ and E− such that ∆W −∆′
W

= E+−E−. Therefore,

KW +∆W +E− = KW +∆′
W +E+ ∼Q q∗(KY + f∗∆)+E′+E+,

hence κσ(W ,KW+∆W+E−)= κσ(Y ,KY + f∗∆) by Lemma 2.7. We conclude

since κσ(X ,KX +∆)= κσ(W ,KW +∆W )≤ κσ(W ,KW +∆W +E−) by Lemma

2.7.

Definition 2.15. Let (X ,∆) be a klt pair. Let G be an effective Q-Cartier

Q-divisor such that KX +∆+G is pseudoeffective. Then the pseudoeffec-

tive threshold τ(X ,∆;G) is defined as

τ(X ,∆;G)=min{t ∈R | KX +∆+ tG is pseudoeffective}.

Theorem 2.16. Assume the existence of good models for klt pairs in di-

mensions at most n−1.

Let (X ,∆) be a klt pair of dimension n. Let G be an effective Q-Cartier

Q-divisor such that (X ,∆+G) is klt and KX +∆+G is pseudoeffective.

Assume that KX +∆ is not pseudoeffective, i.e. that τ= τ(X ,∆;G)> 0.

Then τ ∈Q, and there exists a good model of (X ,∆+τG). In particular,

κ(X ,KX +∆+τG) ≥ 0.

Proof. We follow closely the proof of [DHP13, Proposition 8.7, Theorem

8.8]. Fix an ample divisor A on X . For any rational number 0 ≤ x ≤ τ

let yx = τ(X ,∆+ xG; A). Note that yτ = 0 and that yx is a positive ratio-

nal number for 0 ≤ x < τ – rationality follows from [BCHM10, Corollary

1.1.7], and positivity from the fact that KX +∆+xG is not pseudoeffective

when x < τ.

Let (xi) be an increasing sequence of non-negative rational numbers

such that lim
i→∞

xi = τ, and denote yi = yxi
. Fix i, let f i : X 99K Yi be the

(KX +∆+ xiG)-MMP with scaling of A, and denote by ∆i, G i and A i the

proper transforms of ∆, G and A on Yi. By [BCHM10, Corollary 1.3.3],

there is an extremal contraction g i : Yi → Zi of fibre type such that

KYi
+∆i + xiG i + yi A i ≡g i

0.



2.3. GOOD MODELS FOR UNIRULED PAIRS 41

Let E j be effective divisors on Yi whose classes converge to the class

of KYi
+∆i +τG i in N1(Yi)R, and let C be a curve on Yi which does not

belong to
⋃

SuppE j and is contracted by g i. Then

(KYi
+∆i +τG i) ·C ≥ 0 and (KYi

+∆i + xiG i + yi A i) ·C = 0.

Therefore, there exists a rational number η i ∈ (xi,τ] such that (KYi
+∆i+

η iG i) ·C = 0, hence

KYi
+∆i +η iG i ≡g i

0

since all contracted curves are numerically proportional. In particular,

if Fi is a general fibre of g i, and ∆Fi
=∆i|Fi

and GFi
=G i|Fi

, then

KFi
+∆Fi

+η iGFi
≡ 0. (2.2)

Denoting

τi =max{t ∈R | KFi
+∆Fi

+ tGFi
is log canonical},

we have xi ≤ τi since KFi
+∆Fi

+xiGFi
is log canonical for every i. If KFi

+
∆Fi

+τGFi
is not log canonical for infinitely many i, then after passing to

a subsequence we can assume that τi < τ for all i, and since xi ≤ τi and

lim xi = τ, we can assume that the sequence (τi) is strictly increasing,

which contradicts [HMX12, Theorem 1.1]. Therefore, KFi
+∆Fi

+τGFi
is

log canonical for i ≫ 0, and then [HMX12, Theorem 1.5] implies that the

sequence (η i) is eventually constant, hence η i = τ for i ≫ 0. In particular,

τ ∈Q.

Now, for the rest of the proof fix any such i ≫ 0 for which η i = τ, and

let (p, q) : W → X ×Yi be a resolution of the map f i.

W

X Yi Zi

p

q

f i g i

We may write

KW +∆W ∼Q p∗(KX +∆+τG)+E,

where ∆W and E are effective Q-divisors without common components.

We want to prove that (X ,∆+τG) has a good minimal model, hence by

Lemmas 2.7 and 2.8, it is enough to show that

κ(W ,KW +∆W )= κσ(W ,KW +∆W ). (2.3)
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If we denote FW = q−1(Fi)⊆W , then q∗(KFW
+∆W |FW

)= KFi
+∆Fi

+τGFi
,

hence by Lemma 2.14 and by (2.2),

κσ(FW ,KFW
+∆W |FW

)≤ κσ(Fi,KFi
+∆Fi

+τGFi
)= 0. (2.4)

When dim Zi = 0, then FW =W and (2.4) implies (2.3) by [Nak04, Corol-

lary V.4.9].

When dim Zi > 0, then KW +∆W is effective over Zi by induction on

the dimension and by [BCHM10, Lemma 3.2.1]. By Theorem 2.5 and by

[Fuj11, Theorem 1.1] there exists a good model (W ,∆W ) 99K (Wmin,∆min)

of (W ,∆W ) over Zi. Let ϕ : Wmin →Wcan be the corresponding fibration to

the canonical model of (W ,∆W ) over Zi. Since KW +∆W is not big over

Zi by (2.4), we have dimWcan < dim X . By [Amb05, Theorem 0.2], there

exists a divisor ∆can on Wcan such that the pair (Wcan,∆can) is klt and

KWmin
+∆min ∼Q ϕ∗(KWcan

+∆can).

Since we assume the existence of good models for klt pairs in dimensions

at most n− 1, we have κ(Wcan,KWcan
+∆can) = κσ(Wcan,KWcan

+∆can) by

Lemma 2.8, and hence (2.3) holds by Lemma 2.7, which concludes the

proof.

Remark 2.17. Let (X ,∆) be a uniruled klt pair such that KX is not pseu-

doeffective and KX+∆ is pseudoeffective. A natural strategy to construct

a good model of (X ,∆) is to run a (KX +τ∆)-MMP, where τ = τ(X ,0;∆),

and which we know terminates with a good model (Y ,∆Y ) by Theorem

2.16. The main problem is that this MMP does not preserve sections

of KX +∆. An instructive example is when KX ∼Q −τ∆, where ∆ is nef

and not big, and for instance ρ(X ) = 2. Then one might want to run the

(KX +(τ−ε)∆)-MMP with scaling of an ample divisor A, where 0< ε≪ 1.

If Nef(X ) 6= Eff(X ), then this MMP ends up with a model on which the

proper transform of KX +∆ is ample, regardless of the Kodaira dimen-

sion of KX +∆.

Theorem 2.18. Assume the existence of good models for klt pairs in di-

mensions at most n−1, and the existence of good models for log smooth

klt pairs (X ,∆) in dimension n such that |KX | 6= ;.

Let (X ,∆) be a log smooth log canonical pair of dimension n and

assume that there exists a Q-divisor D ≥ 0 such that KX +∆ ∼Q D and

Supp∆=SuppD. Then

κ(X ,KX +∆) = κσ(X ,KX +∆).
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Proof. Replacing ∆ by ⌈∆⌉, by Lemma 2.9 we may assume that the di-

visor ∆ is reduced. In the course of the proof, we construct a tower of

proper maps

(T,∆T )
µ→ (W ,∆W )

g→ (Z,∆Z)
f→ (X ′,∆X ′)

π→ (X ,∆),

where π and µ are finite, and f and g are birational, such that for each

X ∈ {T,W , Z, X ′} we have

κ(X ,KX +∆X )= κ(X ,KX +∆) and κσ(X ,KX +∆X )= κσ(X ,KX +∆).

The pair (T,∆T ) will be log smooth with |KT | 6= ; which allows us to

conclude.

Let m be the smallest positive integer such that m(KX+∆) ∼ mD, and

denote G = mD. Let π : X ′ → X be the normalisation of the correspond-

ing m-fold cyclic covering ramified along G. Note that X ′ is irreducible

by [EV92, Lemma 3.15(a)] since m is minimal. Then there exists an

effective Cartier divisor G′ on X ′ such that

π∗G = mG′ and π∗(KX +∆) ∼G′,

and let ∆′ = (G′)red. By the Hurwitz formula, we have

KX ′ +∆′ =π∗(KX +∆),

and the pair (X ′,∆′) is log canonical by Proposition 2.13. By Theorem

2.4, there exists a dlt model f : (Z,∆Z)→ X ′ of (X ′,∆′), and we have

κ(X ,KX +∆)= κ(Z,KZ +∆Z) and κσ(X ,KX +∆) = κσ(Z,KZ +∆Z)

by Lemma 2.7. Denote GZ = f ∗G′. We claim that for every geometric

valuation E′ over Z we have a(E′, Z,∆Z) ∈ Z. To prove the claim, let E′

be a geometric valuation over Z. Then by Proposition 2.13, there exists

a geometric valuation E over X and an integer 1≤ r ≤ m such that

a(E′, Z,∆Z)+1= a(E′, X ′,∆′)+1= r(a(E, X ,∆)+1), (2.5)

where the first equality holds because KZ +∆Z ∼Q f ∗(KX ′ +∆′). Since

(X ,∆) is log smooth and ∆ is reduced, we have a(E, X ,∆) ∈ Z, which

together with (2.5) implies the claim.

Now, if g : W → Z is a log resolution of the pair (Z,∆Z), by the claim

we may write

KW +∆W ∼Q g∗(KZ +∆Z)+EW ∼Q g∗GZ +EW ,
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where ∆W and EW are effective integral divisors with no common com-

ponents. Then

κ(X ,KX +∆)= κ(W ,KW +∆W ) and κσ(X ,KX +∆) = κσ(W ,KW +∆W )

by Lemma 2.7, and the divisor GW = g∗GZ+EW−∆W is Cartier. We have

KW ∼Q GW ,

and we claim that GW ≥ 0. Indeed, if S is a component of ∆W , then

a(S, Z,∆Z) = a(S′, X ′,∆′) = −1. By Proposition 2.13, there exists a geo-

metric valuation S over X and an integer 1≤ r ≤ m such that π(cX ′(S′))=
cX (S) and

a(S′, X ′,∆′)+1= r(a(S, X ,∆)+1).

This implies a(S, X ,∆) = −1, thus cX (S) ⊆ Supp∆ because (X ,∆) is log

smooth. From here we obtain cX ′(S′) ⊆ π−1(Supp∆) = SuppG′, and in

particular S′ ⊆SuppGZ . Therefore multS g∗GZ ≥ 1= multS ∆W , and the

claim follows.

Now, consider the klt pair (KW , 1
2
∆W ). Since KW + 1

2
∆W ∼Q GW + 1

2
∆W ,

KW +∆W ∼Q GW +∆W and Supp(GW + 1
2
∆W )=Supp(GW +∆W ), by Lemma

2.9 we have

κ(X ,KX +∆) = κ(W ,KW + 1
2
∆W ) and κσ(X ,KX +∆) = κσ(W ,KW+ 1

2
∆W ).

Let k be the smallest positive integer such that k(KW −GW ) ∼ 0, and let

µ : T →W be the corresponding k-fold étale covering. Then

KT =µ∗KW ∼µ∗GW ,

and setting ∆T = µ∗(1
2
∆W ), the pair (KT ,∆T ) is klt by Proposition 2.13.

We have

κ(X ,KX +∆) = κ(T,KT +∆T ) and κσ(X ,KX +∆) = κσ(T,KT +∆T )

by Lemma 2.9, hence κ(X ,KX +∆) = κσ(X ,KX +∆) by our assumptions

and by Lemma 2.8.

Remark 2.19. With the notation from the proof of Theorem 2.18, one

can show that the variety Z has canonical singularities, so that Z is not

uniruled by Theorem 1.5, without passing to a log resolution.

Remark 2.20. In the proof of Theorem 2.18, X ′ \∆′ ⊆ X ′ is a toroidal

embedding since the pair (X ,∆) is log smooth [Ara14, Lemma 1.1], i.e. it
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is locally analytically on X ′ isomorphic to an embedding of a torus into a

toric variety. By [AW97, Theorem 0.2], there exists a toroidal resolution

h : (U ,∆U) → (X ′,∆′) and then KU +∆U = h∗(KX ′ +∆′): indeed, locally in

the analytic category both sides of this equation are trivial, which im-

plies that all relevant discrepancies are zero. This is all implicit already

in [KKMSD73]. The pair (U ,∆U) is log smooth, and as in the proof of

Theorem 2.18, one shows that KU is linearly equivalent to an effective

Cartier divisor. Therefore, if one prefers toroidal embeddings, one can

avoid the use of dlt models; however, compare to [dFKX12, Section 5].

Finally we can prove our main results.

Proof of Theorem 2.1. Let (X ,∆) be a uniruled klt pair. By replacing

(X ,∆) by its terminal model, cf. Theorem 2.4(a), we may assume that

the pair (X ,∆) is terminal, and thus that KX is not pseudoeffective by

Theorem 1.5. Let τ = τ(X ,0;∆) = min{t ∈ R | KX + t∆ is pseudoeffective}.

Since KX is not pseudoeffective and KX +∆ is pseudoeffective, we have

0< τ≤ 1. If τ= 1, then we conclude by Theorem 2.16.

Therefore, we may assume that τ < 1, and hence by Theorem 2.16

there exists a Q-divisor Dτ ≥ 0 such that KX +τ∆∼Q Dτ. This yields

KX +∆∼Q D ≥ 0, where D = Dτ+ (1−τ)∆.

In particular, Supp∆⊆ SuppD. Let f : Y → X be a log resolution of the

pair (X ,D). Then we may write

KY +Γ∼Q f ∗(KX +∆)+E,

where Γ and E are effective Q-divisors with no common components,

and Γ = f −1
∗ ∆ since (X ,∆) is a terminal pair. In particular, if we denote

DY = f ∗D+E, then KY +Γ∼Q DY and SuppΓ⊆SuppDY . We have

κ(X ,KX +∆)= κ(Y ,KY +Γ) and κσ(X ,KX +∆) = κσ(Y ,KY +Γ)

by Lemma 2.7, hence by replacing (X ,∆) by (Y ,Γ) and D by DY , we may

assume that (X ,D) is a log smooth pair. Finally, by replacing ∆ by ∆+εD

for 0< ε≪ 1, we may further assume that Supp∆=SuppD. We conclude

by Theorem 2.18 and by Lemma 2.8.

Proof of Theorem A. Let (X ,∆) be a uniruled klt pair. As in the proofs of

Theorems 2.1 and 2.18, there exists a log smooth klt pair (T,∆T ) such

that |KT | 6= ; and

κ(X ,KX +∆) = κ(T,KT +∆T )≥ 0 and κσ(X ,KX +∆)= κσ(T,KT +∆T ).



46 CHAPTER 2. THE EXISTENCE OF GOOD MODELS

In particular, T is not uniruled by Theorem 1.5. By Theorem 2.5, there

exists a log terminal model (T,∆T ) 99K (T ′,∆T ′) of (T,∆T ), hence

κ(T ′,KT ′ +∆T ′)= κσ(T ′,KT ′ +∆T ′)

since we assume the abundance conjecture for non-uniruled pairs. We

conclude by Lemmas 2.7 and 2.8.

Proof of Theorem B. Immediate from Theorem 2.1.

Remark 2.21. Assume that for every smooth variety of dimension n

with KX pseudoeffective we have κ(X ,KX )≥ 0. Then the previous proofs

show that if good models exist for log smooth klt pairs (X ,∆) of dimen-

sion n such that the linear system |KX | is not empty, then good models

exist for klt pairs in dimension n.

Indeed, by Theorem B we only have to show that the assumptions im-

ply the existence of good models for non-uniruled klt pairs in dimension

n. Fix such a pair (X ,∆), and note that we may assume that the pair is

terminal by Theorem 2.4. Then κ(X ,KX ) ≥ 0 by our assumption, hence

there exists an effective divisor D′ such that KX ∼Q D′. In particular, by

denoting D = D′+∆ we have KX +∆ ∼Q D and Supp∆ ⊆ SuppD. As in

the proof of Theorem 2.1, by passing to a log resolution, we may assume

that (X ,D) is log smooth. By replacing ∆ by ∆+εD for 0< ε≪ 1, we may

further assume that Supp∆=SuppD, and we conclude by Theorem 2.18

and by Lemma 2.8.

This leads to the following result.

Lemma 2.22. Let (X ,∆) be a Q-factorial terminal pair and assume that

κ(X ,KX ) ≥ 0. Then there exists a generically finite morphism f : Y → X

from a smooth variety Y and an effective Q-divisor Γ on Y with simple

normal crossings support such that the pair (Y ,Γ) is klt, |KY | 6= ; and

κ(X ,KX +∆) = κ(Y ,KY +Γ) and κσ(X ,KX +∆)= κσ(Y ,KY +Γ).

If ∆= 0, we may additionally assume that Γ= 0.

Proof. The first claim follows from the proof of Theorem 2.1. When ∆= 0,

as in Remark 2.21 we may assume that X is smooth and that there exists

a Q-divisor D ≥ 0 with simple normal crossings support such that KX ∼Q

D′. Setting ∆X = εD and D = D′+∆X for a rational number 0 < ε ≪ 1,

we have KX +∆X ∼Q D and 0<multE ∆X <multE D for every component

E of D. Then with notation from the proof of Theorem 2.18, we obtain
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a generically finite map (W ,∆W ) → (X ,∆X ) such that the pair (W ,∆W ) is

log smooth,

κ(W ,KW+∆W )= κ(X ,KX +∆X ) and κσ(W ,KW+∆W )= κσ(X ,KX +∆X ),

and KW ∼Q GW for some Cartier divisor GW such that – crucially –

SuppGW =Supp(GW +∆W ). In particular, by Lemma 2.9 this implies

κ(W ,KW)= κ(X ,KX ) and κσ(W ,KW)= κσ(X ,KX ).

Finally, one more étale cover allows to conclude as in the proof of Theo-

rem 2.18.
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Chapter 3

The Cone conjecture

3.1 Introduction

The results of this chapter are taken from [LP13, CL14, KKL12].

A Calabi-Yau manifold of dimension n is a projective manifold X

with trivial canonical bundle KX ≃ OX such that H1(X ,OX ) = 0. In par-

ticular, we do not require X to be simply connected. With notation and

definitions from Section 1.5, it is well-known, see for instance [Ogu14,

Proposition 2.4], that the group Bir(X ) is finite if and only if B(X ) is,

and similarly for Aut(X ) and A (X ).

Based on and inspired by recent work of Oguiso [Ogu14] we prove

the following results.

Theorem 3.1. Let X be a Calabi-Yau manifold of Picard number 2. Then

either |A (X )| ≤ 2, or A (X ) is infinite; and either |B(X )| ≤ 2, or B(X ) is

infinite.

In fact, we explicitly calculate the groups A (X ) and B(X ), and for

more detailed information we refer to Section 3.4. The consequences for

the Cone conjectures can be summarized as follows.

Theorem C. Let X be a Calabi-Yau manifold with Picard number 2. If

the group Bir(X ) is infinite, then the Cone conjecture holds on X .

Oguiso in [Ogu14] showed that there are indeed Calabi-Yau three-

folds X with ρ(X ) = 2 and with infinite Bir(X ), see Example 1.7, as well

as hyperkähler 4-folds X with ρ(X )= 2 and with infinite Aut(X ).

In Section 3.2 we discuss several questions around the Cone conjec-

ture in the general setting, which are of independent interest.

49
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3.2 Motivation and discussion

Recall that certain amount of motivation for the Cone conjecture was

given in the introduction, together with the evidence, mostly on surfaces.

Here, we give some further motivation, first with analogy with Fano

varieties, and then some known results on varieties of Calabi-Yau type.

Here, a projective variety X is said to be of Calabi-Yau type if there

exists a Q-divisor ∆≥ 0 such that (X ,∆) is klt and KX+∆≡ 0. It is known

that this condition is equivalent to KX +∆∼Q 0: the case when ∆= 0 and

X has canonical singularities was proved in [Kaw85a, Theorem 8.2], and

the general case is treated in [CKP12, Theorem 0.1].

3.2.1 Fano varieties

We say that a klt pair (X ,∆) is a log Fano pair if −(KX +∆) is ample.

Recall from Chapter 1, that in order to show that “on a Fano manifold

the Cone conjecture holds”, it suffices to prove the following result.

Theorem 3.2. Let (X ,∆) be a log Fano klt pair. Then the cones Nef(X )

and Mov(X ) are rational polyhedral and contained in Eff(X ).

We first need some serious preparation. We will see that Theorem

3.2 is essentially the following statement, once we equip ourselves with

right tools.

Theorem 3.3. Let (X ,∆) be a log Fano klt pair. Then Pic(X )Q ≃ N1(X )Q,

and there is a basis D1, . . . ,Dr of Pic(X )Q such that

(i) Eff(X )⊆
∑
R+D i,

(ii) the ring R(X ;D1, . . . ,Dr) is finitely generated.

Proof. First, we have H i(X ,OX ) = 0 for all i > 0 by the Kawamata-Vieh-

weg vanishing. The long exact sequence in cohomology associated to the

exponential sequence

0→Z→OX →O∗
X → 0

shows that Pic(X )Q = N1(X )Q. Let D1, . . . ,Dr be a basis of Pic(X )Q such

that Eff(X ) ⊆
∑
R+D i, and pick a rational number 0 < ε ≪ 1 such that

A i = εD i − (KX +∆) is ample for every i. Then the ring

R(X ;εD1, . . . ,εDr)= R(X ;KX +∆+ A1, . . . ,KX +∆+ Ar)

is finitely generated by Theorem 1.25, hence the ring R(X ;D1, . . . ,Dr) is

finitely generated by Lemma 1.21.
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Part (i) of the following lemma is [CL13, Lemma 3.8]. Part (ii) is a

result of Zariski and Wilson, cf. [Laz04, Theorem 2.3.15].

Lemma 3.4. Let X be a normal projective variety and let D be a divisor

in DivQ(X ).

(i) If |D|Q 6= ;, then D is semiample if and only if R(X ,D) is finitely

generated and oΓ(D)= 0 for all geometric valuations Γ over X .

(ii) If D is nef and big, then D is semiample if and only if R(X ,D) is

finitely generated.

Proof. If D is semiample, then some multiple of D is basepoint free, thus

R(X ,D) is finitely generated by Lemma 1.21, and all oΓ(D) = 0. Now,

fix a point x ∈ X . If R(X ,D) is finitely generated and ox(D) = 0, then

x ∉B(D) by Theorem 1.23(4), which proves (i).

For (ii), let A be an ample divisor. Then D+εA is ample for any ε> 0,

hence oΓ(D + εA) = 0 for any geometric valuation Γ over X . But then

oΓ(D)= lim
ε→0

oΓ(D+εA) = 0 by Lemma 5.3, so we conclude by (i).

Corollary 3.5. Let X be a normal projective variety and let D1, . . . , Dr be

divisors in DivQ(X ). Assume that the ring R= R(X ;D1, . . . ,Dr) is finitely

generated, and let SuppR =
⋃N

i=1
C i be a finite rational polyhedral sub-

division as in Theorem 1.23(3). Denote by π : DivR(X ) → N1(X )R the nat-

ural projection.

Then there is a set I1 ⊆ {1, . . ., N} such that

SuppR∩π−1
(
Mov(X )

)
=

⋃

i∈I1

C i.

Assume further that SuppR contains an ample divisor. Then there

is a set I2 ⊆ {1, . . . , N} such that the cone SuppR∩π−1
(
Nef(X )

)
equals⋃

i∈I2
C i, and every element of this cone is semiample.

Proof. For every prime divisor Γ on X denote CΓ = {D ∈SuppR | oΓ(D)=
0}. If CΓ intersects the interior of some Cℓ, then Cℓ ⊆ CΓ since oΓ
is a linear non-negative function on Cℓ. Therefore, there exists a set

IΓ ⊆ {1, . . ., N} such that CΓ =
⋃

i∈IΓ C i. Now the first claim follows since

Mov(X ) is the intersection of all CΓ.

For the second claim, note that since SuppR∩π−1
(
Nef(X )

)
is a cone

of dimension dimSuppR, we can consider only maximal dimensional

cones Cℓ. Now, for every Cℓ whose interior contains an ample divisor,

all asymptotic order functions oΓ are identically zero on Cℓ similarly as

above. Therefore, by Lemma 3.4, every element of Cℓ is semiample, and

thus Cℓ ⊆SuppR∩π−1
(
Nef(X )

)
. The claim follows.
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Now Theorem 3.2 follows immediately from Corollary 3.5 once we

take D1, . . . ,Dr to be the basis of Pic(X )Q such that Eff(X ) ⊆
∑
R+D i,

and that the ring R(X ;D1, . . . ,Dr) is finitely generated, which we can

according to Theorem 3.3.

3.2.2 Local shape inside of the big cone

Our goal is to show the following.

Theorem 3.6. Let X be a variety of Calabi-Yau type.

(1) The cone Nef(X )∩Big(X ) is locally rational polyhedral in Big(X ),

and every element of Nef(X )∩Big(X ) is semiample.

(2) The cone Mov(X )∩Big(X ) is locally rational polyhedral in Big(X ).

Part (1) was first proved in [Kaw88, Theorem 5.7]. The problem of

finding the shape of Mov(X )∩Big(X ) was posed in [Kaw88, Problem

5.10]. This was solved in [Kaw97, Corollary 2.7] for 3-folds, and in

[KKL12, Theorem 3.8] in general.

The proof is very similar to that of Theorem 3.2. It is essentially the

following statement.

Theorem 3.7. Let X be a projective Q-factorial variety of Calabi-Yau

type, and let B1, . . . ,Bq be big Q-divisors on X . Then the ring

R(X ;B1, . . . ,Bq)

is finitely generated.

Proof. Let ∆ ≥ 0 be a Q-divisor such that (X ,∆) is klt and KX +∆ ≡ 0,

and write Bi = A i +E i, where each A i is ample and E i ≥ 0. Let ε > 0

be a rational number such that all pairs (X ,∆+εE i) are klt, and denote

A′
i
= εBi − (KX +∆+ εE i). Then each A′

i
is ample since A′

i
≡ εA i, hence

the adjoint ring

R(X ;KX +∆+εE1 + A′
1, . . . ,KX +∆+εEq + A′

q)= R(X ;εB1, . . . ,εBq)

is finitely generated by Theorem 1.25. Therefore R(X ;B1, . . . ,Bq) is fini-

tely generated by Lemma 1.21.

Proof of Theorem 3.6. Let V be a relatively compact subset of the bound-

ary of Nef(X )∩Big(X ), and denote by π : DivR(X )→ N1(X )R the natural

projection. Then we can choose finitely many big Q-divisors B1, . . . ,Bq
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such that V ⊆ π(
∑q

i=1
R+Bi). Theorem 3.7 implies that the ring R =

R(X ;B1, . . . ,Bq) is finitely generated, and hence π−1
(
Nef(X )

)
∩SuppR is

a rational polyhedral cone and its every element is semiample by Corol-

lary 3.5. But then V is contained in finitely many rational hyperplanes.

This shows (1), and the proof of (2) is similar.

3.2.3 Number of good models

The main motivation for the Cone conjecture, in the realm of birational

geometry, is that as a consequence it has finiteness of good models of any

terminal variety. We prove that assertion in this section, together with

some other predictions.

We first note the following most general version of finite generation

of adjoint rings generalising Theorem 1.25, which is the expected conse-

quence of the Minimal Model Program.

Theorem 3.8. Assume the existence of good models for klt pairs in di-

mensions at most n. Let X be a Q-factorial projective variety of dimension

n, and let ∆1, . . . ,∆r be Q-divisors such that all pairs (X ,∆i) are klt.

Then the adjoint ring

R(X ;KX +∆1, . . . ,KX +∆r)

is finitely generated.

Proof. See [DHP13, Theorem 8.10]. A version of this result was proved

in [SC11]. The difference is that the assumptions in [SC11] are stronger:

the full force of the MMP was used, including termination of any se-

quence of flips.

In particular, the finite generation of the adjoint rings is a theorem

without any assumptions in dimensions up to 3.

Definition 3.9. Let (X ,
∑p

i=1
S i) be a log smooth projective pair, where

S1, . . . ,Sp are distinct prime divisors, and let V =
∑p

i=1
RS i ⊆ DivR(X ).

Given a birational contraction f : X 99K Y , let C f (V ) denote the closure

in L (V ) in the standard topology of the set

{∆ ∈ E (V ) | f is a log terminal model of (X ,∆)}.

The following is [DHP13, Theorem 8.10]; a similar result was proved

in [SC11, Theorem 3.4], but as in the proof of Theorem 3.8, the assump-

tions were stronger.
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Theorem 3.10. Assume the existence of good models for klt pairs in di-

mensions at most n. Let (X ,
∑p

i=1
S i) be a log smooth projective pair, where

S1, . . . ,Sp are distinct prime divisors, and let V =
∑p

i=1
RS i ⊆DivR(X ).

Then there exist birational contractions f i : X 99K Yi for i = 1, . . . , k,

such that C f1
(V ), . . . ,C fk

(V ) are rational polytopes and

E (V )=
k⋃

i=1

C f i
(V ).

In particular, E (V ) is a rational polytope.

Together with the relative version of the Cone conjecture [Kaw97],

the relative version of the previous theorem implies finiteness of mini-

mal models up to isomorphism. The following theorem is folklore, but

we include the proof for the benefit of the reader. The proof below came

out of discussions with C. Xu.

Theorem 3.11. Assume the MMP in dimension n and the relative Cone

conjecture in dimensions ≤ n. Let X be a terminal projective variety of

dimension n.

Then the number of minimal models of X is finite up to isomorphism.

Proof. Replacing X by a minimal model, we may assume that KX is

semiample, and let X → S be the canonical model. If Y is another mini-

mal model of X and A ⊆ Y is a very ample divisor over S, then the map

ϕ : X 99KY is an isomorphism in codimension 1, the divisor D =ϕ∗A ⊆ X

is movable over S and Y ≃ ProjS R(X /S,D). Let Π be a fundamental do-

main for the action of Bir(X /S) on the cone Mov(X /S)∩Eff(X /S). Then

there exists g ∈ Bir(X /S) such that g∗D ∈ Π, and we have R(X /S,D) ≃
R(X /S, g∗D) since g is an isomorphism in codimension 1. Replacing D

by g∗D, we may assume that D ∈Π.

Let D1, . . . ,Dr be effective divisors whose classes generate Π and let

S1, . . . ,Sk be all the prime divisors in the support of
∑

D i. Let V =∑p

i=1
RS i ⊆ DivR(X ), and let Π′ ⊆ V be the inverse image of Π under

the natural map V → N1(X )R. Note that D belongs to set Π′∩R+L (V )

since the pair (X ,εD) is klt for some 0 < ε≪ 1. Since KX is trivial over

S, by [SC11, Theorem 3.4] and Theorem 5.9, there are finitely many

cones C i ⊆ V and contractions f i : X 99K Zi for i = 1, . . . , k, such that

Π′∩R+L (V ) =
⋃

C i and if ∆ ∈ C i ∩L (V ), then f i is the ample model

of KX +∆ over S. In particular, there exists a cone C i which contains D,

and hence Y ≃ Zi.
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3.2.4 Effective versus rational

As mentioned in Chapter 1, it seems to be a believed conjecture that

Nef(X )+ =Nef(X )∩Eff(X ),

although it is not clear what the evidence for it is. In Theorem 3.13 we

show that at least one part of it is true, that

Nef(X )∩Eff(X )⊆Nef(X )+.

We need the following result of Shokurov and Birkar, [Bir11, Propo-

sition 3.2].

Theorem 3.12. Let X be a Q-factorial projective variety, let S1, . . . ,Sp be

prime divisors on X and denote V =
⊕p

i=1
RS i ⊆DivR(X ). Then the set

N (V )= {∆ ∈V | (X ,∆) is log canonical and KX +∆ is nef}

is a rational polytope.

Theorem 3.13. Let X be a variety of Calabi-Yau type. Then

Nef(X )∩Eff(X )⊆Nef(X )+.

Proof. Fix D be an effective nef R-divisor, that is, a divisor whose class

is in Nef(X )∩Eff(X ), and let V ⊆ DivR(X ) be the vector space spanned

by all the components D1, . . . ,Dr of D. By replacing D by εD for 0 <
ε≪ 1, we may assume that (X ,D) is a klt pair, and in particular, with

notation from Theorem 3.12, D ∈ N (V ). On the other hand, clearly D ∈∑r
i=1R+D i ⊆V . By Theorem 3.12, the set

N (V )∩
r∑

i=1

R+D i

is a rational polytope, hence D is spanned by nef Q-divisors.

3.3 Preliminaries

In this section we give some basic definitions and gather results which

we need in the rest of this chapter.

Notation 3.14. Assume that a Calabi-Yau manifold X has Picard num-

ber ρ(X ) = 2. We let ℓ1,ℓ2 be the two boundary rays of Nef(X ), and let

m1, m2 be the boundary rays of Mov(X ). We fix non-trivial elements

xi ∈ ℓi and yi ∈ mi.
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Recall the following result [Ogu14, Proposition 3.1].

Proposition 3.15. Let X be a Calabi-Yau manifold of dimension n such

that ρ(X )= 2.

(1) If n is odd, or if one of the ℓi is rational, then every non-trivial

element of A (X ) has order 2.

(2) If one of the mi is rational, then every non-trivial element of B(X )

has order 2.

As a consequence, by using Burnside’s theorem, Oguiso obtains:

Theorem 3.16. Let X be a Calabi-Yau manifold of dimension n such

that ρ(X )= 2.

(1) If n is odd, then Aut(X ) is finite.

(2) If n is even and one of the rays ℓi is rational, then Aut(X ) is finite.

(3) If one of the rays mi is rational, then Bir(X ) is finite.

Proposition 3.20 below makes this result more precise. In contrast

to Theorem 3.16, Oguiso constructed an example of Calabi-Yau manifold

with ρ(X ) = 2 such that Bir(X ) is infinite. In this example both rays mi

are irrational, and we recall it in Example 3.32.

If g is any element of B(X ), then det g =±1 since g acts on the inte-

gral lattice N1(X ). We introduce the notations

A +(X )= {g ∈A (X ) | det g = 1}

and

A −(X )= {g ∈A (X ) | det g =−1};

and similarly B+(X ) and B−(X ). Note that each g ∈ A (X ) restricts to

an action on the set ℓ1 ∪ℓ2, and each g ∈B(X ) restricts to an action on

the set m1 ∪m2. Moreover, since the cone Eff(X ) does not contain lines,

this “restricted" action completely determines g. Additionally, each g ∈
A (X ) is completely determined by gx1 since det g = ±1. Similarly, each

g ∈B(X ) is completely determined by gy1.

We frequently and without explicit mention use the following well-

known lemma, see for instance [Kaw97, Lemma 1.5].

Lemma 3.17. Let X be a Calabi-Yau manifold. Then g ∈ Bir(X ) is an

automorphism if and only if there exists an ample divisor H on X such

that g∗H is ample.
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3.4 Calculating Aut(X ) and Bir(X )

In this section we calculate explicitly the groups A (X ) and B(X ) on a

Calabi-Yau manifold with Picard number 2. We start with some elemen-

tary observations.

Lemma 3.18. Let X be a Calabi-Yau manifold such that ρ(X ) = 2. If

g ∈B−(X ), then g2 = id.

Proof. By assumption there exist α > 0 and β > 0 such that gy1 = αy2

and gy2 = βy1. But then g2 y1 = αβy1 and g2 y2 = αβy2, and we have

g2 ∈ A +(X ). Therefore det(g2) = (αβ)2 = 1, so αβ = 1. Thus, g2 is the

identity.

Lemma 3.19. Let X be a Calabi-Yau manifold such that ρ(X )= 2. Then

B−(X ) = B+(X )g for any g ∈ B−(X ). Similarly, A −(X ) = A +(X )h for

any h ∈A −(X ).

In particular, if B(X ) is infinite, so is B+(X ); and if A (X ) is infinite,

so is A +(X ).

Proof. Let g, g′ ∈ B−(X ). Then g′g = f ∈ B+(X ), and since g2 = id by

Proposition 3.15, we have g′ = f g ∈ B+(X )g. The proof in the case of

automorphisms is identical.

Proposition 3.20. Let X be a Calabi-Yau manifold such that ρ(X ) = 2.

If A (X ) is finite, then |A +(X )| = 1 and |A (X )| ≤ 2. If B(X ) is finite, then

|B+(X )| = 1 and |B(X )| ≤ 2.

In particular, if n is odd, or if one of the ℓi is rational, then |A (X )| ≤ 2.

Proof. Assume that A (X ) is finite, and fix g ∈A (X ). If g ∈A +(X ), then

there exists α > 0 such that gx1 = αx1. Then gm = id for some positive

integer m, hence αm = 1, and therefore α = 1 and A +(X ) = {id}. Now

|A (X )| ≤ 2 by Lemma 3.19. The proof for B(X ) is the same, and the last

claim follows from Theorem 3.16.

Proposition 3.20 can also be directly deduced from the following ele-

mentary lemma, simplifying calculations in [Ogu14].

Lemma 3.21. Let X be an n-dimensional Calabi-Yau manifold with

ρ(X )= 2. Assume that |A +(X )| 6= 1. Then

xm
1 · xn−m

2 = 0

for all m unless n = 2m.

If n = 2m, then xm
1
6= 0 and xm

2
6= 0.
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Proof. Let f be a non-trivial element in A +. Then f x1 = αx1 and f x2 =
α−1x2 with α> 0, α 6= 1. Then

( f x1)m · ( f x2)n−m =α2m−nxm
1 · xn−m

2 .

On the other hand,

( f x1)m · ( f x2)n−m = xm
1 · xn−m

2 ,

hence xm
1
· xn−m

2
= 0 unless n = 2m.

For the second statement, observe that x1 + x2 is an ample class,

hence

0< (x1 + x2)n =
(

n

m

)
xm

1 · xm
2 ,

and therefore the classes xm
i

are non-zero.

Corollary 3.22. Let X be a Calabi-Yau manifold of dimension n such

that ρ(X )= 2. If the group Aut(X ) is infinite, then the following holds.

(1) n is even and the rays ℓi are irrational.

(2) Nef(X )=Eff(X ), and Nef(X )∩Eff(X )=Amp(X ).

(3) cn−1(X )= 0 in H2n−2(X ,Q).

Proof. Claim (1) is Oguiso’s Theorem 2.3.

For the first part of (2), if Nef(X ) 6=Eff(X ), then at least one boundary

ray of Nef(X ) is rational by Theorem 3.6. This contradicts (1). For the

second part of (2), without loss of generality it suffices to show that x1

is not effective. Otherwise, we can write x1 =
∑
δ jD j ≥ 0 as a sum of at

least two prime divisors, since x1 is irrational. But then ℓ1 is not an

extremal ray of the cone Nef(X )=Eff(X ), a contradiction.

For (3), note that |A +(X )| ≥ 2 by Lemma 3.19. Pick a non-trivial

element f ∈ A +(X ), and let α 6= 1 be a positive number such that f x1 =
αx1. Then

αx1 · cn−1(X )= f x1 · cn−1(X )= x1 · cn−1(X )

since the Chern class cn−1(X ) is invariant under f . Thus x1 ·cn−1(X )= 0;

similarly we get x2 · cn−1(X ) = 0. Therefore cn−1(X ) = 0 as {x1, x2} is a

basis of N1(X )R.

Remark 3.23. (1) The same arguments as in Corollary 3.22 yield

ci1
(X ) · . . . · cir

(X )= 0
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if i1 + . . .+ ir = n−1.

(2) We do not know of any example of a simply connected Calabi-Yau

manifold X in the strong sense (i.e. such that Hq(X ,OX ) = 0 for 1 ≤ q ≤
n− 1) of even dimension n such that cn−1(X ) = 0. One might wonder

whether any simply connected irreducible projective manifold X of di-

mension n with ωX ≃OX and cn−1(X )= 0 is a hyperkähler manifold.

In some further cases, the even dimensional case can be treated:

Theorem 3.24. Let X be a Calabi-Yau manifold of even dimension n. If

ρ(X ) = 2 and if c2(X ) can be represented by a positive closed (2,2)-form,

then Aut(X ) is finite.

Proof. Arguing by contradiction, we suppose that there is an automor-

phism f ∈A +(X ) of infinite order, cf. Lemma 3.19. Write n = 2m. Then

xm
1
6= 0 and xm

2
6= 0 by Lemma 3.21.

Suppose that m is even, and write m= 2k. Then

x2k
1 · c2(X )k > 0

by our positivity assumption on c2(X ). On the other hand,

x2k
1 · c2(X )k = ( f x1)2k · c2(X )k =α2kx2k

1 · c2(X )k

since c2(X ) is invariant under f . Since α 6= 1, this is a contradiction.

If m is odd, we write n = 4s+2 and argue with x2s
1
· c2(X )s+1.

Notice that for every projective manifold X of dimension n with nef

canonical bundle, the second Chern class c2(X ) has the following posi-

tivity property (Miyaoka [Miy87]):

c2(X ) ·H1 . . . ·Hn−2 ≥ 0

for all ample line bundles H j.

Concerning bounds for B(X ), we have:

Proposition 3.25. Let X be a Calabi-Yau manifold such that ρ(X ) = 2.

Assume that Nef(X ) * Mov(X ). Then A +(X ) = B+(X ). In particular, if

the dimension of X is odd, then |B(X )| ≤ 2.

Proof. The condition Nef(X )*Mov(X ) implies that one of the rays ℓi is

an extremal ray of Mov(X ). Hence, without loss of generality, we may
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assume that m1 = ℓ1. Let g be a non-trivial element of B+(X ). Then

gℓ1 = gm1 = m1, and m1 is an extremal ray of the cone

R+m1 +R+gℓ2 =R+gℓ1 +R+gℓ2 = gNef(X ).

This implies that gNef(X ) intersects the interior of Nef(X ), and hence

g ∈A (X ) by Lemma 2.4. This proves the first claim.

The second claim then follows from Proposition 3.20.

Theorem 3.26. Let X be a Calabi-Yau manifold such that ρ(X ) = 2.

Then either |A +(X )| = 1 or A +(X )≃Z; and either |B+(X )| = 1 or B+(X )≃
Z.

Proof. Assume that |A +(X )| ≥ 2. For every g ∈ A +(X ), let αg be the

positive number such that gy1 =αg y1, and set

S = {αg | g ∈A +(X )}.

Note that S is a multiplicative subgroup of R∗ and that the map

A +(X )→S , g 7→αg

is an isomorphism of groups. We need to show that S is an infinite cyclic

group.

We first show that S is, as a set, bounded away from 1. Otherwise,

we can pick a sequence (g i) in A +(X ) such that αg i
converges to 1. Fix

two integral linearly independent classes h1 and h2 in N1(X )R. Then

g ih1 converge to h1 and g ih2 converge to h2. Since g ih1 and g ih2 are

also integral classes and N1(X ) is a lattice in N1(X )R, this implies that

g ih1 = h1 and g ih2 = h2 for i ≫ 0, and hence g i = id for i ≫ 0.

Hence, the set S ′ = {lnα | α ∈S } is an additive subgroup of R which

is discrete as a set. Then it is a standard fact that S ′, and hence S , is

isomorphic to Z, cf. [For81, 21.1].

The proof for the birational automorphism group is the same.

3.5 Structures of Nef(X ) and Mov(X )

Proposition 3.27. Let X be a Calabi-Yau manifold such that ρ(X ) = 2.

If A (X ) is finite, then the weak Cone conjecture holds for Nef(X ). If B(X )

is finite, then the weak Cone conjecture holds for Mov(X ).
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Proof. We only prove the statement about the nef cone, since the other

statement is analogous. By Proposition 3.20, we have |A (X )| ≤ 2, hence

we may assume that |A (X )| = 2. Fix an integral class x ∈ Nef(X ), let

g ∈ A −(X ), and consider the class y = x+ gx ∈ Nef(X ). Then y is fixed

under the action of A (X ). Since g acts on N1(X ), both gx and y must be

integral. It is then obvious that Π = ℓ1 +R+y is a fundamental domain

for the action of A (X ) on Nef(X ).

Remark 3.28. If X is a Calabi-Yau manifold of odd dimension such that

ρ(X ) = 2 and Nef(X ) * Mov(X ), then the weak Cone conjecture holds

for Mov(X ). The proof is analogous to that of Proposition 3.27, using

Proposition 3.25.

Proposition 3.29. Let X be a Calabi-Yau manifold such that ρ(X ) =
2. Assume that Nef(X ) ⊆ Mov(X ). Then the Cone conjecture holds for

Nef(X ).

Proof. By assumption, we have Nef(X )⊆Big(X ), and hence, the nef cone

is rational polyhedral by Theorem 3.6. Then argue as in the proof of

Proposition 3.27.

Lemma 3.30. Let X be a Calabi-Yau manifold with ρ(X ) = 2. Assume

that Bir(X ) is infinite. Then Mov(X )∩Eff(X )=Mov(X ).

Proof. The rays of Mov(X ) are irrational by Proposition 3.15, and there-

fore Mov(X ) = Eff(X ) by Theorem 3.6. We cannot have y1 ∈ Eff(X ): oth-

erwise, we can write y1 =
∑
δiD i ≥ 0 as a sum of at least two different

prime divisors, since m1 is irrational. But then m1 is not an extremal

ray of the cone Mov(X ) = Eff(X ), a contradiction. This concludes the

proof.

Theorem 3.31. Let X be a Calabi-Yau manifold with ρ(X ) = 2. If the

group Bir(X ) is infinite, then the Cone conjecture holds on X .

Proof. (i) First we show that the Cone conjecture holds for Nef(X ) in case

Aut(X ) is infinite.

Note that Nef(X )=Eff(X ) and Nef(X )∩Eff(X )=Amp(X ) by Corollary

3.22(2), and in particular we have A (X ) = B(X ). By Lemma 3.19 and

Theorem 3.26, we know that A (X ) =A +(X )∪A −(X ), where A +(X ) ≃Z

and A −(X )=A +(X )g for any g ∈A −(X ).

Assume first that A (X ) =A +(X ) ≃Z. Let h be a generator of A (X ),

let x be any point in Amp(X ), and denote

Π=R+x+R+hx.
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It is then straightforward to check that Π is a fundamental domain for

the action of A (X ) on Amp(X ). Indeed, it is clear that the cones hkΠ

have disjoint interiors, and to see that they cover Amp(X ), it suffices to

notice that the rays R+hkx converge to ℓ1, respectively ℓ2, when k →±∞.

Now assume that A −(X ) 6= ;. Let f be a generator of A +(X ), let τ be

an element of A −(X ), and let x be an integral class in Amp(X ). Set

z1 = x+τx and z2 = z1+ f z1,

and note that z1 and z2 are integral classes since τ and f act on N1(X ).

Denote θ = f τ ∈A −(X ). Then τ2 = θ2 = id by Lemma 3.18, and hence

θτ= ( f τ)τ= f and θ f = θ(θτ)= τ.

This implies

τz1 = z1, θz1 = f z1, θz2 = z2. (3.1)

Now, let

Π=R+z1+R+z2.

Then Π is a rational polyhedral cone, and we claim that Π is a funda-

mental domain for the action of A (X ) on Amp(X ).

z1
f z1

z2

Π

Nef(X )

First, by (3.1) we have

θΠ=R+θz1+R+θz2 =R+ f z1+R+z2,

and thus

Π∪θΠ=R+z1 +R+ f z1.

This implies ⋃

k∈Z
f k(Π∪θΠ)=Amp(X )
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as in the first part of the proof, and therefore,
⋃

g∈A (X )

gΠ=Amp(X ).

Second, assume that there exists λ ∈A (X ) such that intΠ∩ intλΠ 6=
;. Then, possibly after replacing λ by λ−1, this implies that λz1 ⊆ intΠ

or λz2 ⊆ intΠ. If λz1 ⊆ intΠ, then by Lemma 3.19 there exists k ∈ Z

such that λ = f kτ, hence λz1 = f kz1 ∈ intΠ by (3.1), which is clearly

impossible. Similarly, if λz2 ⊆ intΠ, again by Lemma 3.19 there exists

ℓ ∈Z such that λ= f ℓθ, hence λz2 = f ℓz2 ∈ intΠ by (3.1), a contradiction.

This finishes the proof of (i).

(ii) Next we show that the Cone conjecture holds for Nef(X ) if Aut(X )

is finite but Bir(X ) is infinite. Here Nef(X )⊆Mov(X ) by Lemma 3.19 and

Proposition 3.25. Then the Cone conjecture for Nef(X ) holds by Proposi-

tion 3.29.

(iii) Finally, note that Mov(X )∩ Eff(X ) = Mov(X ) by Lemma 3.30,

hence the proof of the Cone conjecture for Mov(X ) is the same as that

of (i) by a simple adaption.

Example 3.32. We recall [Ogu14, Proposition 6.1]. Oguiso constructs a

Calabi-Yau 3-fold X with Picard number 2, obtained as the intersection

of general hypersurfaces in P3 ×P3 of bi-degrees (1,1), (1,1), and (2,2),

which has the following properties: x1 and x2 are rational, y1 = (3+
2
p

2)x2 − x1, y2 = (3+2
p

2)x1 − x2, there are two birational involutions

τ1 and τ2 such that τ1τ2 is of infinite order, and the group Bir(X ) is

generated by Aut(X ) and by τ1 and τ2.

We now show that Example 3.32 is a typical example of a Calabi-

Yau manifold with Picard number 2 and with infinite group of birational

automorphisms.

Theorem 3.33. Let X be a Calabi-Yau manifold of dimension n and with

ρ(X )= 2. Assume that Bir(X ) is infinite.

(1) Let f be a generator of B+(X ), and let α > 0 be the real number

such that f y1 =αy1. Then [Q(α) :Q]= 2.

(2) Let {v,w} be any integral basis of N1(X )R. Then m1 = R+(av+ bw)

and m2 =R+(cv+dw), where a, b, c, d ∈Q(α).

(3) There exist a birational automorphism τ (possibly the identity) such

that τ2 ∈ Aut(X ), and a birational automorphism of infinite order

σ such that the group Bir(X ) is generated by Aut(X ) and by τ and

σ.



64 CHAPTER 3. THE CONE CONJECTURE

Proof. By rescaling y1 and y2, we can assume that

h = y1 + y2

is a primitive integral class in N1(X )R. Denote

h′ = f h =αy1 +
1

α
y2 and h′′ = f 2h =α2 y1 +

1

α2
y2;

these are again primitive integral classes since B(X ) preserves N1(X ).

Then an easy calculation shows that

h+h′′ =
α2 +1

α
h′,

and hence the number α2+1
α

=α+ 1
α

is an integer. Since

y1 =
1

α2−1
(αh′−h),

and y1 is not rational by Theorem 3.16, the number α cannot be rational,

and (1) follows.

For (2) fix an integral basis {v,w} of N1(X )R, and write

y1 = av+bw and y2 = cv+dw.

Then

h = (a+ c)v+ (b+d)w and h′ = (αa+ c/α)v+ (αb+d/α)w.

Write p = a+ c and q = αa+ c/α, and note that p, q ∈ Z. Then an easy

calculation shows that a, c ∈Q(α), and similarly for b and d.

Finally, for (3), note that by Theorem 3.26 and Lemma 3.19, we have

B(X )=B+(X )∪B−(X ), where B+(X ) is infinite cyclic with generator σ′,
and B−(X )=B+(X )τ′ for any τ′ ∈B−(X ). Pick τ,σ ∈Bir(X ) such that

r(τ)= τ′ and r(σ)=σ′,

see Notation 3.14. Since r(τ2) = τ′2 = id by Lemma 3.18, it follows that

τ2 is an isomorphism by [Ogu14, Proposition 2.4]. Now take an element

θ is any element of Bir(X ), then there exist integers k and ℓ such that

r(θ) = σ′kτ′ℓ = r(σkτℓ), and we conclude again by [Ogu14, Proposition

2.4].
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Remark 3.34. One can obtain a similar description of the cone Nef(X )

when the automorphism group of X is infinite.

Basically there are two types of simply connected irreducible Calabi-

Yau manifolds: those which do not carry any holomorphic forms of in-

termediate degree – these manifolds are often simply called Calabi-Yau

manifolds – and hyperkähler manifolds carrying a non-degenerate holo-

morphic 2-form. While in the hyperkähler case the nef cone can be ir-

rational by [Ogu14, Proposition 1.3], it is believed that the nef cone of a

“strict” Calabi-Yau manifold with, say, ρ(X ) = 2, must be rational. The

evidence is provided by the fact that in odd dimensions Aut(X ) is finite,

and then the Cone conjecture would imply the rationality. In even di-

mensions we saw that an infinite automorphism group on a strict Calabi-

Yau manifold with Picard number two is possible only in very special

circumstances.
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Chapter 4

Topological considerations

4.1 Introduction

The results of this chapter are taken from [CL14]. They represent the

first attempt to bound the number of minimal models of a given log

smooth pair of dimension 3 with respect to the underlying topology as

a complex manifold. Our main result is the following.

Theorem 4.1. Let p and ρ be positive integers, and let ε be a positive

rational number. Let (X ,
∑p

i=1
S i) be a 3-dimensional log smooth pair

such that:

(i) X is not uniruled,

(ii) S1, . . . ,Sp are distinct prime divisor which are not contained in

B(KX +
∑p

i=1
aiS i) for all 0≤ ai ≤ 1,

(iii) the divisors S i span DivR(X ) up to numerical equivalence,

(iv) ρ(X )≤ ρ and ρ(S i)≤ ρ for all i = 1, . . . , p.

Let I be the total number of irreducible components of intersections of

each two and each three of the divisors S1, . . . ,Sp.

There exists a constant C that depends only on p, ρ, ε and I such that

for any ∆=
∑p

i=1
δiS i with δi ∈ [ε,1−ε] and (X ,∆) terminal, the number

of log terminal models of (X ,∆) is at most C.

The proof is an easy consequence of our main technical result, The-

orem 4.17 below. An immediate corollary is the following result an-

nounced in Chapter 1.

67
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Theorem D. Let ε be a positive number. Let X be the collection of all log

smooth 3-fold terminal pairs (X ,∆=
∑p

i=1
δiS i) such that:

(1) X is not uniruled,

(2) ε≤ δi ≤ 1−ε for all i,

(3) S1, . . . ,Sp are distinct prime divisor not contained in

B(KX +
p∑

i=1

aiS i)

for all 0≤ ai ≤ 1, and

(4) S i span DivR(X ) up to numerical equivalence.

Then for every (X0,∆0) ∈ X there exists a constant N such that for every

(X ,∆) ∈X of the topological type as (X0,∆0), the number of log terminal

models of (X ,∆) is bounded by N.

In the proofs we use the full force of the 3-dimensional MMP. Our

main tools are Shokurov’s log geography [Sho96] and the techniques in-

volved in the proof of termination of 3-fold flips. The log geography has

played an important role in studying the birational geometry of projec-

tive varieties: for instance, it was recently used to prove the Sarkisov

Program for Mori fibre spaces [HM13]. We believe that a more accurate

study of Fano threefolds combined with the results of this chapter will

give a new insight on the classification of Fano threefolds [Cor09].

4.2 Preliminary results

The size of a set S is denoted by #S. The notation N = N(a1, . . . ,ak)

means that the constant N depends only on the parameters a1, . . . ,ak.

4.2.1 Divisors, valuations and models

We will use the following lemma in Section 4.3.

Lemma 4.2. Let (X ,
∑p

i=1
b iS i) be a log smooth terminal threefold pair,

where S1, . . . ,Sp are distinct prime divisors. Let

f : X 99K X ′
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be a birational contraction to a terminal threefold X ′. Let S′
i
be the proper

transform of S i in X ′ for every i. Let Y be a smooth variety, let g : Y → X

be a birational morphism, and let E ⊆ Y be an ( f ◦ g)-exceptional prime

divisor such that the centre of E on X ′ is a curve. Then

a
(
E, X ′,

p∑

i=1

b iS
′
i

)
= a(E, X ′,0)−

p∑

i=1

b i multE S′
i, (4.1)

where a(E, X ′,0) is an integer such that 0< a(E, X ′,0)< ρ(Y /X ′).

Proof. It is easy to show the identity (4.1). Let T ⊆ X ′ be a general ample

surface, and let W be its proper transform on Y . Since X ′ is terminal and

cX ′(E) is a curve, after possibly replacing X with a smaller open subset

of X , we may assume that T ∩ cX ′(E) is a smooth point of X ′ by [KM98,

Corollary 5.39]. Then the induced map W → T is a birational morphism

and W is obtained from T by blowing up ρ(W /T) times.

Let (p, q) : Z →Y ×X ′ be a resolution of f ◦ g. Then since T is general

we have T ′ := q∗T = q−1
∗ T, and hence

KZ +T ′ = q∗(KX ′ +T)+Γ

for some q-exceptional divisor Γ≥ 0. Restricting this equality to T ′ and

pushing forward to X , we obtain a(E, X ′,0) = a(W ∩ E,T,0), which is

clearly a positive integer. Since T∩cX ′(E) is smooth, it is easy to see from

the discrepancy formulas that a(W ∩E,T,0) ≤ ρ(W /T). Finally, observe

that since T is general, ρ(W /T) is bounded by the number of ( f ◦ g)-

exceptional divisors on Y , hence it is bounded by ρ(Y /X ′).

Lemma 4.3. Let (X ,∆) be a canonical projective pair, and let f : X 99KY

be a (KX +∆)-nonpositive birational contraction. Assume that f does not

contract any component of ∆, and let ∆Y = f∗∆.

Then (Y ,∆Y ) is canonical. Additionally, if f is (KX +∆)-negative and

(X ,∆) is terminal, then (Y ,∆Y ) is terminal.

Proof. This follows easily from the definitions.

The following result is inspired by [KM98, Proposition 2.36] and by

[AHK07, Lemma 1.5].

Lemma 4.4. Let (X ,∆=
∑p

i=1
aiS i) be a 3-dimensional log smooth termi-

nal pair with 0 < ai < 1, and let Z ⊆
∑p

i=1
S i be a union of m curves. Let

I be the total number of points of intersection of each three of the divisors

S1, . . . ,Sp.
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Then there exists a constant N = N(m, p,a1, . . . ,ap, I) such that the

number of geometric valuations E on X with cX (E)⊆ Z and a(E, X ,∆)< 1

is bounded by N. Furthermore, the number of blow-ups along smooth

centres needed to realise the valuations is bounded by N.

Proof. After possibly replacing X by a smaller open subset, we may as-

sume that S i ∩S j ⊆ Z for any distinct i, j ∈ {1, . . . , p}. Since (X ,∆) is log

smooth, by first blowing up intersections of triples of components S i,

and then intersections of each two of them, we obtain a composition of

M = M(m, p, I) blowups f : Y → X such that we may write

KY +Γ= f ∗(KX +∆)+EY ,

where Γ and EY are effective R-divisors with no common components,

(Y ,Γ) is log smooth, EY is f -exceptional and the components of Γ are

pairwise disjoint. In particular, there are at most M prime divisors E

on Y such that a(E, X ,∆) < 1. Also, note that by discrepancy formulas,

the discrepancies a(E, X ,∆) which lie in the interval (0,1) are of the form

2−ai −a j −ak or 1−ai −a j for some pairwise different i, j, k.

It remains to count valuations which are exceptional over Y . Let

g : W → X be a log resolution which dominates Y , and let W ′ → W be

a blowup along a smooth centre with exceptional divisor F. Then it is

easy to see that if a(F, X ,∆) < 1, then cW (F) is the intersection of the

proper transform of some S i and some prime divisor G on Y with 0 <
a(G, X ,∆)< 1.

For each curve C ⊆ Z, if f −1 is an isomorphism at the generic point

of C, let C′ ⊆Y be the unique curve isomorphic to C at the generic point

of C′; otherwise, let C′ be the union of curves on Y which map onto C,

and which are of the form f −1
∗ S i ∩F for some prime divisor F ⊆ Y with

0 < a(F, X ,∆) < 1. Hence, there are at most m+mM such curves, let Z′

be their union, and by shrinking X we may assume that all the curves

in Z′ are smooth. Then, similarly as in [AHK07, Example 1.4], there

are at most N ′ = N ′(m, M,a1, . . . ,ap) valuations over Y with discrepancy

smaller than 1 and whose centres lie in Z′. Now set N = N ′+m.

Let (X ,∆) be a klt pair of dimension n, and let f : X 99KY be a good

model of (X ,∆). Then the prime divisors contracted by f are precisely

those that are contained in B(KX +∆). The following lemma, which will

be extensively used in Section 4.3, establishes a similar link between

ample models and the augmented base loci.

Lemma 4.5. Let X be a smooth projective threefold and let D be a big

Q-divisor on X . Let f : X 99KY be the ample model of D.
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Then B+(D) coincides with the exceptional locus of f .

Proof. The result follows immediately from [BCL13, Theorem A].

In special circumstances, the restriction of an MMP for a pair (X ,∆)

to a prime divisor S on X induces an MMP on S. The following lemma is

just a minor reformulation of [BCHM10, Lemma 4.1], and follows from

the proof of that result.

Lemma 4.6. Let (X ,S +B) be a log smooth pair, where S is a prime

divisor and ⌊B⌋ = 0, and let ϕ : X 99K X ′ be a weak log canonical model of

KX+S+B. Assume that ϕ does not contract S, let S′ =ϕ∗S and B′ =ϕ∗B,

and let σ : S 99K S′ be the induced birational map. Define a divisor Ψ on

S′ by (KX ′ +S′+B′)|S′ = KS′ +Ψ.

If (S,B|S) is terminal, then there is a divisor Ξ≤ B|S such that σ∗Ξ=
Ψ and σ is a weak log canonical model of KS +Ξ.

The next lemma, combined with Lemma 4.6, shows that under cer-

tain assumptions, the restriction of the ample model is again the ample

model on the restriction.

Lemma 4.7. Let (X ,S+B) be a plt pair, where S is a prime divisor and

⌊B⌋ = 0. Assume that D = KX +S+B is semiample, and let f : X → Y be

the corresponding fibration. Assume that f (S) 6=Y and let g = f |S.

Then g is the semiample fibration associated to D|S.

Proof. Fix a sufficiently divisible positive integer m such that f is the

map associated to the linear system |mD|, and let A be an ample Q-

divisor on Y such that D = f ∗A. Then g is the map associated to the lin-

ear system |mD|S , and it is enough to show that |mD|S = |mD|S |. From a

long exact sequence in cohomology, this in turn is equivalent to showing

that the map

H1(X , mD−S) → H1(X , mD)

is injective. Since mD−S = KX +B+(m−1) f ∗A, this follows from [Kol95,

(10.19.3)].

Remark 4.8. The assumption f (S) 6= Y in Lemma 4.7 is necessary. In-

deed, let Y be a curve of genus ≥ 2. Let E be a sufficiently ample

vector bundle of rank 2 on Y , set X = P(E ), and let f : X → Y be the

projection map. Then, by assumption, the line bundle ξ = c1(O (1)) is

very ample, and let S ∈ |2ξ| be a general section. If G = c1(E ), then

KX +S = f ∗(KY +G), and since KY +G is ample, f is the semiample fi-

bration associated to KX +S. However, the general fibre of f meets S in

two points, thus f |S does not have connected fibres.
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4.2.2 Convex geometry

Lemma 4.9. Let C ⊆Rp be a rational polytope which is defined by half-

spaces {
(x1, . . . , xp)∈Rp |

∑p

j=1
αi jx j ≥βi

}

for i = 1, . . . ,ℓ, where αi j and βi are integers. Let M be a positive integer

such that

αi j ≥−M and |βi| < M

for all i, j. Pick a positive real number ε< 1.

Then there exists a positive integer m which depends only on M, p

and ε (but not on C ), such that for every extreme point v of C which is

contained in [ε,1]p, the point mv is integral.

Proof. Since v = (v1, . . . ,vp) is an extreme point of C , after relabelling

we may assume that
∑p

j=1
αi jv j = βi for i = 1, . . . , p. Denoting by A the

(p× p)-matrix (αi j), we may additionally assume that the rows of A are

linearly independent over R. In particular, det A 6= 0 and Cramer’s rule

implies that det A ·v is integral. By assumption, we have

∑

αi j<0

αi j +ε
∑

αi j>0

αi j ≤
p∑

j=1

αi jv j =βi < M,

and since αi j ≥−M, we have

|αi j| <
Mp

ε
for all i, j = 1, . . . , p.

Therefore, det A is bounded by a constant m0 which depends on M, p

and ε, and the claim follows by taking m= m0!.

Definition 4.10. Let P1,P2 ⊆ Rp be polytopes of dimension p. We say

that P i are adjacent if P1∩P2 is a codimension one face of both P1 and

P2.

Let P =
⋃k

i=1
P i be a (not necessarily convex) finite union of poly-

topes. We say that P i and P j are adjacent-connected if there exist in-

dices i1, . . . , iq such that i1 = i, iq = j, and P is
and P is+1

are adjacent for

every s = 1, . . . , q−1. The equivalence classes of this relation are called

adjacent-connected components. If the whole P belongs to one such com-

ponent, we say that P is also adjacent-connected. A face of P is a face

of any P i which is not contained in the interior of P .
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Lemma 4.11. Let Q ⊆ [0,1]p ⊆ Rp be a polytope containing the origin,

and let C1, . . . ,Cℓ be p-dimensional polytopes with pairwise disjoint in-

teriors such that Q =
⋃ℓ

i=1
C i. Let P1, . . . ,Pk ⊆Q be p-dimensional poly-

topes such that

(P i +R
p
+)∩Q ⊆P i (4.2)

for all i. For any subset I ⊆ {1, . . ., k}, denote by R I the closure of the set⋃
i∈I P i\

⋃
j 6∈I P j, and let R0 denote the closure of Q \

⋃k
i=1

P i. Assume

that each adjacent-connected component of every R I and of R0 with re-

spect to the covering Q =
⋃ℓ

i=1
C i is the union of at most m polytopes C i.

Then there exists a constant M = M(k, m) such that ℓ≤ M.

Proof. If x = (x1, . . . , xp) ∈R0 and y= (y1, . . . , yp) ∈Q are such that yi ≤ xi

for all i = 1, . . ., p, then y ∈R0 by (4.2). Therefore, the set R0 is adjacent-

connected, and hence it contains at most m polytopes C i.

For any d = 1, . . . , p, let Jd be the set of codimension d faces of R0

which are not contained in the boundary of Q. Since the polytopes C i

and P j are convex, and R0 contains at most m polytopes C i, it follows

that each P j contains at most m elements of J1, and hence #J1 ≤ mk.

Now, if d > 1, each element of Jd−1 contains at most #Jd−1 elements of

Jd, and therefore #Jd ≤ (#Jd−1)2. This shows that #Jd ≤ (mk)2d−1
.

Since
⋃

i∈I P i

∖⋃
j 6∈I P j =

⋃
i∈I

(
P i

∖⋃
j 6∈I P j

)
,

it is enough to bound the number of adjacent-connected components of

each set P i\
⋃

j 6∈I P j. The statement is trivial for k = 1, hence by induc-

tion we may assume that I = {1, . . ., k} and, without loss of generality,

that i = 1. For any element F ∈J1, set F1 = F ∩P1 and by (4.2) we have

that F1 := (F1+R
p
+)∩Q ⊆P1. Thus, it is easy to see that

P1

∖⋃k
j=2

P j =
⋃

F∈J1

(
F1

∖⋃k
j=2

P j

)
,

hence it is enough to bound the number of adjacent-connected compo-

nents contained in F1\
⋃k

j=2
P j. Again by (4.2), it is enough to bound

the number of adjacent-connected components of F1\
⋃k

j=2
P j, with re-

spect to the induced topology on F1. Note that every codimension d −1

face of an adjacent-connected component of F1\
⋃k

j=2
P j is an element

of Jd. Hence, the number of such adjacent-connected components is

bounded by a constant which depends only on all #Jd, and the lemma

follows.
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4.3 Minimal models of threefolds

Lemma 4.12. Let (X ,S =
∑p

i=1
S i) be a log smooth projective threefold,

where S1, . . . ,Sp are distinct prime divisors, and assume that 0 < ε≤ 1/2

is a rational number such that (X ,εS) is terminal and KX +εS is big. As-

sume that S i *B+(KX +εS) for every i. Let I be the total number of irre-

ducible components of intersections of each two of the divisors S1, . . . ,Sp.

Then for any i, the number of curves contained in

B+(KX +εS)∩S i

is bounded by a constant which depends on ρ(X ), ρ(S i), ε and I.

Proof. Fix an index i. Then there exists a sequence of (KX + εS)-flips

and divisorial contractions

f : X = X0
99K · · · 99K X k → X k+1 (4.3)

such that X k is a log terminal model of (X ,εS) and X k+1 is the ample

model (X ,εS). Since S i *B+(KX+εS), the divisor S i is not contracted by

this MMP by Lemma 4.5. Let S
j

ℓ
and S

j

ℓ denote the proper transform of

Sℓ in X j and its normalisation for every ℓ= 1, . . . , p, and set S j =
∑p

ℓ=1
S

j

ℓ
.

Thus, there are induced sequences

g : S i = S0
i 99K S1

i 99K · · · 99KSk
i 99KSk+1

i

and

g : S i = S
0

i 99K S
1

i 99K · · · 99KS
k

i 99KS
k+1

i

By Lemma 4.5, if C is a curve contained in B+(KX + εS)∩S i, then C ⊆
Exc( f ).

We first assume that g is an isomorphism at the generic point of C.

Then there exists an f -exceptional prime divisor E ⊆ X containing C

such that f (C) = f (E) ⊆ X k+1; otherwise, the exceptional set of f would

be 1-dimensional in a neighbourhood of C, hence g would not be an iso-

morphism at the generic point of C. In particular, since (X k+1,εSk+1) is

canonical and f (C) is contained in Sk+1, it follows that X k+1 is terminal

at the general point of f (C). By Lemmas 4.3 and 4.2, we have

0≤ a(E, X k+1,εSk+1)≤ ρ(X )−εmultE Sk+1 ≤ ρ(X )−εmult f (E) Sk+1,

and in particular

mult f (E) Sk+1
i < ρ(X )/ε.



4.3. MINIMAL MODELS OF THREEFOLDS 75

Therefore, for each f -exceptional divisor E, there are at most ρ(X )/ε

curves in E∩S i which map to f (E). Since there are at most ρ(X /X k+1)

such divisors E, the number of curves C ⊆ B+(KX + εS)∩S i which are

not contracted by g is at most ρ(X )2/ε.

It remains to count the curves C ⊆ B+(KX + εS)∩S i such that g is

not an isomorphism at the generic point of C, and it suffices to count the

curves contracted by each of the maps g j : S
j

i
99K S

j+1

i
. Let g j : S

j

i 99K

S
j+1

i be the induced maps of normalisations, and let N j is the number of

curves extracted by g j. First note that for each curve contracted by g j

there exists at least one curve contracted by g j. Thus, there are at most

ρ(S
j

i )−ρ(S
j+1

i )+ N j curves contracted by g j, and we need to bound the

number ρ(S i)+
∑k

j=0
N j.

If N j 6= 0, then X j
99K X j+1 must be a flip (hence necessarily j < k),

and furthermore, N j is the number of flipped curves contained in S
j+1

i
.

For each such a curve Γ, let EΓ be the exceptional divisor obtained by

blowing up Γ which dominates Γ. Then, by Lemma 4.3, X j+1 is terminal

and therefore it is smooth at the generic point of Γ by [KM98, Corollary

5.39]. Thus,

0≤ a(EΓ, X ,εS)< a(EΓ, X j+1,εS j+1)= 1−εmultΓ S j+1 ≤ 1−ε, (4.4)

where the last inequality follows from multΓ S
j+1

i
≥ 1.

Let V be the set of all valuations which are either f -exceptional

prime divisors on X , or obtained as the exceptional divisor on the blow-

up of a curve in Sℓ∩S i for each ℓ 6= i; then it is clear that #V ≤ ρ(X )+ I.

Viewing each EΓ as a valuation, we first claim that EΓ ∈ V for all Γ.

Indeed, assume that the centre of EΓ on X is a point x ∈ X . If EΓ is

obtained by blowing up x, then as (X ,S) is log smooth, we have

a(EΓ, X ,εS)= 2−εmultx S ≥ 2−3ε≥ 1−ε,

which is a contradiction with (4.4). The case when EΓ is obtained by

blowing up a point on a birational model of X also follows since the dis-

crepancies increase by blowing up, as (X ,εS) is terminal. Therefore,

the centre of EΓ on X is either a divisor or a curve, and then the rest

of the claim follows by analogous computations. In particular, we have

N j ≤ #V ≤ ρ(X )+ I for each j.

Next we want to estimate how many times it happens that N j 6= 0. In

other words, we want to find an upper bound on the number of varieties

X j+1 on which a valuation in V is realised as the exceptional divisor of a
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blow-up of a flipped curve on X j+1. Fix E ∈ V , and consider the number

M
j+1

E
=multE S j+1 ∈N.

If E is realised as the exceptional divisor on the blow-up of a flipped

curve on X j+1, then

0≤ a(E, X j+1,εS j+1)= 1−εM
j+1

E
,

and hence M
j+1

E
≤ 1/ε for all j. Since at each step of (4.3) the discrep-

ancies are increasing, the sequence M
j+1

E
is decreasing. Therefore, each

E ∈ V is realised as an exceptional divisor on the blow-up of a flipped

curve at most 1/ε times, hence

k∑

j=0

N j ≤
ρ(X )+ I

ε
.

Putting all this together, we get that the number of curves contained in

B+(KX +εS)∩S i is at most

ρ(S i)+
ρ(X )2 +ρ(X )+ I

ε
,

which proves the lemma.

Definition 4.13. Let X be a projective Q-factorial variety, let S1, . . . , Sp

be distinct prime divisors on X , and denote V =
∑p

i=1
RS i ⊆ DivR(X ). For

each ε≥ 0, define

Lε(V )=
{ p∑

i=1

aiS i ∈V | ai ∈ [ε,1−ε]
}
.

Similarly as in Definition 1.24, it is easy to check that for each ε, the

set Lε(V ) is a rational polytope.

Lemma 4.14. Let (X ,S =
∑p

i=1
S i) be a log smooth projective threefold,

where S1, . . .Sp are distinct prime divisors, and denote V =
∑p

i=1
R+S i ⊆

DivR(X ). Assume that S j *B+(KX +B) for all B ∈L (V ) such that KX +B

is big and for all j. Let I be the total number of irreducible components

of intersections of each two of the divisors S1, . . . ,Sp.

Then for any j, and for every rational number ε> 0 such that (X ,εS)

is terminal and KX +εS is big, the number of curves contained in

⋃

B∈Lε(V )

B+(KX +B)∩S j

is bounded by a constant which depends on ρ(X ), ρ(S j), p, ε and I.
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Proof. By Lemma 4.12 there exists a constant M = M(ε, I,ρ(X ),ρ(S j))

such that the number of curves in B+(KX +εS)∩S j is bounded by M.

Without loss of generality, we may assume that ε< 1/2. Let

L ′(V )= {B =
∑

aiS i | ai ∈ [ε,1]},

and let B1, . . . ,B2p be the extreme points of L ′(V ). Since Lε(V )⊆L ′(V ),

it follows that

⋃

B∈Lε(V )

B+(KX +B)⊆
2p⋃

i=1

B+(KX +Bi).

Hence, it is enough to bound the number of curves in B+(KX +Bi)∩S j for

every i = 1, . . . ,2p. Fix i, and note that multS j
Bi ∈ {ε,1}. We distinguish

two cases.

If multS j
Bi = 1, set T = ε

∑
k 6= j Sk+S j. Then (S j, (ε

∑
k 6= j Sk)|S j

) is ter-

minal, and let f : X 99K X ′ be the ample model of KX +T. By assumption

and by Lemma 4.5, f does not contract S j and by Lemmas 4.6 and 4.7,

the MMP for (X ,T) induces an MMP for some terminal pair (S j,Θ). In

particular, since S j is a surface, this induced MMP contracts at most

ρ(S j) curves. Further, if a curve C ⊆ B+(KX +T)∩S j is not contracted

by the MMP for (S j,Θ), then similarly as in Lemma 4.12, there exists a

f -exceptional divisor E on X such that f (E)= f (C). Since the pair (X ,T)

is plt, the strict transform S′
j
= f∗S j is normal, hence mult f (C) S′

j
= 1.

Therefore, for each f -exceptional divisor E, there is at most one curve in

E∩S i which maps to f (E). Since there are at most ρ(X /X ′) such divisors

E, the number of such curves C is at most ρ(X ).

It follows that the number of curves inside B+(KX+T)∩S j is bounded

by ρ(S j)+ρ(X ). We have

B+(KX +Bi)∩S j ⊆ (B+(KX +T)∪Supp(Bi −T))∩S j,

⊆
(
B+(KX +T)∪

⋃
k 6= j Sk

)
∩S j,

and hence the number of curves inside B+(KX+Bi)∩S j is at most ρ(S j)+
ρ(X )+ I.

Finally, if multS j
Bi = ε, then, since Bi ≥ εS, we have

B+(KX +Bi)∩S j ⊆
(
B+(KX +εS)∪B+(Bi −εS)

)
∩S j

⊆
(
B+(KX +εS)∪

⋃
k 6= j

Sk

)
∩S j.

Thus, the number of curves in B+(KX +Bi)∩S j is bounded by M+ I and

the result follows.
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Definition 4.15. Let (X ,
∑p

i=1
S i) be a log smooth projective pair of di-

mension n, where S1, . . . ,Sp are distinct prime divisors and denote V =∑p

i=1
RS i ⊆DivR(X ). For each ε≥ 0, define

L can
ε (V )= {∆ ∈Lε(V ) | (X ,∆) is canonical}.

This is easily seen to be a rational polytope, and note that if the di-

mension of L can
ε is p and ∆ is contained in its interior, then (X ,∆) is

terminal.

If f : X 99K Z is a birational contraction, and if C =C f (V )∩L can
ε (V )

a polytope of dimension p which intersects the interior of L can
ε (V ), then

C is called a terminal chamber in V . Now, assume the existence of good

models in dimension n. Then, with notation from Theorem 3.10, there

are finitely many terminal chambers

C i =C f i
(V )∩L can

ε (V ).

Lemma 4.16. Let (X ,
∑p

i=1
S i) be a 3-dimensional log smooth pair such

that KX is pseudoeffective, S1, . . . ,Sp are distinct prime divisor, and let

V =
∑p

i=1
R+S i ⊆ DivR(X ). Assume that S i *B(KX +B) for all B ∈ Lε(V )

and every i = 1, . . . , p. Let F1, . . . ,Fℓ be all the prime divisors contained in

B(KX ), and for every ν⊆ {1, . . .,ℓ}, define

Bν = {B ∈L can
ε (V ) | Fi ⊆B(KX +B) if and only if i ∈ ν}.

Let C i be the terminal chambers in V (cf. Definition 4.15), for 1 ≤ i ≤ k.

Assume that each adjacent-connected component of every Bν with respect

to the covering by C i is the union of at most m polytopes C i.

Then there exists a constant M = M(ℓ, m) such that k ≤ M.

Proof. For any B ∈L can
ε (V ) we have B(KX +B)⊆B(KX )∪B(B), hence by

assumptions, any prime divisor in B(KX +B) must be one of F j. For each

1≤ i ≤ ℓ denote

P i = {B ∈Lε(V ) | Fi *B(KX +B)}.

Then for any ν( {1, . . . ,ℓ}, the set Bν is the closure of
⋃

i∉νP i\
⋃

j∈νP j,

and B{1,...,ℓ} is the closure of L can
ε (V ) \

⋃ℓ
i=1

P i. It is clear that every

P i satisfies the relation (4.2) on page 73, and we conclude by Lemma

4.11.

Theorem 4.17. Let p and ρ be positive integers, and let ε be a positive

rational number. Let (X ,
∑p

i=1
S i) be a 3-dimensional log smooth pair

such that:
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(i) KX is pseudoeffective;

(ii) S1, . . . ,Sp are distinct prime divisor which are not contained in

B(KX +B) for all B ∈L (V ),

(iii) the vector space V =
∑p

i=1
RS i ⊆ DivR(X ) spans DivR(X ) up to nu-

merical equivalence,

(iv) ρ(X )≤ ρ and ρ(S i)≤ ρ for all i = 1, . . . , p.

Let I be the total number of irreducible components of intersections of

each two and each three of the divisors S1, . . . ,Sp.

Then there exists a constant N = N(p,ρ,ε, I) such that the number of

terminal chambers in V which intersect the interior of Lε(V ) is at most

N.

Proof. Let (X ,
∑p

i=1
S i) be a 3-dimensional log smooth pair satisfying the

conditions (i)–(iv). Note that KX + B is big for every B ∈ Lε(V ). Let

C1, . . . ,Cq be all the curves contained in

⋃

B∈Lε(V )

B+(KX +B)∩S.

Then q is bounded by a constant depending on p, ρ, ε and I by Lemma

4.14. By Lemma 4.4, there are finitely many geometric valuations

E1, . . . ,Em such that cX (E j) ⊆
⋃q

i=1
C i for all j and a(E j, X ,B) < 1 for

some B ∈Lε(V ), and m≤ M = M(q,ρ,ε, I).

Let F1, . . . ,Fℓ be all the prime divisors in B(KX ). Then by (ii), for

every B ∈ Lε(V ) the divisorial part of B(KX +B) is contained in
∑

Fi.

Let f = fB : X 99K XB be a log terminal model of (X ,B). For every ν ⊆
{1, . . .,ℓ}, let

Bν = {B ∈Lε(V ) | Fi is contracted by fB if and only if i ∈ ν}.

Then by Lemma 4.16, it is enough to bound the number of terminal

chambers which intersect each adjacent-connected component of each

Bν.

Hence, from now on we fix such ν and we assume, as we may, that

each Bν is adjacent-connected. We will show that the number of ter-

minal chambers which intersect Bν is bounded by a constant depending

only on p, ρ and ε, which is enough to conclude.

Set µ = ρ+ M; then µ depends only on p,ρ, ε and I by above. Let

S be the set of all p-tuples (m1, . . . , mp) ∈ Np such that mi < µ/ε for

every i. Then #S < (µ/ε)p. Let H be the set of all hyperplanes 〈Σ1 −
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Σ2,x〉 = r, where Σ1 6=Σ2 are elements of S and −µ< r <µ is an integer.

Then #H ≤ 2µ
((µ/ε)p

2

)
. The elements of H subdivide Bν into at most

2#H polytopes, and by replacing Bν by any of these polytopes, we may

assume that none of the elements of H intersects the interior of Bν. It

is now enough to show that there is exactly one terminal chamber whose

interior intersects Bν.

Assume that there are two adjacent terminal chambers C ′ and C ′′

whose interiors intersect Bν. Let X ′ and X ′′ be the corresponding log

terminal models, let B =
∑p

i=1
b iS i be a divisor in C ′′, and let B′ and

S′
i
, respectively B′′ and S′′

i
be the proper transforms of B and S i on X ′

and X ′′. Note that X ′ and X ′′ are terminal by Lemma 4.3. Denote b =
(b1, . . . , bp) and let 〈 ,〉 denote the standard scalar product on V . For each

geometric valuation E on X , define

ΣE,C ′ = (multE S′
1, . . . ,multE S′

p), ΣE,C ′′ = (multE S′′
1, . . . ,multE S′′

p).

By the definition of Bν, and possibly by relabelling the chambers,

we may assume that the induced map X ′
99K X ′′ is the flip of (X ′,B′).

Note that X ′ is the ample model of (X ,∆) for any ∆ in the interior of C ′,
and similarly for C ′′. Let C ⊆ X ′′ be a flipped curve, and let E be the

valuation on X ′′ obtained by blowing up C which dominates C. Since X ′′

is smooth at the generic point of C by [KM98, Corollary 5.39], we have

0< a(E, X ,B)< a(E, X ′′,B′′)= 1−〈ΣE,C ′′ ,b〉 ≤ 1. (4.5)

It is easy to see from the discrepancy formulas that then cX (E) belongs to

some of the divisors S1, . . . ,Sp since (X ,B) is terminal and a(E, X ,B)< 1.

Moreover, if B belongs to the interior of C ′′, then X ′′ =ProjR(X ,KX +B).

Hence, cX (E) is contained in B+(KX +B) by Lemma 4.5, and this shows

that E is one of the valuations E1, . . . ,Em.

Furthermore, by Lemma 4.2 we have

0< a(E, X ′,B′)=µE,B −〈ΣE,C ′ ,b〉 (4.6)

for some integer 0<µE,B <µ. Since b i ≥ ε for all i, we have

0≤multE S′
i <µ/ε for all i,

and in particular, ΣE,C ′ ∈S .

Now, if B ∈C ′∩C ′′, then by Lemma 1.27 we have

a(E, X ′,B′)= a(E, X ′′,B′′).
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Together with (4.5), (4.6) and the fact that none of the elements H in-

tersects the interior of Bν, this implies that ΣE,C ′ =ΣE,C ′′ .

On the other hand, if B belongs to the interior of C ′′, then Lemma

1.27 again gives

a(E, X ′,B′)< a(E, X ′′,B′′),

and this together with (4.5) and (4.6) implies µE,B < 1, which is a contra-

diction.

We are now ready to give proofs of our main results.

Proof of Theorem 4.1. The number of terminal chambers inside of the

set

{
∑

aiS i | ai ∈ [ε/2,1−ε/2]}

is bounded by a constant N = N(p,ρ,ε/2) by Theorem 4.17. We set C =
N.

Proof of Theorem D. It is clear that the total number of irreducible com-

ponents of intersections of each two and each three of the components of

∆0 and ∆ is the same under a homeomorphism which preserves the topo-

logical type of (X ,∆0). Therefore, the result follows immediately from

Theorem 4.17.
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Chapter 5

Geography of models

5.1 Introduction

The results of this chapter are taken from [KKL12].

As mentioned in Chapter 1, there are two classes of projective vari-

eties whose birational geometry is particularly interesting and rich. The

first family consists of varieties where the classical Minimal Model Pro-

gram (MMP) can be performed successfully with the current techniques.

The other class is that of Mori Dream Spaces. We now know that, in

both cases, the geometry of birational contractions from the varieties in

question is entirely determined by suitable finitely generated divisorial

rings.

More precisely, let X be a Q-factorial projective variety that belongs

to one of these two classes. Then, there are effective Q-divisors D1, . . . ,Dr

strongly related to the geometry of X such that the multigraded diviso-

rial ring

R= R(X ;D1, . . . ,Dr)

is finitely generated. In the first case, R is an adjoint ring; in the sec-

ond, it is a Cox ring. Then, for any divisor D in the span S =
∑
R+D i, fi-

nite generation implies the existence of a birational map ϕD : X 99K XD ,

where ϕD is a composition of elementary surgery operations that can

be fully understood. Both XD and (ϕD)∗D have good properties: XD is

projective and Q-factorial, and (ϕD)∗D is semiample.

In addition, there is a decomposition of S =
⋃

S j into finitely many

rational polyhedral cones, together with birational maps ϕ j : X 99K X j,

such that the pushforward under ϕ j of every divisor in S j is a nef divisor

on X j. We say that these models ϕ j : X 99K X j are optimal, see Defini-

tion 1.16. By analogy with the classical case, the map ϕ j : X 99K X j is

83



84 CHAPTER 5. GEOGRAPHY OF MODELS

called a D-MMP. After Shokurov, the decomposition of S above is called

a geography of optimal models associated to R.

The goal of this chapter is twofold. On the one hand, we want to

put these two families of varieties under the same roof. That is to say,

we want to identify the maximal class of varieties and divisors on them

where a suitable MMP can be performed. On the other hand, we want to

understand why this class is the right one, i.e. what the key ingredients

that make the MMP work are.

Let D be a Q-divisor on a variety X in one of the two families above.

The D-MMP has two significant features, which we would like to extend

to a more general setting:

(i) all varieties in the MMP are Q-factorial,

(ii) the section ring R(X ,D) is preserved under the operations of the

MMP.

Condition (ii) is by now well understood: contracting maps that preserve

sections of D are D-nonpositive. Somewhat surprisingly, preserving Q-

factoriality is the main obstacle to extending the MMP to arbitrary vari-

eties X and divisors D, even when the rings R(X ,D) are finitely gener-

ated; this is explained in Section 5.3.

As mentioned in Chapter 1, we introduce the notion of gen divisors,

see Definition 1.20. Ample divisors are examples of gen divisors. As

we explain in Section 5.3, in the situations of interest to us, these form

essentially the only source of examples: indeed, all gen divisors there

come from ample divisors on the end products of some MMP. However,

one should bear in mind that semiample divisors are not necessarily gen.

As announced in Chapter 1, the main result of this chapter is the

following.

Theorem E. Let X be a projective Q-factorial variety, let D1, . . . , Dr be

effective Q-divisors on X , and assume that the numerical classes of D i

span N1(X )R. Assume that the ring R(X ;D1, . . . ,Dr) is finitely generated,

that the cone
∑
R+D i contains an ample divisor, and that every divisor in

the interior of this cone is gen.

Then there is a finite decomposition

∑
R+D i =

∐
Ni

into cones having the following properties:

(1) each Ni is a rational polyhedral cone,
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(2) for each i, there exists a Q-factorial projective variety X i and a bi-

rational contraction ϕi : X 99K X i such that ϕi is a good model for

every divisor in Ni.

Our work has been influenced by several lines of research. The ori-

ginal idea that geographies of various models are the right thing to

look at is due to Shokurov [Sho96], and the first unconditional results

were proved in [BCHM10]. Similar decompositions were considered in

the context of Mori Dream Spaces by Hu and Keel [HK00], and as we

demonstrate here, these are closely related to the study of asymptotic

valuations in [ELM+06]. Theorem E reproves and generalises some of

the main results from these papers. We obtain in Corollary 5.21 the

finiteness of models due to [BCHM10] by using the main theorem from

[CL12]. Further, in Corollary 5.22 we prove a characterisation of Mori

Dream Spaces in terms of the finite generation of their Cox rings due to

[HK00] without using GIT techniques.

We spend a few words on the organisation of the chapter. Section 5.2

sets the notation and gathers some preliminary results. In Section 5.3,

we show the existence of a decomposition
∑
R+D i =

∐
Ai similar to that

from Theorem E, where all divisors in a given chamber Ai have a com-

mon ample model, see Theorem 5.9. We study the geography of ample

models. The main drawback of this decomposition is that the corre-

sponding models are not Q-factorial in general. Moreover, we show in

Example 5.14 that the conditions of Theorem 5.9 are not sufficient to

ensure the existence of optimal models as in Theorem E. We explain

why the presence of gen divisors is essential to the proof of Theorem E.

However, we give a short proof that some of these models are indeed

Q-factorial in the case of adjoint divisors in Theorem 5.12.

In Section 5.4, we define what is meant by the MMP in our setting; it

is easy to see that this generalises the classical MMP constructions. We

then prove Theorem 5.19, which is a strengthening of Theorem E. The

main technical result is Theorem 5.17, and the presence of gen divisors

is essential to its proof. We mention here that this reveals the philo-

sophical role of the gen condition: it enables one to prove a version of

the classical Basepoint free theorem, which is why we can then run the

Minimal Model Program and preserve Q-factoriality in the process. We

end the chapter with several corollaries that recover quickly some of the

main results from [BCHM10] and [HK00].



86 CHAPTER 5. GEOGRAPHY OF MODELS

5.2 Preliminary results

Asymptotic valuations. The following definition is due to Nakayama.

Definition 5.1. Let X be a normal projective variety, let D be an R-

Cartier divisor such that |D|R 6= ;, and let Γ be a geometric valuation

over X . If D is a big divisor, we define

Nσ(D)=
∑

Γ oΓ(D) ·Γ and Pσ(D)= D−Nσ(D),

where the sum runs over all prime divisors Γ on X .

Remark 5.2. On a surface X , the construction above gives the classi-

cal Zariski decomposition: this is a unique decomposition D = Pσ(D)+
Nσ(D), where Pσ(D) is nef, and Nσ(D) =

∑
γiΓi is an effective divisor

such that Pσ(D) ·Γi = 0 for all i, and the matrix (Γi ·Γ j) is negative defi-

nite. We use this characterisation in Example 5.14.

Lemma 5.3. Let X be a Q-factorial projective variety, let D be a big R-

divisor, and let Γ be a prime divisor. Then oΓ(D) depends only on the

numerical class of D. The function oΓ is homogeneous of degree one,

convex and continuous on Big(X ). The formal sum Nσ(D) is an R-divisor,

the divisor Pσ(D) is movable, and for any R-divisor 0 ≤ F ≤ Nσ(D) we

have Nσ(D − F) = Nσ(D)− F. If E ≥ 0 is an R-divisor on X such that

D−E ∈Mov(X ), then E ≥ Nσ(D).

Proof. See [Nak04, §III.1].

In certain situations we have more information on the divisor Pσ(D).

Lemma 5.4. Let X be a Q-factorial projective variety, and let D be a big

Q-divisor on X . Assume that the cone Mov(X ) is rational polyhedral.

Then Pσ(D) is a Q-divisor, and R(X ,D) is finitely generated if and

only if R(X ,Pσ(D)) is finitely generated.

Proof. Let Γi be the components of Nσ(D), and denote

H = D−
∑

R+Γi and G = Pσ(D)−
∑

R+Γi.

Then we have Mov(X )∩H ⊆G by Lemma 5.3. Since Mov(X )∩H is an

intersection of finitely many rational half-spaces, and as Pσ(D) ∈Mov(X )

is an extremal point of G , we conclude that Pσ(D) is a Q-divisor.

For the second statement, we may assume that D is an integral di-

visor and that |D| 6= ;, so the claim follows from Pσ(mD) ≥Mob(mD) for

every positive integer m.
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The proof of the following lemma is analogous to that of [CL13, Lem-

ma 5.2], and it will be used in Section 5.4 to ensure that a certain MMP

terminates.

Lemma 5.5. Let f : X 99K Y be a birational contraction between projec-

tive Q-factorial varieties, and let C ⊆ DivR(X ) be a cone such that f is

D-nonpositive for all D ∈C . Let Γ be a geometric valuation on k(X ).

Then oΓ is linear on C if and only if it is linear on the cone f∗C ⊆
DivR(Y ).

Proof. Let (p, q) : W → X ×Y be a resolution of f . Then for every D ∈C

we have p∗D = q∗ f∗D+ED , where ED ≥ 0 is a q-exceptional divisor. This

implies that f∗ restricts to an isomorphism between |D|R and | f∗D|R.

Denote

VD = {DX −D | DX ∈ |D|R} and WD = {DY − f∗D | DY ∈ | f∗D|R}.

By the above, we have the isomorphism f∗|VD
: VD ≃ WD , and we also

have multΓ PX =multΓ f∗PX for every PX ∈VD by [CL13, Lemma 5.1(2)].

Therefore

oΓ(D)−multΓ D = inf
PX∈VD

multΓ PX

= inf
PX∈VD

multΓ f∗PX = oΓ( f∗D)−multΓ f∗D,

hence the function oΓ(·)− oΓ
(
f∗(·)

)
: C → R is equal to the linear map

multΓ(·)−multΓ f∗(·). The lemma follows.

Finite generation and the stable base locus. As Example 5.6 below

shows, the stable base locus and finite generation of section rings are

not, in general, numerical invariants. However, we prove in Lemma

5.7 that under some finite generation hypotheses, the stable base loci of

numerically equivalent big divisors coincide.

Example 5.6. We recall [Laz04, Example 10.3.3]. Let B be a smooth

elliptic curve, and let A be an ample divisor of degree 1 on B. Let X =
P(OB⊕OB(A)) be a projective bundle with the natural map p : X → B. Let

P1 be a torsion divisor on B, let P2 be a non-torsion degree 0 divisor on

B, and consider L i =OX (1)⊗ p∗OB(Pi). Then L1 and L2 are numerically

equivalent nef and big line bundles with ;=B(L1) 6=B(L2), and R(X ,L1)

is finitely generated while R(X ,L2) is not by Lemma 3.4(2).
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Lemma 5.7. Let X be a Q-factorial projective variety, and let D1 and D2

be big Q-divisors such that D1 ≡ D2. Assume that the rings R(X ,D i) are

finitely generated, and consider the maps ϕi : X 99KProjR(X ,D i).

Then we have B(D1)=B(D2), and there is an isomorphism

η : ProjR(X ,D1)→ProjR(X ,D2)

such that ϕ2 = η◦ϕ1.

Proof. Since finite generation holds, we have B(D i)= {x ∈ X | ox(D i)> 0},

so the first claim follows immediately from Lemma 5.3.

For the second claim, by passing to a resolution and by Theorem 1.23,

we may assume that there is a positive integer k such that Mob(kD i) are

basepoint free, and Mob(pkD i) = pMob(kD i) for all positive integers p.

Note that then Pσ(D i)= 1
k

Mob(kD i), and that

Pσ(D1)≡ Pσ(D2) (5.1)

since Nσ(D1) = Nσ(D2) by Lemma 5.3. Thus ϕi is given by the linear

system |kpPσ(D i)| for some p ≫ 0. But then (5.1) shows that ϕ1 and ϕ2

contract the same curves, which implies the claim.

5.3 Geography of ample models

In this section we study the geography of ample models associated to a

finitely generated divisorial ring R = R(X ;D1, . . . ,Dr). More precisely,

there is a decomposition SuppR=
∐

Ai into finitely many chambers to-

gether with contracting maps ϕi : X 99K X i, such that ϕi is the ample

model for every divisor in Ai. We study these ample models in the spe-

cial case of adjoint divisors; then, the varieties X i are Q-factorial when

the numerical classes of the elements of Ai span N1(X )R. This is a highly

desirable feature which we would like to preserve in the general case.

We then formally introduce the gen condition, and show – both by anal-

ysis and by example – that it is necessary in order to perform a Minimal

Model Program in a more general setting.

We first recall the following important result [Rei80, Proposition 1.2].

We follow closely the proof of [Deb01, Lemma 7.10].

Lemma 5.8. Let X be a smooth variety and let D be a big divisor on

X . Assume that, for every positive integer m, the divisor Mm =Mob(mD)

is basepoint free, that Mm = mM1, and that Fix |D| has simple normal

crossings. Let ϕ : X →Y be the semiample fibration associated to M1.
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Then every component of Fix |D| is contracted by ϕ. In particular, we

have R(X ,D)≃ R(Y ,ϕ∗D).

Proof. Denote n = dim X . We may assume that ϕ is the morphism asso-

ciated to M1, and then OX (M1) = ϕ∗OY (1) for a very ample line bundle

OY (1) on Y . Let Γ be a component of Fix |D|. We need to show that

h0(ϕ(Γ),Oϕ(Γ)(m))≤O(mn−2).

Since OX (Mm)=ϕ∗OY (m) and the natural map Oϕ(Γ) →ϕ∗OΓ is injec-

tive, we have

h0(ϕ(Γ),Oϕ(Γ)(m))≤ h0(ϕ(Γ),OY (m)⊗ϕ∗OΓ)= h0(Γ,OΓ(Mm)). (5.2)

Write Γ|Γ ∼ G+−G−, where G+,G− ≥ 0 are Cartier divisors on Γ. Con-

sider the exact sequences

0→ H0(Γ, Mm|Γ−G−)→ H0(Γ, Mm|Γ)→ H0(G−, Mm|G−) (5.3)

and

H0(X , Mm)→ H0(X , Mm +Γ)→ H0(Γ, (Mm +Γ)|Γ)→ H1(X , Mm). (5.4)

Since Fix |mD| = mFix |D|, the divisor Γ is a component of Fix |mD|,
hence the first map in (5.4) is an isomorphism and the last map in (5.4)

is an injection. Therefore, from (5.2), (5.3) and (5.4) we have

h0(ϕ(Γ),Oϕ(Γ)(m))≤ h0(Γ, Mm|Γ)

≤ h0(Γ, Mm|Γ−G−)+h0(G−, Mm|G−)

≤ h0(Γ, (Mm +Γ)|Γ)+h0(G−, Mm|G−)

≤ h1(X , Mm)+h0(G−, Mm|G−).

As h0(G−, Mm|G−)≤O(mn−2) for dimension reasons, it is enough to show

that h1(X , Mm) ≤ O(mn−2). To this end, consider the Leray spectral se-

quence

Hp(Y ,R1−pϕ∗OX (Mm))⇒ H1(X ,OX (Mm)).

The terms H1(Y ,ϕ∗OX (Mm)) = H1(Y ,OY (m)) vanish for m ≫ 0 by Serre

vanishing, so we need to prove

h0(Y ,R1ϕ∗OX (Mm))≤O(mn−2). (5.5)

Let U ⊆ Y be the maximal open subset over which ϕ is an isomorphism.

By [Har77, III.11.2], for each m the sheaf R1ϕ∗OX (Mm) is supported on

the set Y \U of dimension at most n−2, hence

χ(Y ,R1ϕ∗OX (Mm))≤O(mn−2).

But by Serre vanishing again, all the higher cohomology groups of the

sheaf R1ϕ∗OX (Mm) vanish for m≫ 0, and this implies (5.5).
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The following is the main result of this section – the geography of

ample models.

Theorem 5.9. Let X be a projective Q-factorial variety, and let C ⊆
DivR(X ) be a rational polyhedral cone such that the ring R = R(X ,C )

is finitely generated. Assume that SuppR contains a big divisor. Then

there is a finite decomposition

SuppR=
∐

Ai

into cones such that the following holds:

(1) each Ai is a rational polyhedral cone,

(2) for each i, there exists a normal projective variety X i and a rational

map ϕi : X 99K X i such that ϕi is the ample model for every D ∈Ai,

(3) if A j ⊆ Ai, then there is a morphism ϕi j : X i → X j such that the

diagram

X X i

X j

ϕi

ϕ j ϕi j

commutes.

(4) if Ai contains a big divisor, then ϕi is a semiample model for every

D ∈Ai.

Proof. Let SuppR =
⋃

C i be a finite rational polyhedral decomposition

as in Theorem 1.23, and let Ai be the relative interior of C i for each i.

We show that this is the required decomposition.

Let f : X̃ → X be a resolution and let d be a positive integer as in

Theorem 1.23. For each i, fix D i ∈Ai ∩Div(X ), and denote

Mi =Mob f ∗(dD i) and Fi =Fix | f ∗(dD i)|.

Then Mi is basepoint free, and let ψi : X̃ → X i be the semiample fibration

associated to Mi. Let ϕi : X 99K X i be the induced map.

X̃

X X i

ψi
f

ϕi



5.3. GEOGRAPHY OF AMPLE MODELS 91

Claim 5.10. Assume that A j ⊆ Ai, and let C ⊆ X̃ be a curve such that

Mi ·C = 0. Then M j ·C = 0. In other words, all curves contracted by ψi

are contracted by ψ j.

Indeed, since Ai is relatively open, there exist a divisor D◦ ∈ Ai ∩
Div(X ) and positive integers k i, k j, k◦ such that k iD i = k◦D◦+ k jD j. By

the definition of f and d, the divisor M◦ =Mob f ∗(dD◦) is basepoint free,

and we have k iMi = k◦M◦+k jM j. In particular, if C ⊆ X̃ is a curve such

that Mi ·C = 0, then M◦ ·C = M j ·C = 0, which shows the claim.

The claim immediately implies that ϕ j =ϕi j ◦ϕi for some morphism

ϕi j : X i → X j, which shows (3). In particular, when i = j and since the

divisors D i are arbitrary, this shows that the definition of ϕi is indepen-

dent of the choice of D i up to isomorphism.

Finally, we prove (2) and (4). For any j, pick an index i such that A j ⊆
Ai and Ai contains a big divisor, and let E be the sum of all f -exceptional

prime divisors. Since Mob( f ∗(dD i)+ E) = Mi and Fix | f ∗(dD i)+ E| =
Fi +E, the divisors Fi and E are ψi-exceptional by Lemma 5.8, and in

particular, ϕi is a contraction.

Let D be any divisor in A j; without loss of generality, we may assume

that D = D j. Since all functions oΓ are linear on Ai, we have SuppF j ⊆
SuppFi, hence F j is ψi-exceptional by the argument above. As M j =
ψ∗

j
OX j

(1), by (3) we have

f ∗(dD j)=ψ∗
i (ϕ∗

i jOX j
(1))+F j,

and the divisor (ϕi)∗(dD j) = (ψi)∗M j = ϕ∗
i j

OX j
(1) is basepoint free. We

conclude that ϕi is a semiample model for D j, and ϕ j is the ample model

for D j.

An immediate corollary is the following result from [HK00]; we prove

the converse statement in the next section.

Corollary 5.11. Let X be a Q-factorial projective variety. If X is a Mori

Dream Space, then its Cox ring is finitely generated.

Proof. We first show that the divisorial ring R(X ,Mov(X )) is finitely gen-

erated. Indeed, with notation from Definition 1.15, we have that

Mov(X )=
⋃

C j, where C j = f ∗j Nef(X j),

and hence it is enough to show that each ring R(X ,C j) ≃ R(X j,Nef(X j))

is finitely generated. But this is clear because each Nef(X j) is spanned

by finitely many semiample divisors.



92 CHAPTER 5. GEOGRAPHY OF MODELS

Let Fi be all the faces of all C j with the property that Fi ⊆ ∂Mov(X )

and Fi∩Big(X ) 6= ;. Let ϕi : X 99K X i be the ample models associated to

interiors of Fi, cf. Theorem 5.9, and let E ik be the exceptional divisors

of ϕi. Denote Di = Fi +
∑

kR+E ik, and note that each Di is a rational

polyhedral cone.

We claim that

Eff(X )=Mov(X )∪
⋃

i
Di.

To see this, let D ∈ Big(X )\Mov(X ) be a Q-divisor. Then Pσ(D) is a big

Q-divisor which belongs to ∂Mov(X ) by Lemma 5.4, and hence the ring

R(X ,D) is finitely generated by the above. There is a face Fi0
which

contains Pσ(D) in its relative interior, and ϕi0
is the ample model of

Pσ(D) by Theorem 5.9. The divisor Nσ(D) is contracted by ϕi0
by Lemma

5.8, and thus D ∈Di0
. Therefore, we have

Big(X )⊆Mov(X )∪
⋃

i
Di,

and by taking closures we obtain Eff(X ) ⊆ Mov(X )∪
⋃

i Di. The converse

inclusion is obvious.

In particular, the cone Eff(X ) is rational polyhedral, and the ring

R(X ,Eff(X )) is a Cox ring of X . Fix an index i and pick generators

G1, . . . ,Gp of Di. It is enough to show that the ring R(X ;G1, . . . ,Gp) is

finitely generated. The map ϕi is a semiample model for each Gℓ by

Theorem 5.9(4), and thus Gℓ = ϕ∗
i
Mℓ + Fℓ, where Mℓ is a semiample

Q-divisor on X i and Fℓ is ϕi-exceptional. But then

R(X ;G1, . . . ,Gp)≃ R(X i; M1, . . . , Mp),

and the finite generation follows.

The next theorem shows that in the classical setting of adjoint di-

visors, some of the ample models X i from Theorem 5.9 are Q-factorial.

This is a known consequence of the classical Minimal Model Program

[HM13, Theorem 3.3], however here we obtain the result directly.

Theorem 5.12. Let X be a projective Q-factorial variety, and let ∆1, . . . ,∆r

be big Q-divisors such that all pairs (X ,∆i) are klt. Let

R= R(X ;KX +∆1, . . . ,KX +∆r),

and note that R is finitely generated by Theorem 1.25. Assume that

SuppR contains a big divisor. Then there exist a finite decomposition

SuppR=
∐

Ai and maps ϕi : X 99K X i as in Theorem 5.9, such that:
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(i) if ϕi is birational, then X i has rational singularities,

(ii) if the numerical classes of the elements of Ai span N1(X )R, then X i

is Q-factorial.

Proof. We assume the notation from the proof of Theorem 5.9. For (i),

pick a big Q-divisor ∆ such that (X ,∆) is klt and KX +∆ ∈ Ai. Then

(X i, (ϕi)∗∆) is also klt because ϕi is (K +∆)-nonpositive, hence X i has

rational singularities.

We now show (ii). Let B be a Weil divisor on X i, and let B̃ be its

proper transform on X̃ . As X̃ is smooth, B̃ is Q-Cartier. Let E1, . . . ,Ek

be all the f -exceptional prime divisors on X̃ . Since f is a resolution, we

have

N1(X̃ )R = f ∗N1(X )R⊕
⊕k

j=1
R[E j]. (5.6)

Let B1, . . . ,Br be integral divisors in Ai whose numerical classes gener-

ate N1(X )R. Then, by (5.6) there are rational numbers p j, r j such that

B̃ ≡
∑

p j f ∗(dB j)+
∑

r jE j.

Denote

M =
∑

p j Mob f ∗(dB j) and F =
∑

p j Fix | f ∗(dB j)|+
∑

r jE j.

By Theorem 5.9(4), there exist ample Q-divisors A j on X i such that

Mob f ∗(dB j)=ψ∗
i
A j, hence M ≡X i

0. Therefore

B̃−F ≡X i
0.

Observe that SuppF ⊆ Supp(Fi +
∑

E j), and that the divisor Fi +
∑

E j is

ψi-exceptional by Lemma 5.8. By (i) and by [KM92, Proposition 12.1.4],

there is a divisor T ∈ DivQ(X i) such that B̃− F ∼Q ψ∗
i
T, and thus the

divisor B = (ψi)∗B̃ ∼Q T is Q-Cartier.

It is natural to ask whether the conclusion on Q-factoriality from

Theorem 5.12 can be extended to the general situation of Theorem 5.9.

We argue below that such a statement is, in general, not true, and we pin

down precisely the obstacle to Q-factoriality. The astonishing conclusion

is that, in some sense, Q-factoriality of ample models is essentially a

condition on the numerical equivalence classes of the divisors in SuppR.

With the notation from Theorem 5.9, what we are aiming for is the

following statement. We would like to have a (possibly finer) decompo-

sition SuppR =
∐

Ni together with birational maps ϕi : X 99K X i such

that ϕi is an optimal model for every D ∈ Ni, and in particular, every
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X i is Q-factorial. It is immediate that, if the numerical classes of the

elements of Ni span N1(X )R, then ϕi is also the ample model for every

D ∈Ni.

The following easy result gives us a necessary condition for the ample

model of a big divisor to be Q-factorial.

Lemma 5.13. Let X be a Q-factorial projective variety, and let D be a big

Q-divisor such that the ring R(X ,D) is finitely generated, and the map

ϕ : X 99K ProjR(X ,D) is D-nonpositive. Let D′ be a Q-divisor such that

D ≡ D′.
Then the ring R(X ,D′) is finitely generated if and only if the Q-divisor

ϕ∗D′ is Q-Cartier.

Proof. If R(X ,D′) is finitely generated, then by Lemma 5.7, ϕ is equal

to the map X 99K ProjR(X ,D′) up to isomorphism. Therefore ϕ∗D′ is

ample, and in particular Q-Cartier.

We now prove the converse implication. Denote Y =ProjR(X ,D) and

let (p, q) : W → X ×Y be a resolution of ϕ. By Lemma 1.28, we have

p∗(D−D′)= q∗ϕ∗(D−D′),

hence ϕ∗D ≡ ϕ∗D′. Since ϕ∗D is ample, so is ϕ∗D′, hence the ring

R(Y ,ϕ∗D′) is finitely generated. By Lemma 5.8, the divisor E = p∗D −
q∗ϕ∗D is effective and q-exceptional, and since E = p∗D′− q∗ϕ∗D′, we

have R(X ,D′)≃ R(Y ,ϕ∗D′).

Therefore, in the notation of Lemma 5.13, if the ample model of D

is Q-factorial, then the ring R(X ,D′) is finitely generated for every Q-

divisor D′ in the numerical class of D. This motivates the key definition

of gen divisors as in Definition 1.20. There are three main examples of

gen divisors of interest to us:

(i) ample Q-divisors are gen,

(ii) every adjoint divisor KX +∆+ A is gen, where A is an ample Q-

divisor on X , and the pair (X ,∆) is klt; indeed, this follows from

Theorem 1.25,

(iii) if Pic(X )Q = N1(X )Q, then every divisor with a finitely generated

section ring is gen.

As we show in Section 5.4, having lots of gen divisors is essentially equiv-

alent to being able to run a Minimal Model Program. We have seen above

that this is a necessary condition for the models to be optimal, and in
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particular Q-factorial. We show in Theorem 5.19 that, remarkably, this

is also a sufficient condition. This, together with (ii) and (iii), explains

precisely why we are able to run the MMP for adjoint divisors and on

Mori Dream Spaces, and the details are worked out in Corollaries 5.21

and 5.22.

We conclude this section with an example where all the conditions of

Theorem 5.9 are satisfied, but the absence of gen divisors implies that

there is no decomposition of SuppR into regions of divisors that share

an optimal model. In particular, we cannot run the MMP as explained

in Section 5.4, and therefore the conditions from Theorems 5.17 are 5.19

are not only sufficient, but they are optimal. The example shows that the

finite generation of a divisorial ring in itself is not sufficient to perform

the Minimal Model Program.

Example 5.14. Let X , L1 and L2 be as in Example 5.6, and note that

X is a smooth surface with dim N1(X )R = 2. We show that there exist

a big divisor D and an ample divisor A on X such that the ring R =
R(X ;D, A) is finitely generated, the divisor L1 belongs to the interior

of the cone SuppR = R+D +R+A, and none of the divisors in the cone

R+D+R+L1 ⊆SuppR is gen. In particular, we cannot perform the MMP

for D.

We first claim that there exists an irreducible curve C on X such that

L1 ·C = 0 and C2 < 0. (5.7)

Indeed, since L1 is semiample but not ample, there exists an irreducible

curve C ⊆ X such that L1 ·C = 0. Since L1 is big and nef, we have L2
1 > 0,

so the Hodge index theorem then implies C2 < 0.

Now, set D = L1 +C. Since dim N1(X )R = 2 and D is not nef, it is

immediate that there exists an ample divisor A on X such that L1 ∈
R+D+R+A. In order to show that R is finitely generated, it is enough to

show that the rings R(X ;D,L1) and R(X ;L1, A) are finitely generated,

and this latter ring is finitely generated since both L1 and A are semi-

ample.

For k1, k2 ∈N, consider the divisor

Dk1,k2
= k1D+k2L1 = (k1+k2)L1+k1C.

Then (5.7) implies that Pσ(Dk1,k2
) = (k1 + k2)L1, hence H0(X ,Dk1,k2

) ≃
H0(X , (k1+k2)L1). Therefore the ring

R(X ;D,L1)≃ R(X ;L1,L1)
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is finitely generated.

Finally, note that Dk1,k2
≡ (k1+k2)L2+k1C, and that Pσ((k1+k2)L2+

k1C)= (k1+k2)L2. Therefore the ring

R(X , (k1+k2)L2+k1C)≃ R(X , (k1+k2)L2)

is not finitely generated, thus the divisor Dk1,k2
is not gen.

Remark 5.15. The notion of genness is a very subtle one. For instance,

every Q-divisor D with κσ(D)= 0 is gen (for the definition and properties

of κσ see [Nak04]). Indeed, for every Q-divisor D′ ≡ D we have κ(D′) ≤
κσ(D′) = 0, hence the ring R(X ,D) is isomorphic to either C or to the

polynomial ring C[T].

5.4 Running the D-MMP

Let X be a projective Q-factorial variety, and let C ⊆DivR(X ) be a ratio-

nal polyhedral cone such that the divisorial ring R= R(X ,C ) is finitely

generated. Then by Theorem 5.9 we know that SuppR has a decompo-

sition into finitely many rational polyhedral cones giving the geography

of ample models associated to R.

In this section we explain how, when all divisors in the interior of

SuppR are gen, the aforementioned decomposition can be refined to give

a geography of optimal models. As indicated in the previous sections, the

main technical obstacle is to prove Q-factoriality of models, and this is

the point where the gen condition on divisors plays a crucial role.

We assume that SuppR contains an ample divisor, and fix a divisor

D ∈ SuppR. Then we can run the Minimal Model Program for D as

follows.

We define a certain finite rational polyhedral decomposition C =
⋃

Ni

in Theorem 5.19. If D is not nef, we show in Theorem 5.17 that there is a

D-negative birational map ϕ : X 99K X+ such that X+ is Q-factorial, and

ϕ is elementary – this corresponds to contractions of extremal rays in the

classical MMP. We also show that there is a rational polyhedral subcone

D ∈ C ′ ⊆ C which is a union of some, but not all of the cones Ni, such

that R(X ,C ′) ≃ R(X+,ϕ∗C ′) and the cone ϕ∗C ′ ⊆ DivR(X+) contains an

ample divisor. Now we replace X by X+, D by ϕ∗D, and C by ϕ∗C ′,
and we repeat the procedure. Since there are only finitely many cones

Ni, this process must terminate with a variety XD on which the proper

transform of D is nef, and this is the optimal model for D. It is then

automatic that XD is also an optimal model for all divisors in the cone

Ni0
∋ D. The details are given in Theorem 5.19.
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In the context of adjoint divisors and the classical MMP, we can ad-

ditionally direct the MMP by an ample Q-divisor A on X , as in [CL13].

The proofs of Theorems 5.17 and 5.19 can be easily modified to obtain

the D-MMP with scaling of A, however we do not pursue this here.

First we define elementary contractions.

Definition 5.16. A birational contraction ϕ : X 99K Y between normal

projective varieties is elementary if it not an isomorphism, and it is ei-

ther an isomorphism in codimension 1, or a morphism whose exceptional

locus is a prime divisor on X .

The following theorem is the key result: it shows that in our situation

elementary contractions exist.

Theorem 5.17. Let X be a projective Q-factorial variety and let C ⊆
DivR(X ) be a rational polyhedral cone. Denote by π : DivR(X ) → N1(X )R
the natural projection. Assume that the ring R = R(X ,C ) is finitely ge-

nerated, that SuppR contains an ample divisor, that π(SuppR) spans

N1(X )R, and that every divisor in the interior of SuppR is gen. Let

SuppR=
⋃

C i be a decomposition as in Theorem 1.23. Let D ∈ SuppR be

a Q-divisor which is not nef. Then:

(1) the cone SuppR∩π−1
(
Nef(X )

)
is rational polyhedral, and every

element of this cone is semiample,

(2) there exists a rational hyperplane H ⊆ N1(X )R which intersects the

interior of π(SuppR) and contains a codimension 1 face of the cone

π(SuppR)∩Nef(X ), such that π(D) and Nef(X ) are on the opposite

sides of H ,

(3) let W ⊆ N1(X )R be the half-space bounded by H which does not con-

tain Nef(X ), and let C ′ = SuppR∩π−1(W ). Then there exists a Q-

factorial projective variety X+ together with an elementary contrac-

tion ϕ : X 99K X+, such that ϕ is W-nonpositive for every W ∈ C ′,
and it is W-negative for every W ∈C ′\π−1(H ),

(4) we have R(X ,C ′) ≃ R(X+,C +), where C + = ϕ∗C ′ ⊆ DivR(X+), and

C + contains an ample divisor,

(5) for every cone C i and for every geometric valuation Γ over X , the

function oΓ is linear on the cone ϕ∗(C ′∩C i)⊆C +.
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C
′D Nef(X )

H

SuppR

Proof. Step 1. The statement (1) follows immediately from Corollary 3.5,

statement (4) follows from (3) and from the construction below, while (5)

follows from (3) by Lemma 5.5. To show (2), let α be any ample class

in the interior of π(SuppR) ⊆ N1(X ), and let β be the intersection of the

segment [π(D),α] with ∂Nef(X ). Then β lies in the interior of π(SuppR),

and by (1) there is a rational codimension 1 face of π(SuppR)∩Nef(X )

containing β. We define H to be the rational hyperplane containing that

face.

Step 2. It remains to show (3). By Corollary 3.5, there are cones C j *
π−1

(
Nef(X )

)
and Ck ⊆ π−1

(
Nef(X )

)
such that dimπ(C j) = dimπ(Ck) =

dim N1(X )R and π(C j)∩π(Ck) ⊆ H ; denote C jk = C j ∩Ck. Let ϕ : X 99K

X+ and θ : X 99K Y be the ample models associated to relative interi-

ors of C j and C jk as in the proof of Theorem 5.9, and note that θ is a

morphism by (1) since

C jk ⊆SuppR∩π−1
(
Nef(X )

)
.

Then, by Theorem 5.9(3), there is a morphism θ+ : X+ →Y such that the

diagram

X X+

Y

ϕ

θ θ+

is commutative. The following is the key claim:

Claim 5.18. Let F be an R-divisor on X such that π(F) ∈H . Then F ∼R

θ∗FY for some FY ∈ DivR(Y ). If additionally π(F) ∈ π(C jk), then FY is

ample. In particular, a curve C is contracted by θ if and only if C ·δ = 0

for every δ ∈H .
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Pick Q-divisors B1, . . . ,Br in C jk and nonzero real numbers λi such

that π(Bi) span H and π(F)=
∑
λiπ(Bi). We may assume that λi ≥ 0 for

all i when π(F) ∈π(C jk). Hence, there is a Q-divisor B′
1 ≡ B1 such that

F =λ1B′
1 +

∑

i≥2

λiBi.

Note that, by the definition of θ, there are ample divisors A i on Y such

that Bi ∼Q θ∗A i for all i ≥ 2.

Since B1 is gen, the ring R(X ,B′
1) is finitely generated, and therefore

B′
1 is semiample by Lemma 3.4(2) as it is nef and big. Denote by θ′ : X →

Y ′ the semiample fibration associated to B′
1. By Lemma 5.7, there is an

isomorphism η : Y → Y ′ such that θ′ = η ◦θ. Since B′
1 ∼Q (θ′)∗A′

1 for an

ample divisor A′
1 on Y ′, we have B′

1 ∼Q θ∗A1, where A1 = η∗A′
1. There-

fore F ∼R θ∗(
∑
λi A i), which proves the claim.

Step 3. We next show that X+ is Q-factorial.

Consider a Weil divisor P+ on X+, and let P be its proper transform

on X . Since X is Q-factorial, the divisor P is Q-Cartier. Since dimπ(C j)=
dim N1(X )R, there exist a Q-divisor G ∈ C j and α ∈ Q such that π(P +
αG) ∈H . By Claim 5.18, there exists M ∈ DivQ(Y ) such that P +αG ∼Q

θ∗M. Let (p, q) : X̃ → X × X+ be a resolution of ϕ. By the definition

of ϕ and by Theorem 5.9, there is an ample Q-divisor A on X+ and a

q-exceptional Q-divisor E on X̃ such that p∗G = q∗A+E. It follows that

p∗P ∼Q (θ ◦ p)∗M−α(q∗A+E)= (θ+ ◦ q)∗M−αq∗A−αE.

Since ϕ is a contraction, we have P+ = q∗p∗P, and therefore the divisor

P+ ∼Q (θ+)∗M−αA

is Q-Cartier.

Step 4. In this step we show that ϕ is an elementary map.

If θ is an isomorphism in codimension 1, then so are ϕ and θ+ as ϕ is

a contraction.

Hence, we may assume that there exists a θ-exceptional prime divi-

sor E. Let C be a curve contracted by θ, and let R be a ray in N1(X )R
orthogonal to the hyperplane H . Then the class of C belongs to R by

Claim 5.18, and so E · R < 0 by Lemma 1.27. In particular, we have

E ·C < 0, thus C ⊆ E, and the exceptional locus of θ equals E. Therefore,

θ is an elementary contraction.

Observe that π(E) and Nef(X ) lie on opposite sides of H . This implies

that there is a Q-divisor GE in the relative interior of C j such that π(GE−
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E) belongs to the relative interior of C jk. Then, by Claim 5.18, there

exists an ample divisor ME ∈ DivQ(Y ) such that GE −E ∼Q θ∗ME , and

thus

H0(X , mGE)≃ H0(X , mθ∗ME) (5.8)

for every positive integer m. Since ϕ is the map X 99KProjR(X ,GE) by

definition, we may assume that X+ = Y and ϕ= θ by (5.8), which shows

that ϕ is an elementary contraction.

Step 5. The only thing left to prove is the last statement in (3). For

W ∈ C ′, there exists an R-divisor GW ∈ C j such that π(W −GW ) ∈ H .

Thus W ≡Y GW by Claim 5.18. Since ϕ is GW -nonpositive by Theorem

5.9(4), this implies that ϕ is W-nonpositive by Corollary 1.28. If ϕ is

an isomorphism in codimension 1, it is automatic that it is then also

W-negative.

If W ∈C ′\π−1(H ) and ϕ contracts a divisor E, there exists a positive

rational number λ such that π(W −λE) ∈ H . Again by Claim 5.18, and

since X+ = Y and ϕ = θ, there is a divisor MW ∈ DivR(X+) such that

W −λE ∼R ϕ∗MW . But then it is clear that ϕ is W-negative.

The following is the main result of this chapter – the geography of

optimal models.

Theorem 5.19. Let X be a projective Q-factorial variety, and let C ⊆
DivR(X ) be a rational polyhedral cone. Denote by π : DivR(X ) → N1(X )R
the natural projection. Assume that the ring R = R(X ,C ) is finitely ge-

nerated, that SuppR contains an ample divisor, that π(SuppR) spans

N1(X )R, and that every divisor in the interior of SuppR is gen.

Then for any Q-divisor D ∈ C , we can run a D-MMP which termi-

nates.

Furthermore, there is a finite decomposition

SuppR=
∐

Ni

into cones having the following properties:

(1) each Ni is a rational polyhedral cone,

(2) for each i, there exists a Q-factorial projective variety X i and a bi-

rational contraction ϕi : X 99K X i such that ϕi is a good model for

every divisor in Ni.

Proof. Denote by V ⊆ DivR(X ) the minimal vector space containing C ,

and define C 1 = SuppR. Let C 1 =
⋃

i∈I1
C 1

i
be the rational polyhedral

decomposition as in Theorem 1.23. By subdividing C 1 further, we may

assume that the following property is satisfied:
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(♮) let G ⊆V be any hyperplane which contains a codimension 1 face of

some C 1
i0

. Then every C 1
i

is contained in one of the two half-spaces

of V bounded by G .

For each i ∈ I1, let Ni be the relative interior of C i. We claim that C 1 =∐
i∈I1

Ni is the desired decomposition.

Let D be a point in some Ni0
. If D is nef, then every divisor in Ni0

is

semiample by Corollary 3.5, so the theorem follows.

Therefore, we may assume that D is not nef. Denote Y1 = X and

D1 = D. We show that there exists a D1-MMP which terminates.

By Theorem 5.17, the cone C 1 ∩π−1
(
Nef(Y1)

)
is rational polyhedral.

Let H ⊆ N1(Y1)R be a rational hyperplane as in Theorem 5.17, and let

C 1
ℓ

, for ℓ ∈ I2 ( I1, be those cones for which π(C 1
ℓ

) and π(D) are on the

same side of H , cf. (♮). Let f1 : Y1 99K Y2 be an elementary map as in

Theorem 5.17(3), and denote D2 = ( f1)∗D1. Define rational polyhedral

cones C 2
ℓ
= ( f1)∗C 1

ℓ
⊆DivR(Y2), and set

C 2 =
⋃

ℓ∈I2
C 2

ℓ
. (5.9)

Then the ring R
2 = R(Y2,C 2) is finitely generated by Theorem 5.17(4).

By Theorem 5.17(5), the relation (5.9) gives a decomposition of C 2 as in

Theorem 1.23. Also note that ( f1)∗(Ni0
)⊆C 2.

In this way we construct a sequence of divisors Dp on Q-factorial

varieties Yp. Since the size of the index sets I p drops with each step, this

process must terminate with a model X p0
on which the divisor Dp0

is nef.

Similarly as above, X p0
is an optimal model for all divisors in Ni0

, and

the proper transform on Yp0
of every element of Ni0

is semiample.

Corollary 5.20. Let X be a projective Q-factorial variety, let S1, . . . , Sp

be distinct prime divisors on X , denote V =
∑p

i=1
RS i ⊆ DivR(X ), and let

A be an ample Q-divisor on X . Let C ⊆L (V ) be a rational polytope such

that for every ∆ ∈C , the pair (X ,∆) is klt.

Then there exists a positive integer M such that for every ∆ ∈ C ∩
EA(V ), there is a (KX +∆)-MMP consisting of at most M steps.

Proof. By enlarging V and C , we may assume that the numerical classes

of the elements of C ∩EA(V ) span N1(X )R. The set C ∩EA(V ) is a rational

polytope by Corollary 1.26, and let B1, . . . ,Br be its vertices. Choose a

positive integer λ≫ 0 such that all KX + A+Bi +λA are ample. Denote

D =
∑

R+(KX + A+Bi)+
∑

R+(KX + A+Bi +λA).

Then the ring R = R(X ,D) is finitely generated by Theorem 1.25, and

we have R+(KX + A+C ∩EA(V )) ⊆ SuppR. Let SuppR=
∐N

i=1
Ni be the
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decomposition as in Theorem 5.19. Then it is immediate from the proof

of Theorem 5.19 that we can set M = N.

The following corollary is finiteness of models, cf. [BCHM10, Lemma

7.1].

Corollary 5.21. Let X be a projective Q-factorial variety, let S1, . . . , Sp

be distinct prime divisors on X , denote V =
∑p

i=1
RS i ⊆ DivR(X ), and let

A be an ample Q-divisor on X . Let C ⊆L (V ) be a rational polytope such

that for every ∆ ∈C , the pair (X ,∆) is klt.

Then there are finitely many rational maps ϕi : X 99K Yi, with the

property that if ∆ ∈ C ∩EA(V ), then there is an index i such that ϕi is a

log terminal model of KX +∆.

Proof. By enlarging V and C , we may assume that the numerical classes

of the elements of C ∩EA(V ) span N1(X )R, and that there exists a divisor

B ∈C ∩EA(V ) such that KX +A+B is ample. The ring R(X ,R+(KX +A+
C ∩EA(V ))) is finitely generated by Corollary 1.26, so the result follows

immediately from Theorem 5.19.

Finally, we recover one of the main results of [HK00].

Corollary 5.22. Let X be a Q-factorial projective variety and assume

that Pic(X )Q = N1(X )Q. Then X is a Mori Dream Space if and only if its

Cox ring is finitely generated.

In particular, if (X ,∆) is a klt log Fano pair, then X is a Mori Dream

Space.

Proof. Let D1, . . . ,Dr be a basis of Pic(X )Q such that Eff(X ) ⊆
∑
R+D i.

The associated divisorial ring R = R(X ;D1, . . . ,Dr) is a Cox ring of X .

Corollary 5.11 shows that if X is a Mori Dream Space, then R is finitely

generated. We now prove the converse statement.

Assume that R is finitely generated, and let SuppR=
∐N

i=1
Ni be the

decomposition from Theorem 5.19. Then Nef(X ) is the span of finitely

many semiample divisors by Corollary 3.5, and by the definition of the

sets Ni and by Corollary 3.5, there is a set I ⊆ {1, . . ., N} such that

Mov(X )=
⋃

i∈I
Ni.

By taking a smaller index set I, we may assume that the dimension of

Ni equals dim N1(X )R for all i ∈ I. For i ∈ I, let ϕi : X 99K X i be the maps

as in Theorem 5.19. Then Ni ⊆ϕ∗
i

(
Nef(X i)

)
, and hence

Mov(X )⊆
⋃

i∈I
ϕ∗

i

(
Nef(X i)

)
.
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Each ϕi is an optimal model for every divisor in Ni, thus each ϕi is an

isomorphism in codimension 1. Therefore, R(X i; (ϕi)∗D1, . . . , (ϕi)∗Dr) is

a Cox ring of X i, and it is finitely generated since it is isomorphic to

R. In particular, every Nef(X i) is spanned by finitely many semiample

divisors by above, and hence

Mov(X )⊇
⋃

i∈I ϕ
∗
i

(
Nef(X i)

)
.

This shows that X is a Mori Dream Space.

The last claim now follows from Theorem 3.3.
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Abstract

The ‘Minimal Model Program’ is a classification procedure in higher di-

mensional algebraic geometry, which aims to decompose algebraic vari-

eties into their basic building blocks. It is a central project in algebraic

geometry ever since Mori’s Field Medal in 1990, awarded for his work

which settled the three-dimensional case. The Minimal Model Program

has seen tremendous progress in the last decade, during which many re-

sults were settled and our knowledge of the theory was hugely advanced.

We currently know that the Minimal Model Program for a smooth

projective variety X leads to its goal (‘terminates’) if either KX is a big

divisor or if it is not pseudoeffective. In particular, all varieties with

big canonical bundle have a birational model on which a multiple of the

canonical divisor is basepoint point free. Furthermore, the number of

such good models is finite.

The main outstanding problem in birational geometry is to gener-

alise these results to as many varieties as possible, that is to prove that

good models exist for certain varieties not necessarily of general type.

Progress towards a solution of this problem is the topic of this thesis.

There are four main results of this work.

(a) The existence of good models for klt pairs (X ,∆) with KX +∆ pseu-

doeffective is the main outstanding conjecture in the Minimal Model Pro-

gram for projective klt pairs in characteristic zero. It is well known that

the existence of good models implies the Abundance conjecture, which

predicts that the canonical bundle on a minimal model is actually semi-

ample.

Ouf first result reduces the problem of existence of good models for

non-uniruled pairs to the case of smooth varieties with effective canoni-

cal class. More precisely, assuming the existence of good models for klt

pairs in dimensions at most n−1, we show that the existence of good

models for non-uniruled klt pairs in dimension n implies the existence

of good models for uniruled klt pairs in dimension n. This is a proper
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generalisation of the strategy employed for threefolds, and is the first

reduction step towards the proof of the existence of good models.

(b) If X is a variety, it is a basic question what the shape of interest-

ing cones in its Néron-Severi space N1(X )R is. From the point of view

of birational geometry, the interesting cones are the cone of nef divisors

and the cone of movable divisors. The Cone conjecture of Morrison and

Kawamata predicts that on a Calabi-Yau manifold these cones are ratio-

nal polyhedral up to the action of natural groups acting on them.

In this work we prove the Cone conjecture for Calabi-Yau n-folds with

Picard number 2 and infinite group Bir(X ). This is one of the first results

to treat the Cone conjecture in such a generality, and the first result to

confirm it for a wide class of threefolds.

(c) It is an important and long-standing conjecture that the number

of minimal models of a smooth projective variety is finite up to isomor-

phism. It is implied by a positive answer to the Cone conjecture together

with the existence of good models. This gives the main motivation for the

Cone conjecture in the realm of birational geometry. One might specu-

late that the number of minimal models of a smooth projective variety is

bounded with respect to its underlying topology as a complex manifold.

Our third result shows that under certain conditions depending on

the geometry of a log smooth threefold pair, the number of its minimal

models depends only on its topological type. Here, two log smooth pairs

(X1,∆1) and (X2,∆2) are said to be of the same topological type if there is

a homeomorphism ϕ : X1 → X2 which is a homeomophism between the

supports of ∆1 and ∆2.

(d) There are two classes of projective varieties whose birational ge-

ometry is particularly interesting and rich. The first family consists of

varieties where the classical Minimal Model Program can be performed

successfully with the current techniques. The other class is that of so

called Mori Dream Spaces. We now know that, in both cases, their bi-

rational geometry is entirely determined by suitable finitely generated

divisorial rings, and there is a priori no clear connection between these

rings.

In this thesis we put these two families of varieties under the same

roof. We thus identify the maximal class of varieties and divisors on

them where a suitable MMP can be performed.
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