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Summary

The purpose of this thesis is to make the first step in a project to prove finite gener-

ation of the canonical ring without the techniques of the Minimal Model Program.

The proof of the finite generation by Birkar, Cascini, Hacon and McKernan exploits

fully constructions of Mori theory, and is a part of a larger induction scheme in

which several other conjectures of the theory are settled.

The route undertaken in this thesis is completely different, and the idea is to

prove the finite generation directly, by induction on the dimension. A version of

the hyperplane section principle is applied in order to restrict to carefully chosen log

canonical centres. The biggest conceptual difficulty in attempts to obtain a proof by

induction was the finite generation of the kernel of the restriction map. The idea to

resolve the kernel issue in this thesis is to view the canonical ring as a subalgebra of

a larger algebra, which would a priori contain generators of the kernel. In practice

this means that the new algebra will have higher rank grading, and techniques to

deal with these algebras are developed along the way.

The problem of finite generation is reduced to a property which should be easier

to handle with analytic techniques. I also discuss the ultimate goal of the project –

the finite generation in the case of pairs with log canonical singularities, as well as

relations to Abundance Conjecture and the finite generation in positive character-

istic.
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Chapter 1

Introduction

The topic of this thesis is to make the first of two steps in a project to prove finite

generation of the canonical ring without using techniques of the Minimal Model

Program.

Finite Generation Conjecture. Let (X,∆) be a projective log canonical pair.

Then the canonical ring

R(X,KX +∆) =
⊕
n≥0

H0(X,OX(⌊n(KX +∆)⌋))

is a finitely generated C-algebra.

The ring above is often called the log canonical ring , to stress the log structure.

I will drop the “log” part since there is no danger of ambiguity.

There has been a recent enormous progress in Mori Theory, starting with papers

of Shokurov [Sho03] and Hacon and McKernan [HM05], and culminating with the

paper by Birkar, Cascini, Hacon and McKernan [BCHM06], which settled several

conjectures of the MMP for kawamata log terminal pairs: existence of flips and

existence of minimal models for varieties of log general type. However, the picture

is still incomplete – ultimately, we would like the programme to work for varieties

with log canonical singularities and not necessarily of log general type. Certainly,

finite generation of the canonical ring is a consequence of the existence of minimal

models and of Basepoint Free theorem.

1
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This thesis undertakes a different approach. The philosophy is that finite gen-

eration lies at the beginning, and that (almost) the whole Mori Theory can be

reconstructed from the point of view of finite generation. The existence of flips is

a straightforward consequence of the finite generation, and there is some work that

suggests that other conjectures, including Abundance Conjecture, can be deduced

from it. Actually, a form of abundance is the main technical obstacle to performing

the procedure from [BCHM06] to complete the MMP in the case of klt singularities.

The paper [BCHM06] uses the bigness of boundary divisors almost everywhere,

and it seems very difficult to avoid that fact. One of the motivations for this thesis,

apart from the very appealing project of having a proof of finite generation which is

conceptual, concise and by induction on the dimension, is to try use the bigness of

the boundary as little as possible. At present, avoiding that assumption completely

does not seem foreseeable, in particular because of the form of the extension results

that we have at present which use bigness essentially. It seems reasonable to expect

that analytic techniques could be involved in a similar manner to that of Siu’s paper

[Siu02] to get around the existence of an ample divisor in the boundary, but this

seems a far-fetched task at the moment.

Let me outline the contents of this thesis; more is given at the beginning of

individual chapters and sections. In Chapter 2 I survey the known properties of

b-divisors, multiplier ideals, asymptotic invariants of linear systems and Diophan-

tine approximation used in the following chapters. The common feature of all these

concepts is that they measure the behaviour of certain objects in some limiting pro-

cesses. I will use the techniques from Chapter 2 extensively throughout the thesis,

and I have tried to make the presentation self-contained and to keep citing external

sources to the minimum. The basic reference for b-divisors is [Cor07]. There are

many references for standard multiplier ideal sheaves, but the presentation of mul-

tiplier ideals used in this thesis is closely following [HM08]. Asymptotic numerical

invariants attached to linear series have been systematically investigated ever since

the book [Nak04] appeared, and papers [ELM+06, Bou04, Hac08] are the main ref-

erences used in this work. As for Diophantine approximation, I draw upon results of

[Cas57, BCHM06], apart from Lemma 2.28, where I have to make use of the precise

quantity of the error term between the actual and approximated values.

Chapter 3 surveys the Minimal Model Program, and I sketch the central role of
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finite generation, in particular in the problem of the existence of flips. The standard

literature on this is [KMM87, KM98]. The last part of the chapter concentrates

on the existence of pl flips, and in particular we prove that a suitable statement

in dimension one less implies finite generation of the restricted canonical ring. The

presentation here follows closely, and is occasionally taken almost verbatim from,

the paper [HM08], and I stress potential issues that will be equally observable in

the general case of the finite generation in Chapter 6. Apart from Chapters 2 and

3, the thesis is my own original work.

Chapter 4 is devoted to developing techniques that will be used in Chapters 5

and 6 in order to prove that certain superlinear maps are in fact piecewise linear.

The method developed requires deep techniques of Diophantine approximation and

extensive use of Lipschitz continuity, and is one of the technically most demanding

parts of the thesis which is not within the realm of algebraic geometry.

In Chapter 5 I develop necessary tools to deal with algebras of higher rank.

There are two approaches: that algebras should be given by additive maps of ad-

joint divisors, or by superadditive maps of mobile b-divisors which satisfy a certain

saturation condition in the sense of Shokurov. The former is undertaken successfully

in Chapter 6 to prove finite generation of the canonical ring under certain assump-

tions, which is the core of this work. The latter is used in Chapter 5 to show that

suitable higher rank analogues of Shokurov algebras that appeared in the context

of 3-dimensional flips [Sho03, Cor07] stand, perhaps surprisingly, a good chance of

being finitely generated, and the proof of this fact is given on curves. In particular,

this method demonstrates that the saturation condition gives very strong numeri-

cal constraints on the divisors involved (not only rationality of divisors, but also a

bound on the denominators).

Finally, Chapter 6 is the heart of this thesis. I prove finite generation of the

canonical ring under a natural assumption on the convex geometry of the set of

log canonical pairs with big boundaries in terms of divisorial components of the

stable base loci, see Property LG
A there. This property is a consequence of the

MMP, however my hope is that there will very soon exist a proof of this statement

obtained by techniques similar to those used in the proof of finite generation of the

restricted algebra in Section 6.1 below.

Let me sketch the strategy for the proof of finite generation and present diffi-
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culties that arise on the way. The natural idea is to pick a smooth divisor S on X

and to restrict the algebra to it. If we are very lucky, the restricted algebra will be

finitely generated and we might hope that the generators lift to generators on X.

There are several issues with this approach.

Firstly, in order to obtain something meaningful on S, S should be a log canonical

centre of some pair (X,∆′) such that R(X,KX + ∆) and R(X,KX + ∆′) share a

common truncation. Secondly, even if the restricted algebra were finitely generated,

the same might not be obvious for the kernel of the restriction map. Thirdly, the

natural choice is to use the Hacon-McKernan extension theorem, and hence we must

be able to ensure that S does not belong to the stable base locus of KX +∆′.

The idea to resolve the kernel issue is to view R(X,KX +∆) as a subalgebra of a

larger algebra, which would a priori contain generators of the kernel. In practice this

means that the new algebra will have higher rank grading. Namely, we will see that,

roughly, the rank corresponds to the number of components of ∆. The proof then

proceeds to employ the techniques from all previous chapters: generalities about

higher rank finite generation allow me to deduce finite generation of initial algebras

from that of bigger algebras, and finite generation of the image is dealt with by

using difficult techniques revolving around Hacon-McKernan methods of extending

sections of adjoint line bundles.

Finally, it is my hope that the techniques of this thesis could be adapted to

handle finite generation in the case of log canonical singularities, Abundance Con-

jecture and the case of positive characteristic. The Minimal Model Program and the

finite generation in the case of log canonical singularities seem increasingly within

reach, especially since the works of Ambro and Fujino [Amb03, Fuj07b]. One of

the main obstacles is finding a suitable analogue of the canonical bundle formula

of Fujino and Mori, which would allow us to restrict attention to the log general

type case. Abundance Conjecture is closely related to a certain non-vanishing state-

ment, which has been successfully proved without Mori Theory in [Pău08]; similar

techniques appeared in [Hac08] and they are precisely those used here in order to

prove finite generation of the restricted algebra. Finally, the case of positive char-

acteristic is also an active field of research. The method presented here is mostly

characteristic-free, apart from two important ingredients: resolution of singulari-

ties and the extension theorem of Hacon and McKernan, which uses in its proof
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Kawamata-Viehweg vanishing which is known only in characteristic zero. I expect

that some of these projects will be completed by using the techniques developed in

this thesis.
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Notation and Conventions

Unless stated otherwise, varieties in this thesis are normal over C and projective

over an affine variety Z. The group of Weil, respectively Cartier, divisors on a

variety X is denoted by WDiv(X), respectively Div(X). I denote WDiv(X)κ≥0 =

{D ∈WDiv(X) : κ(X,D) ≥ 0}, and similarly for Div(X)κ≥0, where κ is the Iitaka

dimension. I write ∼ for linear equivalence of Weil divisors and ≡ for numerical

equivalence of Cartier divisors, and ρ(X) = rkN1(X) is the Picard number of

X. Similarly for relative versions. Subscripts denote either the ring in which the

coefficients of divisors are taken or that the equivalence is relative to a specified

morphism.

An ample Q-divisor A on a variety X is (very) general if there is a sufficiently

divisible positive integer k such that kA is very ample and kA is a (very) general

section of the linear system |kA|. In particular we can assume that for some k ≫ 0,

kA is a smooth divisor on X. In practice, we fix k in advance, and generality is

needed to ensure that A does not make singularities of pairs worse, as in Theorem

3.19.

If T is a prime divisor on X such that T ̸⊂ Fix |D|, then |D|T denotes the image

of the linear system |D| under restriction to T .

For any two divisors P =
∑

piEi and Q =
∑

qiEi on a variety X, set P ∧Q =∑
min{pi, qi}Ei.

I use the adjunction formula with differents as explained in [K+92, Chapter 16].

The sets of non-negative (respectively non-positive) rational and real numbers

are denoted by Q+ and R+ (Q− and R− respectively).

Geometry of pairs and valuations. In this thesis, a log pair (X,∆) consists

of a variety X and an effective divisor ∆ ∈ WDiv(X)R such that KX + ∆ is R-
Cartier. A pair (X,∆) is log smooth if X is nonsingular and Supp∆ has simple

normal crossings. A model over X is a proper birational morphism f : Y → X. A

log resolution of (X,∆) is a model f : Y → X such that the pair (Y, f−1
∗ ∆+Exc f) is

log smooth. A boundary is a divisor ∆ =
∑

diDi ∈WDiv(X)R such that 0 ≤ di ≤ 1

for all i. A birational morphism f : Y → X is small if codimY Exc f ≥ 2.

A valuation ν : k(X) → Z is geometric if ν = multE, where E ⊂ Y is a prime
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divisor on a model Y → X. In that case I denote the valuation also by E. The centre

of a geometric valuation ν on X associated to a divisor E on a model f : Y → X is

cXν := f(E).

Convex geometry. If S =
∑

Nei is a submonoid of Nn, I denote SQ =
∑

Q+ei

and SR =
∑

R+ei. A monoid S ⊂ Nn is saturated if S = SR ∩ Nn.

If S =
∑n

i=1 Nei and κ1, . . . , κn are positive integers, the submonoid S ′ =∑n
i=1 Nκiei is called a truncation of S. If κ1 = · · · = κn = κ, I denote S(κ) :=∑n
i=1 Nκei, and this truncation does not depend on a choice of generators of S.
A submonoid S =

∑
Nei of Nn (respectively a cone C =

∑
R+ei in Rn) is

simplicial if its generators ei are R-linearly independent. The ei form a basis of S
(respectively C).

For a cone C ⊂ Rn, I denote CQ = C ∩ Qn. The dimension dim C of a cone

C =
∑

R+ei is the dimension of the space
∑

Rei. All cones considered are convex

and strongly convex, that is they do not contain lines.

In this thesis the relative interior of a cone C =
∑

R+ei ⊂ Rn, denoted by

relint C, is the topological interior of C in the space
∑

Rei union the origin. If

dim C = n, we instead call it the interior of C and denote it by int C. The boundary
of a closed set C is denoted by ∂C.

Let S ⊂ Nn be a finitely generated monoid, C ∈ {S,SQ,SR} and V an R-vector
space. A function f : C → V is: positively homogeneous if f(λx) = λf(x) for

x ∈ C, λ ≥ 0; superadditive if f(x) + f(y) ≤ f(x + y) for x, y ∈ C; Q-superadditive

if λf(x) + µf(y) ≤ f(λx + µy) for x, y ∈ C, λ, µ ∈ Q+; Q-additive if the pre-

vious inequality is an equality; superlinear if λf(x) + µf(y) ≤ f(λx + µy) for

x, y ∈ SR, λ, µ ∈ R+, or equivalently, if and only if it is superadditive and posi-

tively homogeneous. Similarly for additive, subadditive, sublinear . It is piecewise

additive if there is a finite polyhedral decomposition C =
∪
Ci such that f|Ci is ad-

ditive for every i; additionally, if each Ci is a rational cone, it is rationally piecewise

additive. Similarly for (rationally) piecewise linear, abbreviated PL and Q-PL. As-

sume furthermore that f is linear on C and dim C = n. The linear extension of f to

Rn is the unique linear function ℓ : Rn → V such that ℓ|C = f .

I often use without explicit mention that if λ :M→ S is an additive surjective

map between finitely generated saturated monoids, and if C is a rational polyhe-
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dral cone in SR, then λ−1(S ∩ C) = M∩ λ−1(C). In particular, the inverse image

of a saturated finitely generated submonoid of S is a saturated finitely generated

submonoid ofM.

For a polytope P ⊂ Rn, I denote PQ = P ∩ Qn. A polytope is rational if it is

the convex hull of finitely many rational points.

If B ⊂ Rn is a convex set, then R+B will denote the set {rb : r ∈ R+, b ∈ B}, the
cone over B. In particular, if B is a rational polytope, R+B is a rational polyhedral

cone. The dimension of a rational polytope P , denoted dimP , is the dimension of

the smallest rational affine space containing P .



Chapter 2

Asymptotic Techniques

In this chapter I present some recent techniques that will be useful in the rest of this

thesis. Their common feature is that they describe asymptotic behaviour of certain

objects attached to varieties.

2.1 b-Divisors

b-Divisors can be understood as limits of regular divisors on different birational mod-

els. In particular, mobile b-divisors are useful when dealing with finite generation

issues as they help keep track of sections needed to generate an algebra. Further, the

language of b-divisors makes, on occasion, mathematical texts more concise, which

is already obvious in the proofs of basic properties of multiplier ideals.

Definition 2.1. An integral b-divisor D on X is an element of the group

Div(X) = lim←−WDiv(Y ),

where the limit is taken over all models f : Y → X with the induced homomorphisms

f∗ : WDiv(Y ) → WDiv(X). Thus D is a collection of divisors DY ∈ WDiv(Y )

compatible with push-forwards. Each DY is the trace of D on Y .

For every model f : Y → X the induced map f∗ : Div(Y ) → Div(X) is an

isomorphism, so b-divisors on X can be identified with b-divisors on any model

9
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over X. For every open subset U ⊂ X we naturally define the restriction D|U of a

b-divisor D on X.

Definition 2.2. The b-divisor of a nonzero rational function φ is

divX φ =
∑

multE φ · E,

where E runs through geometric valuations with centre on X.

The b-divisorial sheaf OX(D) associated to a b-divisor D is defined by

Γ(U,OX(D)) = {φ ∈ k(X) : (divX φ+D)|U ≥ 0}.

Definition 2.3. The proper transform b-divisor D̂ of an R-divisor D has trace

D̂Y = f−1
∗ D on every model f : Y → X.

The Cartier closure of an R-Cartier divisor D on X is the b-divisor D with trace

DY = f ∗D on every model f : Y → X.

A b-divisor D descends to a model Y → X if D = DY ; we then say that D is a

Cartier b-divisor .

A b-divisor M on X is mobile if it descends to a model Y → X, where MY is

basepoint free.

Note that if a mobile b-divisor M descends to a model W → X, then MW is

free and H0(X,M) ≃ H0(W,MW ).

Cartier restriction. Let D be a Cartier b-divisor on X and let S be a normal

prime divisor on X such that S ̸⊂ SuppDX . Let f : Y → X be a log resolution of

(X,S) such that D descends to Y . Define the restriction of D to S as

D|S := DY |ŜY
.

This is a b-divisor on S via (f|ŜY
)∗ and it does not depend on the choice of f . By

definition, D|S is a Cartier b-divisor that satisfies (D1 +D2)|S = D1|S +D2|S, and

D1|S ≥ D2|S if D1 ≥ D2.
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Definition 2.4. The canonical b-divisor KX on X has a trace (KX)Y = KY on

every model Y → X. The discrepancy A(X,∆) of the pair (X,∆) is

A(X,∆) = KX −KX +∆.

To streamline several arguments in the thesis, we introduce the following.

Definition 2.5. Let (X,∆) be a log pair. For a model f : Y → X we can write

uniquely

KY +BY = f∗(KX +∆) + EY ,

whereBY and EY are effective with no common components and EY is f -exceptional.

The boundary b-divisor B(X,∆) is given by B(X,∆)Y = BY for every model Y →
X. If the pair (X,∆) is log smooth and ∆ is a reduced divisor, define A∗(X,∆) =

A(X,∆) +B(X,∆); this is an effective and exceptional integral b-divisor.

Lemma 2.6. If (X,∆) is a log pair, then the boundary b-divisor B(X,∆) is well-

defined.

Proof. Let g : Y ′ → X be a model such that there is a proper birational morphism

h : Y ′ → Y . Pushing forward KY ′ +BY ′ = g∗(KX +∆) + EY ′ via h∗ yields

KY + h∗BY ′ = f∗(KX +∆) + h∗EY ′ ,

and since h∗BY ′ and h∗EY ′ have no common components, h∗BY ′ = BY .

The following result will be used several times in this thesis, and it will enable

us to pass to more suitable models in order to apply extension results.

Lemma 2.7. Let (X,∆) be a log canonical pair. There exists a log resolution Y → X

such that the components of {B(X,∆)Y } are disjoint.

Proof. See [KM98, Proposition 2.36] or [HM05, Lemma 6.7].

2.2 Multiplier Ideals

Multiplier ideal sheaves and their asymptotic versions have proved absolutely es-

sential in recent major progress in Mori theory. The techniques as we know them
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today were introduced in the seminal paper [Siu98] in order to prove invariance of

plurigenera. The form of multiplier ideas used in this thesis is not the most general,

and with a bit of work some of the results of this chapter can be generalised to the

context of [Fuj08], but I do not pursue this here.

Definition 2.8. Let (X,∆) be a log smooth pair where ∆ is a reduced divisor,

and let V be a linear system whose base locus contains no log canonical centres of

(X,∆). Let µ : Y → X be a log resolution of V and (X,∆), and let F = Fixµ∗V .

Then for any real number c ≥ 0, define the multiplier ideal sheaf

J∆,c·V := µ∗OY (A
∗(X,∆)Y − ⌊cF ⌋).

If ∆ = 0 we will write Jc·V , and if D = cG, where G > 0 is a Cartier divisor, we

define

J∆,D := J∆,c·V ,

where V = {G}.

Lemma 2.9. The multiplier ideal J∆,c·V in Definition 2.8 does not depend on the

choice of a log resolution µ.

Proof. Denote A∗ = A∗(X,∆) and B = B(X,∆). Observe that the b-divisor F

given by FZ = Fixπ∗V for every model π : Z → X, descends to Y . It is enough

to show that A∗ − ⌊cF⌋ ≥ A∗
Y − ⌊cF ⌋. For this, let f : Y ′ → Y be a model. The

inequality, on Y ′, is equivalent to

⌈KY ′ − f∗(KY + {cF}+BY ) +BY ′⌉ ≥ 0.

Observe that the log canonical centres of (Y, {cF}+BY ) are exactly the intersections

of components of BY . Thus BY ′ is the locus of log canonical singularities on Y ′ for

(Y, {cF}+BY ), and the lemma follows.

The basic properties of multiplier ideal sheaves are listed in the following result.

Lemma 2.10. Let (X,∆) be a log smooth pair where ∆ is reduced, let V be a linear

system whose base locus contains no log canonical centres of (X,∆), and let G and
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D be effective Q-Cartier divisors whose supports contain no log canonical centres of

(X,∆). Then:

(1) J∆,D = OX if and only if (X,∆+D) is divisorially log terminal and ⌊D⌋ = 0,

(2) if 0 ≤ ∆′ ≤ ∆ then J∆,c·V ⊂ J∆′,c·V ; in particular, J∆,c·V ⊂ Jc·V ⊂ OX ,

(3) if Σ ≥ 0 is a Cartier divisor, D − Σ ≤ G and J∆,G = OX then IΣ ⊂ J∆,D.

Proof. (1) and (2) follow easily from the definitions. To see (3), notice that as Σ is

Cartier and J∆,G = OX , we have J∆,G(−Σ) = OX(−Σ) = IΣ. But since D ≤ G+Σ,

we also have J∆,G(−Σ) = J∆,G+Σ ⊂ J∆,D.

The following is an extension of [Laz04, Theorem 9.4.8].

Theorem 2.11 (Nadel Vanishing). Let π : X → Z be a projective morphism to a

normal affine variety Z. Let (X,∆) be a log smooth pair where ∆ is reduced, let D

be an effective Q-Cartier divisor whose support does not contain any log canonical

centres of (X,∆) and let N be a Cartier divisor. If N −D is ample then

H i(X,J∆,D(KX +∆+N)) = 0

for i > 0.

Proof. By [Sza94], there is a log resolution µ : Y → X of (X,∆ + D) which is an

isomorphism over the generic point of each log canonical centre of (X,∆). Denote

Γ = B(X,∆)Y and E = A∗(X,∆)Y . Since (Y,Γ+µ∗D) is log smooth and Γ and µ∗D

have no common components, (Y,Γ+ {µ∗D}) is divisorially log terminal. Therefore

we may pick an effective µ-exceptional divisor H such that KY +Γ+ {µ∗D}+H is

divisorially log terminal, and µ∗(N −D)−H and −H are µ-ample. As

E − ⌊µ∗D⌋ − (KY + Γ + {µ∗D}+H) = −µ∗(KX +∆+D)−H

is µ-ample, Kawamata-Viehweg vanishing implies that

Riµ∗OY (E−⌊µ∗D⌋+µ∗(KX+∆+N)) = Riµ∗OY (E−⌊µ∗D⌋)⊗OX(KX+∆+N) = 0
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for i > 0. As

E − ⌊µ∗D⌋+ µ∗(KX +∆+N)− (KY + Γ + {µ∗D}+H) = µ∗(N −D)−H

is ample, Kawamata-Viehweg vanishing again implies that

H i(Y,E − ⌊µ∗D⌋+ µ∗(KX +∆+N)) = 0

for i > 0. Since the Leray spectral sequence degenerates, this proves the result.

Lemma 2.12. Let π : X → Z be a projective morphism to a normal affine variety

Z. Let (X,∆) be a log smooth pair where ∆ is reduced, S a component of ∆, D an

effective Q-Cartier divisor whose support does not contain any log canonical centres

of (X,∆) and denote Θ = (∆− S)|S. Then there is a short exact sequence

0→ J∆−S,D+S → J∆,D → JΘ,D|S → 0. (2.1)

If N is a Cartier divisor such that N −D is ample, then the restriction map

H0(X,J∆,D(KX +∆+N))→ H0(S,JΘ,D|S(KX +∆+N)) (2.2)

is surjective.

Proof. Let µ : Y → X be a log resolution as in the proof of Theorem 2.11, and

denote Γ = B(X,∆)Y , E = A∗(X,∆)Y and T = µ−1
∗ S. There is a short exact

sequence

0→ OY (E − ⌊µ∗D⌋ − T )→ OY (E − ⌊µ∗D⌋)→ OT (E − ⌊µ∗D⌋)→ 0.

Now µ∗OY (E − ⌊µ∗D⌋) = J∆,D, and since

E − µ∗D − T = (KY + Γ− T )− µ∗(KX +∆− S + (D + S)),

we have µ∗OY (E − ⌊µ∗D⌋ − T ) = J∆−S,D+S, and similarly µ∗OT (E − ⌊µ∗D⌋) =

JΘ,D|S . As in the proof of Theorem 2.11, we may pick an effective µ-exceptional

divisor H such that KY + Γ− T + {µ∗D}+H is divisorially log terminal and −H
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is µ-ample. As

E − ⌊µ∗D⌋ − T − (KY + Γ− T + {µ∗D}+H) = −µ∗(KX +∆+D)−H

is µ-ample, Kawamata-Viehweg vanishing implies that

R1µ∗OY (E − ⌊µ∗D⌋ − T ) = 0,

and this gives (2.1). Now (2.2) follows from (2.1) and Theorem 2.11.

Now we turn to asymptotic multiplier ideal sheaves. Firstly, if D is a divisor

on a normal variety X, an additive sequence of linear systems associated to D is a

sequence V• such that Vm ⊂ P(H0(X,mD)) and Vi + Vj ⊂ Vi+j.

Lemma 2.13. Let (X,∆) be a log smooth pair where ∆ is reduced, and let V• be

an additive sequence of linear systems associated to a divisor D on X. Assume that

there is a positive integer k such that no log canonical centre of (X,∆) is contained

in the base locus of Vk. If c is a positive real number, and p and q are positive

integers such that k divides q and q divides p, then

J∆, c
p
·Vp ⊂ J∆, c

q
·Vq .

Proof. If p divides q then pick a common log resolution µ : Y → X of Vp, Vq and

(X,∆), and note that 1
q
Fq ≤ 1

p
Fp, where Fp = Fixµ∗Vp and Fq = Fixµ∗Vq. Therefore

J∆, c
p
·Vp ⊂ J∆, c

q
·Vq .

Definition 2.14. Let (X,∆) be a log smooth pair where ∆ is reduced, and let V• be

an additive sequence of linear systems associated to a divisor D on X. Assume that

there is a positive integer k such that no log canonical centre of (X,∆) is contained

in the base locus of Vk. If c is a positive real number, the asymptotic multiplier ideal

sheaf of V•, given by

J∆,c·V• =
∪
p>0

J∆, c
p
·Vp ,

is equal to J∆, c
p
·Vp for p sufficiently divisible by Lemma 2.13 and Noetherian condi-

tion. If we take Vm = |mD|, then define J∆,c∥D∥ = J∆,c·V• , and if S is a component

of ∆, Θ = (∆− S)|S and Wm = |mD|S, define JΘ,c∥D∥S = JΘ,c·W• .
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The next result is analogous to [Laz04, Proposition 11.2.10].

Lemma 2.15. Let (X,∆) be a log smooth pair with ∆ reduced, let D ∈ Div(X)κ≥0

and assume that there is a positive integer p such that no log canonical centre of

(X,∆) is contained in Bs |pD|. Then

H0(X,J∆,∥D∥(D)) = H0(X,D).

Proof. Let J∆,∥D∥ = J∆, 1
k
|kD|, let f : Y → X be a log resolution of (X,∆), |f∗kD|

and |f∗D|, and denote E = A∗(X,∆)Y and Fp = Fix |f ∗pD| for every p. Since

⌈Fk/k⌉ ≤ F1, ⌊−Fk/k⌋ ≤ ⌈E − Fk/k⌉ and ⌈E⌉ is effective and f -exceptional,

H0(X,D) = H0(X, f∗OY (f
∗D − F1))

⊂ H0(X, f∗OY (f
∗D + ⌈E − Fk/k⌉)) = H0(X,J∆,∥D∥(D))

⊂ H0(X, f∗OY (f
∗D + ⌈E⌉)) = H0(X,D).

This concludes the proof.

The following lemma is a weak version of Mumford’s theorem [Laz04, Theorem

1.8.5].

Lemma 2.16. Let π : X → Z be a projective morphism, where X is smooth of

dimension n, Z is affine and let H be a very ample divisor on X. If F is a coherent

sheaf on X such that H i(X,F(mH)) = 0 for i > 0 and for all m ≥ −n, then F is

globally generated.

Proof. Pick x ∈ X. Let T ⊂ F be the torsion subsheaf supported at x, and let

G = F/T . Then H i(X,G(mH)) = 0 for i > 0 and for all m ≥ −n, and F is globally

generated if and only if G is globally generated. Replacing F by G we may therefore

assume that T = 0.

Pick a general element Y ∈ |H| containing x. As T = 0 there is an exact

sequence

0→ F(−Y )→ F → Q→ 0,

where Q = F ⊗ OY . As H i(Y,Q(mH)) = 0 for i > 0 and for all m ≥ −(n − 1),

Q is globally generated by induction on the dimension. As H1(X,F(−Y )) = 0, it

follows that F is globally generated.
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Lemma 2.17. Let π : X → Z be a projective morphism, where X is smooth of

dimension n and Z is affine. If D ∈ Div(X)κ≥0, A ∈ Div(X) is ample and H ∈
Div(X) is very ample, then J∥D∥(D +KX + A+ nH) is globally generated.

Proof. Pick a positive integer p such that if pB ⊂ |pD| is a general element, then

J∥D∥ = J 1
p
|pD| = JB.

Then by Theorem 2.11, H i(X,J∥D∥(D + KX + A + mH)) = 0 for all i > 0 and

m ≥ 0, and we may apply Lemma 2.16.

To end this section, I will state the main technical result of [HM08] which will

enable me to derive a version of extension results in Chapter 6, in order to prove that

the restricted algebra is finitely generated. The stable base locus B(D) is defined in

Definition 2.19.

Theorem 2.18 ([HM08, Theorem 5.3]). Let π : X → Z be a projective morphism to

a normal affine variety Z. Suppose that (X,∆) is log smooth, S = ⌊∆⌋ is irreducible
and let k be a positive integer such that D = k(KX + ∆) is Cartier. If B(D) does

not contain any log canonical centre of (X, ⌈∆⌉) and if A is a sufficiently ample

Cartier divisor, then

H0(S,J∥mD|S∥(mD + A)) ⊂ Im
(
H0(X,OX(mD + A))→ H0(S,OS(mD + A))

)
for all positive integers m.

2.3 Asymptotic Invariants of Linear Systems

Definition 2.19. Let X be a variety and D ∈ WDiv(X)R. For k ∈ {Z,Q,R},
define

|D|k = {C ∈WDiv(X)k : C ≥ 0, C ∼k D}.

The stable base locus of D is

B(D) =
∩

C∈|D|R

SuppC
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if |D|R ̸= ∅, otherwise we define B(D) = X. The stable fixed locus of D, de-

noted Fix(D), is a divisorial part of B(D). The diminished base locus is B−(D) =∪
ε>0 B(D+ εA) for an ample divisor A; this definition does not depend on a choice

of A. In particular B−(D) ⊂ B(D).

By [BCHM06, Lemma 3.5.3], B(D) =
∩

C∈|D|Q SuppC when D is a Q-divisor,

which is the standard definition of the stable base locus. It is elementary that

B(D1 + D2) ⊂ B(D1) ∪ B(D2) for D1, D2 ∈ WDiv(X)R. In other words, the set

{D ∈WDiv(X)R : x /∈ B(D)} is convex for every point x ∈ X.

Definition 2.20. Let Z be a closed subvariety of a smooth variety X and let

D ∈WDiv(X)κ≥0
Q . The asymptotic order of vanishing of D along Z is

ordZ ∥D∥ = inf{multZ C : C ∈ |D|Q}.

More generally, one can consider any discrete valuation ν of k(X) and define

ν∥D∥ = inf{ν(C) : C ∈ |D|Q}

for D ∈ WDiv(X)κ≥0
Q . Then [ELM+06] shows that ν∥D∥ = ν∥E∥ if D and E are

numerically equivalent big divisors, and that ν extends to a sublinear function on

Big(X)R.

Remark 2.21. When X is projective, Nakayama in [Nak04] defines a function

σZ : Big(X)→ R+ by

σZ(D) = lim
ε↓0

ordZ ∥D + εA∥

for any ample R-divisor A, and shows that it agrees with ordZ ∥ · ∥ on big classes.

Analytic properties of these invariants were studied in [Bou04].

We can define the restricted version of the invariant introduced.

Definition 2.22. Let S be a smooth divisor on a smooth variety X and let D ∈
Div(X)κ≥0

R be such that S ̸⊂ B(D). Let P be a closed subvariety of S. The restricted

asymptotic order of vanishing of |D|S along P is

ordP ∥D∥S = inf{multP C|S : C ∼R D,C ≥ 0, S ̸⊂ SuppC}.



2.3. Asymptotic Invariants of Linear Systems 19

In the case of rational divisors, the infimum above can be taken over rational

divisors:

Lemma 2.23. Let X be a smooth variety, D ∈ Div(X)κ≥0
Q and let D′ ≥ 0 be an

R-divisor such that D ∼R D′. Then for every ε > 0 there is a Q-divisor D′′ ≥ 0 such

that D ∼Q D′′, SuppD′ = SuppD′′ and ∥D′ −D′′∥ < ε. In particular, if S ⊂ X is

a smooth divisor such that S ̸⊂ B(D), then for every closed subvariety P ⊂ S we

have

ordP ∥D∥S = inf{multP C|S : C ∼Q D,C ≥ 0, S ̸⊂ SuppC}.

Proof. Let D′ = D +
∑p

i=1 ri(fi) for ri ∈ R and fi ∈ k(X). Let F1, . . . , FN be the

components of D and of all (fi), and assume that multFj
D′ = 0 for j = 1, . . . , ℓ

and multFj
D′ > 0 for j = ℓ + 1, . . . , N . Let (fi) =

∑N
j=1 φijFj for all i and

D =
∑N

j=1 δjFj. Then we have δj +
∑p

i=1 φijri = 0 for j = 1, . . . , ℓ. Let K ⊂ Rp be

the space of solutions of the system
∑p

i=1 φijxi = −δj for j = 1, . . . , ℓ. Then K is a

rational affine subspace and (r1, . . . , rp) ∈ K, thus for 0 < η ≪ 1 there is a rational

point (s1, . . . , sp) ∈ K with ∥si − ri∥ < η for all i. Therefore for η sufficiently small,

setting D′′ = D +
∑p

i=1 si(fi) we have the desired properties.

Remark 2.24. Similarly as in Remark 2.21, [Hac08] introduces a function

σP∥ · ∥S : C− → R+ by

σP∥D∥S = lim
ε↓0

ordP ∥D + εA∥S

for any ample R-divisor A, where C− ⊂ Big(X) is the set of classes of divisors D

such that S ̸⊂ B−(D). Then one can define a formal sum Nσ∥D∥S =
∑

σP∥D∥S ·P
over all prime divisors P on S. If S ̸⊂ B(D), then for every ε0 > 0 we have

limε↓ε0 σP∥D + εA∥S = ordP ∥D + ε0A∥S for any ample divisor A on X similarly as

in [Nak04, Lemma 2.1.1], cf. [Hac08, Lemma 7.8].

In this thesis I need a few basic properties cf. [Hac08, Lemma 7.14].

Lemma 2.25. Let S be a smooth divisor on a smooth projective variety X, let

D ∈ Div(X)κ≥0
R be such that S ̸⊂ B(D) and let P be a closed subvariety of S. If A

is an ample R-divisor on X, then ordP ∥D + A∥S ≤ ordP ∥D∥S, and in particular
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σP∥D∥S ≤ ordP ∥D∥S. If D and A are Q-divisors and σP∥D∥S = 0, then there is a

positive integer l such that multP Fix |l(D + A)|S = 0.

Proof. The first statement is trivial. For the second one, we have ordP ∥D+ 1
2
A∥S =

0. Set n = dimX, let H be a very ample divisor on X and fix a positive integer l

such that H ′ = l
2
A− (KX + S)− (n + 1)H is very ample. Let ∆ ∼Q D + 1

2
A be a

Q-divisor such that S ̸⊂ Supp∆ and multP ∆|S < 1/l. We have

H i(X,Jl∆|S(KS +H ′
|S + (n+ 1)H|S + l∆|S +mH|S)) = 0

for m ≥ −n by Nadel vanishing. Since l(D+A) ∼Q KX + S +H ′ + (n+ 1)H + l∆,

the sheaf Jl∆|S(l(D + A)) is globally generated by Lemma 2.16 and its sections lift

to H0(X, l(D + A)) by Lemma 2.12. Since multP (l∆|S) < 1, Jl∆|S does not vanish

along P and so multP Fix |l(D + A)|S = 0.

2.4 Diophantine Approximation

Techniques of Diophantine approximation have appeared in almost all recent work in

birational geometry after the paper of Shokurov [Sho03], since it became increasingly

clear that we have to work with real divisors, as limits of rational divisors. I present

several versions of approximation that will be used in different contexts to prove

rationality, or polyhedrality, of certain objects.

Lemma 2.26. Let Λ ⊂ Rn be a lattice spanned by rational vectors, and let V =

Λ ⊗Z R. Fix a vector v ∈ V and denote X = Nv + Λ. Then the closure of X is

symmetric with respect to the origin. Moreover, if π : V → V/Λ is the quotient map,

then the closure of π(X) is a finite disjoint union of connected components. If v is

not contained in any proper rational affine subspace of V , then X is dense in V .

Proof. I am closely following the proof of [BCHM06, Lemma 3.7.6]. Let G be the

closure of π(X). Since G is infinite and V/Λ is compact, G has an accumulation

point. It then follows that zero is also an accumulation point and that G is a closed

subgroup. The connected component G0 of the identity in G is a Lie subgroup of

V/Λ and so by [Bum04, Theorem 15.2], G0 is a torus. Thus G0 = V0/Λ0, where

V0 = Λ0 ⊗Z R is a rational subspace of V . Since G/G0 is discrete and compact, it
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is finite, and it is straightforward that X is symmetric with respect to the origin.

Therefore a translate of v by a rational vector is contained in V0, and so if v is not

contained in any proper rational affine subspace of V , then V0 = V .

The next result is [BCHM06, Lemma 3.7.7].

Lemma 2.27. Let x ∈ Rn and let W be the smallest rational affine space containing

x. Fix a positive integer k and a positive real number ε. Then there are w1, . . . , wp ∈
W ∩Qn and positive integers k1, . . . , kp divisible by k, such that x =

∑p
i=1 riwi with

ri > 0 and
∑

ri = 1, ∥x− wi∥ < ε/ki and kiwi/k is integral for every i.

I will need a refinement of this lemma when the smallest rational affine space

containing a point is not necessarily of maximal dimension.

Lemma 2.28. Let x ∈ Rn, let 0 < ε, η ≪ 1 be rational numbers and let w1 ∈ Qn

and k1 ∈ N be such that ∥x − w1∥ < ε/k1 and k1w1 is integral. Then there are

w2, . . . , wm ∈ Qn, positive integers k2, . . . , km such that ∥x − wi∥ < ε/ki and kiwi

is integral for every i, and positive numbers r1, . . . , rm such that x =
∑m

i=1 riwi

and
∑

ri = 1. Furthermore, we can assume that w3, . . . , wm belong to the smallest

rational affine space containing x, and we can write

x =
k1

k1 + k2
w1 +

k2
k1 + k2

w2 + ξ,

with ∥ξ∥ < η/(k1 + k2).

Proof. Let W be the minimal rational affine subspace containing x, let π : Rn →
Rn/Zn be the quotient map and let G be the closure of the set π(Nx + Zn). Then

by Lemma 2.26 we have π(−k1x) ∈ G and there is k2 ∈ N such that π(k2x) is in

the connected component of π(−k1x) in G and ∥k2x− y∥ < η for some y ∈ Rn with

π(y) = π(−k1x). Thus there is a point w2 ∈ Qn such that k2w2 ∈ Zn, ∥k2x−k2w2∥ <
ε and the open segment (w1, w2) intersects W .

Pick t ∈ (0, 1) such that wt = tw1 + (1 − t)w2 ∈ W , and choose, by Lemma

2.27, rational points w3, . . . , wm ∈ W and positive integers k3, . . . , km such that

kiwi ∈ Zn, ∥x−wi∥ < ε/ki and x =
∑m

i=3 riwi+ rtwt with rt > 0 and all ri > 0, and

rt +
∑m

i=3 ri = 1. Thus x =
∑m

i=1 riwi with r1 = trt and r2 = (1− t)rt.
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Finally, observe that the vector y/k2 − w2 is parallel to the vector x − w1 and

∥y − k2w2∥ = ∥k1x− k1w1∥. Denote z = x− y/k2. Then

x− w1

(w2 + z)− x
=

x− w1

w2 − y/k2
=

k2
k1

,

so

x =
k1

k1 + k2
w1 +

k2
k1 + k2

(w2 + z) =
k1

k1 + k2
w1 +

k2
k1 + k2

w2 + ξ,

where ∥ξ∥ = ∥k2z/(k1 + k2)∥ < η/(k1 + k2).

Remark 2.29. Assuming notation from the previous proof, the connected compo-

nents of G are precisely the connected components of the set π(
∪

k>0 kW ). Therefore

y/k2 ∈ W .

Remark 2.30. Assume λ : V → W is a linear map between vector spaces such that

λ(VQ) ⊂ WQ. Let x ∈ V and let H ⊂ V be the smallest rational affine subspace con-

taining x. Then λ(H) is the smallest rational affine subspace of W containing λ(x).

Otherwise, assume H ′ ̸= λ(H) is the smallest rational affine subspace containing

λ(x). Then λ−1(H ′) is a rational affine subspace containing x and H ̸⊂ λ−1(H ′), a

contradiction.

Definition 2.31. For a real number α set ∥α∥ := min{α− ⌊α⌋, ⌈α⌉ − α}.

The following is a slightly weaker version of [Cas57, Chapter I, Theorem VII]

which is sufficient for the purposes of this thesis. It can be viewed both as a strength-

ening and a weakening Lemma 2.26. On one hand, it gives an effective rational

approximation of a point in Rn in terms of denominators of approximation points.

On the other hand, it does not give uniformity of the distribution of approximations

in the unit cube as in Lemma 2.26.

Theorem 2.32. Let θ1, . . . , θn be real numbers. There are infinitely many positive

integers q such that

max{∥qθ1∥, . . . , ∥qθn∥} < q−1/n.



Chapter 3

Finite Generation in the MMP

In this chapter I review a part of the recent progress in settling some of the main

conjectures in the Minimal Model Program. I concentrate on finite generation of

the canonical ring, in particular on the techniques introduced by Shokurov, Hacon

and McKernan in order to resolve a special case related to pl flips. Pl flips are

important because they give a good candidate for what to restrict our algebra to–

it is the unique log canonical centre which is, possibly after shrinking, proportional

to an adjoint bundle. This enables one to deal pretty quickly with the issue of

finite generation of the kernel of the restriction map, and the focus shifts to finite

generation of the image. Some of these methods will be employed in Chapter 6 in

the general construction related to the finite generation. In particular, the central

role is played by the extension theorem of Hacon and McKernan.

3.1 Review of the Minimal Model Program

In this section I review the Minimal Model Program in the case of log canonical

singularities. Some of the results have only been established recently in the work by

Ambro and Fujino [Amb03, Fuj07b].

The base of the programme is the following fundamental theorem.

Theorem 3.1 (Cone and Contraction Theorem). Let (X,∆) be a log canonical pair

and let π : X → Z be a projective morphism. Denote RC = R+[C] for a rational

curve C in X and its class [C] ∈ NE(X). Then:

23
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(1) there are countably many rational curves Ci such that π(Ci) is a point for every

i and 0 < −(KX +∆) · Ci < 2 dimX, and

NE(X/Z) = NE(X/Z)KX+∆≥0 +
∑
i

RCi
.

Such RC are called extremal rays,

(2) for any ε > 0 and any π-ample R-divisor H we have

NE(X/Z) = NE(X/Z)KX+∆+εH≥0 +
∑
finite

RCi
,

(3) let R ⊂ NE(X/Z) be a (KX+∆)-negative extremal ray. Then there is a unique

morphism φR : X → Y such that φR has connected fibres, Y is projective over

Z, ρ(Y/Z) = ρ(X/Z) − 1, and an irreducible curve C ⊂ X is mapped to a

point by φR if and only if [C] ∈ R. Furthermore, if L is a line bundle on X

such that L ∈ R⊥, then there is a line bundle LY on Y such that L ≃ φ∗
RLY .

The map φR is called the contraction of R.

Remark 3.2. The estimate on the length of rays in Theorem 3.1(1) is obtained

using the full force of the MMP for klt pairs [BCHM06]. It is conjectured that there

is a sharper estimate 0 < −(KX +∆) ·Ci < dimX+1. I will not use these estimates

here.

The following result is closely related to Contraction Theorem.

Theorem 3.3 (Basepoint Free Theorem). Assume (X,∆) is a klt pair, f : X → Z

a proper morphism and D an f -nef Cartier divisor such that dD − (KX + ∆) is

f -nef and f -big for some d > 0. Then δD is f -free for all δ ≫ 0.

It is predicted that the outcome of the MMP should be the following:

Conjecture 3.4 (Hard Dichotomy). Let (X,∆) be a log canonical pair.

(1) If κ(X,KX + ∆) ≥ 0, then there is a birational map φ : X 99K Y such that

KY + φ∗∆ is nef; Y is a minimal model.
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(2) If κ(X,KX +∆) = −∞, then there exist a birational map φ : X 99K Y and a

surjective contraction Y → W of an (KY + φ∗∆)-negative extremal ray to a

normal projective variety W with dimW < dimY ; Y is a Mori fibre space.

Let me mention here that if X is a Mori fibre space, then κ(X) = −∞ and X

is uniruled , i.e. there exists a generically finite map Y × P1 99K X with dimY =

dimX − 1 (or equivalently X is covered by rational curves), see [Mat02, Chapter

3]. The reverse implication is much harder to prove. The greatest contributions

in that direction are [BDPP04], which proves that if X is smooth and KX is not

pseudoeffective, then X is uniruled, and [BCHM06], which proves that if KX +∆ is

klt and not pseudoeffective, then the MMP ends with a Mori fibre space.

Starting from Cone and Contraction Theorem, the standard recursive procedure

for the MMP of log canonical pairs goes as in [KM98, 3.31], see Figure 3.1. The

main obstacles to completing the programme are the following two conjectures.

Existence of Flips Conjecture. Let (X,∆) be a Q-factorial log canonical pair

and let f : X → Z be a flipping contraction, i.e. assume f is small and projective

over Z, −(KX +∆) is an f -ample R-divisor, and ρ(X/Z) = 1.

Then there exists a small projective contraction f+ : X+ → Z from a normal

pair (X+,∆+), called a flip of f , such that there is a commutative diagram

X

Z

f
��?

??
??

??
?X X+g //_______ X+

Z

f+

����
��

��
��

with ∆+ = g∗∆, where KX+ +∆+ is f+-ample.

Remark 3.5. By [KMM87, Lemma 3-2-5], a map f : X → Z is a flipping contrac-

tion if and only if it is the contraction of an extremal ray, and f -numerical and

f -linear equivalence coincide.

Termination of Flips Conjecture. There does not exist an infinite sequence of

flips in the flowchart in Figure 3.1.
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start

(X, ∆) log canonical pair

KX + ∆ nef?
(X, ∆) minimal

model

yes

end

ϕ : X → Z

contraction of
extremal ray

no

dimZ < dimX?
ϕ : X → Z

Mori fibre
space

yes

end

ϕ+ : X+ → Z

flip of ϕ

(X, ∆) :=
(X+, ∆+)

codimX Excϕ ≥ 2?
no

yes

(X, ∆) :=
(Z, ϕ∗∆)

no

Figure 3.1: Flowchart of the Minimal Model Program

3.2 Finite Generation and Flips

The following result gives a connection between finite generation problems and bi-

rational geometry, see [KM98, Proposition 3.37] and [KMM87, Proposition 5-1-11].

Theorem 3.6. Let (X,∆) be a Q-factorial log canonical pair over a variety W and

let f : X → Z be a flipping contraction. The flip of f exists if and only if the relative

canonical ring

R(X/Z,KX +∆) =
⊕
n≥0

f∗OX(⌊n(KX +∆)⌋)

is a finitely generated OZ-algebra. Moreover, in that case the flip is unique, X+ =
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ProjZ R(X/Z,KX +∆), X+ is Q-factorial and ρ(X+/W ) = ρ(X/W ).

We can consider a weaker version of the Finite Generation Conjecture.

Conjecture 3.7. Let (X,∆) be a log smooth projective log canonical pair, where

KX + ∆ is big. Then the canonical ring R(X,KX + ∆) is a finitely generated C-
algebra.

The following result shows that existence of flips is a consequence of the weaker

Finite Generation Conjecture.

Lemma 3.8. Let (X,∆) be a Q-factorial log canonical pair and let f : X → Z be a

flipping contraction. Assume Conjecture 3.7. Then the flip of f exists.

Proof. The proof is along the lines of [Fuj07b, Lemma 2.5]. Since the problem is

local, we can assume Z is affine. By compactifying X and Z and by resolving

singularities, we can further assume that X and Z are projective, X is smooth, and

Supp∆ is a simple normal crossing divisor. Let A be a general sufficiently ample

divisor on Z and set ∆′ = ∆+ f∗A. Then KX +∆′ is big, (X,∆′) is log canonical,

and KX +∆ and KX +∆′ are negative on the same curves, so it is enough to prove

the existence of the (KX + ∆′)-flip. But this follows from Theorem 3.6 since the

ring R(X,KX +∆′) is finitely generated by Conjecture 3.7.

In the case of klt singularities, it is enough to prove the weaker version of the finite

generation in order to obtain Finite Generation Conjecture, see Lemma 3.11 below.

First we recall the following notion. If R =
⊕

n∈N Rn is a graded algebra which is an

integral domain and if d is a positive integer, the algebra R(d) =
⊕

n∈N Rdn is called

a truncation of R. The following basic result, which will be partially generalised in

Lemma 5.5(1), says that we can freely pass to truncations when dealing with finite

generation issues.

Lemma 3.9. Let R be a graded algebra which is an integral domain and let d be

a positive integer. Then R is finitely generated if and only if the truncation R(d) is

finitely generated.

Proof. Fix a positive integer d. It is easy to see that there is an action of the cyclic

group Zd on R such that R(d) is the ring of invariants of R under this action. Thus
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if R is finitely generated, so is R(d) according to E. Noether’s theorem on the finite

generation of the ring of invariants by a finite group.

Now assume R(d) is finitely generated. Each f ∈ R is integral over R(d) since it

is a zero of the polynomial T d − fd ∈ R(d)[T ]. Therefore R is finitely generated by

the theorem of E. Noether on finiteness of integral closures.

The key result is the following theorem of Fujino and Mori [FM00, Theorem 5.2]

which is a consequence of their Canonical Bundle Formula.

Theorem 3.10. Let (X,∆) be a proper klt pair with κ(X,KX + ∆) = l ≥ 0.

Then there exist a projective l-dimensional klt pair (X ′,∆′) with X ′ smooth and

κ(X ′, KX′ +∆′) = l, and positive integers d, d′ such that

R(X,KX +∆)(d) ≃ R(X ′, KX′ +∆′)(d
′).

Now we can prove the result promised.

Lemma 3.11. Let (X,∆) be a projective klt pair and assume Conjecture 3.7. Then

the canonical ring R(X,KX +∆) is finitely generated.

Proof. We can assume κ(X,KX + ∆) = l ≥ 0 since the finite generation is trivial

otherwise. By Theorem 3.10, there exist a pair (X ′,∆′) withX ′ smooth andKX′+∆′

big, and positive integers d, d′ such that R(X,KX + ∆)(d) ≃ R(X ′, KX′ + ∆′)(d
′).

Let f : Y → X ′ be a log resolution of the pair (X ′,∆′), and let Γ = B(X ′,∆′)Y .

Let k be a positive integer such that k(KX′ + ∆′) is Cartier. Then KY + Γ is big

and R(X ′, KX′ +∆′)(k) ≃ R(Y,KY + Γ)(k), and therefore R(X,KX +∆) is finitely

generated by Conjecture 3.7 and Lemma 3.9.

3.3 Pl Flips

In this section I concentrate on the method that was used to prove the existence of

pl flips in [Sho03, HM07, HM08]. Much of the presentation is taken from [HM08].

The following theorem is [BCHM06, Theorem F], and it establishes finite gen-

eration of the canonical ring and certain asymptotic properties of adjoint divisors

using the full force of the MMP. Granting it in dimension n− 1, we will prove finite

generation of certain algebras in dimension n.
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Theorem 3.12. Let π : X → Z be a projective morphism to a normal affine variety.

Let (X,∆ = A + B) be a Q-factorial klt pair of dimension n, where A is an ample

Q-divisor and KX +∆ is pseudo-effective.

(1) If KX + ∆ is Q-Cartier, then the canonical ring R(X,KX + ∆) is finitely

generated.

(2) Let V ⊂ WDiv(X)R be the vector space spanned by the components of B.

Then there is a constant δ > 0 such that if B′ ∈ V , where KX +A+B′ is log

canonical and ∥B′ −B∥ < δ, then Fix(KX +∆) ⊂ Fix(KX + A+B′).

(3) Let W ⊂ V be the smallest rational affine subspace of WDiv(X)R containing

B. Then there is a constant η > 0 and a positive integer r > 0 such that if

B′ ∈ W is any divisor and k is any positive integer such that ∥B′−B∥ < η and

k(KX+A+B′)/r is Cartier, then Supp(Fix |k(KX+A+B′)|) ⊂ Fix(KX+∆).

Let us recall the definition of the main object of this section.

Definition 3.13. Let (X,∆) be a Q-factorial dlt pair and f : (X,∆)→ Z a flipping

contraction. We say f is a pre limiting (pl) flipping contraction if there is an f -

negative irreducible component S ⊂ ⌊∆⌋.

The following result of Shokurov is fundamental in order to apply finite genera-

tion techniques. For an accessible proof see [Fuj07a, Theorem 4.2.1].

Theorem 3.14. Assume the MMP for Q-factorial dlt pairs in dimension n − 1.

If flips of pl flipping contractions exist in dimension n, then flips of klt flipping

contractions exist in dimension n.

Assumption on the MMP in dimension n− 1 can be relaxed, and that is a route

undertaken in [BCHM06] to complete the proof of finite generation of the canonical

ring of klt pairs using a convoluted induction process heavily involving techniques

of the MMP.

Therefore, we can concentrate on proving the existence of pl flips. If f : (X,∆)→
Z is a pl flipping contraction, where S ⊂ ⌊∆⌋ is an f -negative component, then for

a small positive rational number ε the pair (X,S + (1 − ε)(∆ − S)) is plt and

KX +S+(1− ε)(∆−S) is f -negative, so we can assume that (X,∆) is plt and ⌊∆⌋
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is irreducible. Since the question of existence of flips is local, we can assume that

the base is affine. In particular, we will prove

Theorem 3.15. Assume Theorem 3.12 in dimension n − 1. Let (X,∆) be a plt

pair of dimension n, where S = ⌊∆⌋ is a prime divisor, and consider a pl flipping

contraction f : X → Z with Z affine. Then the algebra R(X/Z,KX +∆) is finitely

generated. In particular, the flip of f exists.

The rest of this section is devoted to proving Theorem 3.15.

Remark 3.16. For a Cartier divisor D and a prime Cartier divisor S on a variety

X, let σS ∈ H0(X,S) be a section such that div σS = S. From the exact sequence

H0(X,OX(D − S))
·σS−→ H0(X,OX(D))

ρD,S−→ H0(S,OS(D))

we denote resS H
0(X,OX(D)) = Im(ρD,S).

Definition 3.17. Let (X,∆) be a plt pair of dimension n, where S = ⌊∆⌋ is a prime

divisor, and let f : X → Z be a projective morphism with Z affine. The restricted

algebra of R(X,KX +∆) is

RS(X,KX +∆) =
⊕
n≥0

resS H
0(X, ⌊n(KX +∆)⌋).

The idea from the proof of the following result will serve as a model in the proof

given in Section 6.2.

Lemma 3.18. Let (X,∆) be a plt pair of dimension n, where S = ⌊∆⌋ is a

prime divisor, and let f : X → Z be a pl flipping contraction with Z affine. Then

R(X,KX+∆) is finitely generated if and only if RS(X,KX+∆) is finitely generated.

Proof. We will concentrate on sufficiency, since necessity is obvious.

By Remark 3.5 numerical and linear equivalence over Z coincide. Since ρ(X/Z) =

1, and both S and KX +∆ are f -negative, there exists a positive rational number r

such that S ∼Q,f r(KX +∆). By considering open subvarieties of Z we can assume

that S − r(KX +∆) is Q-linearly equivalent to a pullback of a principal divisor.

Therefore S ∼Q r(KX + ∆), and since then R(X,S) and R(X,KX + ∆) have

isomorphic truncations, it is enough to prove that R(X,S) is finitely generated by
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Lemma 3.9. Since a truncation of resS R(X,S) is isomorphic to a truncation of

RS(X,KX +∆), we have that resS R(X,S) is finitely generated. If σS ∈ H0(X,S)

is a section such that div σS = S and H is a finite set of generators of the finite

dimensional vector space
⊕d

i=1 resS H
0(X, iS), for some d, such that the set {s|S :

s ∈ H} generates resS R(X,S), it is easy to see thatH∪{σS} is a set of generators of
R(X,S), since ker(ρkS,S) = H0(X, (k− 1)S) ·σS for all k, in the notation of Remark

3.16.

The following is the Hacon-McKernan extension theorem [HM08, Theorem 6.3].

Theorem 3.19. Let π : X → Z be a projective morphism to an affine variety Z,

where (X,∆ = S+A+B) is a plt pair, S = ⌊∆⌋ is irreducible, (X,S) is log smooth,

A is a general ample Q-divisor and (S,Ω+A|S) is canonical, where Ω = (∆− S)|S.

Assume S ̸⊂ B(KX +∆), and let

F = lim inf
m→∞

1
m
Fix |m(KX +∆)|S.

If ε > 0 is any rational number such that ε(KX +∆) +A is ample, and if Φ is any

Q-divisor on S and k > 0 is any integer such that both k∆ and kΦ are Cartier and

Ω ∧ (1− ε
k
)F ≤ Φ ≤ Ω, then

|k(KS + Ω− Φ)|+ kΦ ⊂ |k(KX +∆)|S.

The next result is a crucial application of the extension of sections, and it will

also be used in Chapter 6.

Theorem 3.20. Assume Theorem 3.12 in dimension n − 1. Let π : X → Z be a

projective morphism to an affine variety, and let (X,∆ = S + A + B) be a plt pair

of dimension n, S = ⌊∆⌋ is irreducible, (X,S) is log smooth, A is a general ample

Q-divisor, B is a Q-divisor and (S,Ω + A|S) is canonical, where Ω = (∆ − S)|S.

Assume S ̸⊂ B(KX +∆), and let

F = lim inf
m→∞

1
m
Fix |m(KX +∆)|S.
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Then Θ = Ω−Ω∧ F is rational. In particular, if both k∆ and kΘ are Cartier then

|k(KS +Θ)|+ k(Ω−Θ) = |k(KX +∆)|S,

and

RS(X,KX +∆)(k) ≃ R(S,KS +Θ)(k).

Proof. Suppose that Θ is not rational and let V ⊂ Div(S)R be the vector space

spanned by the components of Θ−A|S. Then there is a constant δ > 0 such that if

Φ ∈ V is effective and ∥Φ + A|S − Θ∥ < δ, then Φ + A|S has the same support as

Θ and Fix(KS +Θ) ⊂ Fix(KS +Φ+A|S) by Theorem 3.12(2). Pick l≫ 0 so that

l(KX +∆) is Cartier, Θl = Ω− Ω ∧ Fl ∈ V and ∥Θl −Θ∥ < δ. Then

|l(KX +∆)|S ⊂ |l(KS +Θl)|+ l(Ω ∧ Fl),

hence Fix |l(KS + Θl)| does not contain any components of Θl. It follows that no

component of Θ is in B(KS +Θ).

Let W ⊂ V be the smallest rational affine space which contains Θ − A|S. By

Theorem 3.12(3), take a positive integer r > 0 and a positive constant η > 0 such

that if Φ ∈ W , k(Φ+A|S)/r is Cartier and ∥Φ+A|S−Θ∥ < η, then Supp(Fix |k(KS+

Φ+ A|S)|) ⊂ Fix(KS +Θ).

Pick a rational number ε > 0 such that ε(KX +∆)+A is ample, and let f be the

smallest non-zero coefficient of F . By Lemma 2.26, we may find an effective divisor

Φ ∈ W , a prime divisor G on S and a positive integer k such that both k(Φ+A|S)/r

and k∆/r are Cartier, ∥Φ + A|S − Θ∥ < min(δ, η, fε/k), and multG Φ > multG Θ.

Then it is easy to check that Ω ∧ (1− ε
k
)F ≤ Ω− Φ, so Theorem 3.19 implies that

|k(KS + Φ)|+ k(Ω− Φ) ⊂ |k(KX +∆)|S.

Since multG Φ > multG Θ, we have that G is a component of Fix |k(KS + Φ)|, and
therefore a component of Fix(KS +Θ) because ∥Φ−Θ∥ < η, a contradiction.

Thus Θ is rational, and we are done by Theorem 3.19.

Corollary 3.21. Assume Theorem 3.12 in dimension n − 1. Let π : X → Z be a

projective morphism to an affine variety Z, where (X,∆ = S +A+B) is a plt pair
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of dimension n, S = ⌊∆⌋ is irreducible with S ̸⊂ B(KX +∆), (X,S) is log smooth,

A is a general ample Q-divisor and B is a Q-divisor.

Then there exist a birational morphism g : T → S, a positive integer l and a klt

pair (T,Θ) such that KT +Θ is Q-Cartier and

RS(X,KX +∆)(l) ≃ R(T,KT +Θ)(l).

Proof. By Lemma 2.7, there is a log resolution f : Y → X such that the components

of Γ′ − T are disjoint, where T = f−1
∗ S and Γ′ = B(X,∆)Y . In particular, the pair

(T, (Γ′ − T )|T ) is terminal and note that T ̸⊂ B(KY + Γ′) as S ̸⊂ B(KX +∆).

Since A is general, we have f∗A = f−1
∗ A. LetH be a small effective f -exceptional

Q-divisor such that f ∗A−H is ample and (Y,Γ′ +H) is plt. Let C ∼Q f ∗A−H be

a general ample divisor, and set Γ = Γ′− f ∗A+H +C and Ψ = (Γ−T )|T . Observe

that Γ ≥ 0, Γ ∼Q Γ′ and the pair (Y,Γ) is plt. Then for any k sufficiently divisible we

have R(X,KX+∆)(k) ≃ R(Y,KY +Γ)(k) and RS(X,KX+∆)(k) ≃ RT (Y,KY +Γ)(k).

Since (T,Ψ+ C|T ) is terminal, we can apply Theorem 3.20 to (Y,Γ).

Finally we have:

Proof of Theorem 3.15. We may assume that Z is affine and it suffices to prove that

the restricted algebra is finitely generated by Lemma 3.18. Since S is mobile and

∆ − S is big over Z, we can write ∆ − S ∼Q A + B, where A is a general ample

Q-divisor, B ≥ 0 and S ̸⊂ SuppB. Set ∆′ = S + (1 − ε)(∆ − S) + εA + εB for

a sufficiently small positive rational number ε. Then the pair (X,∆′) is plt and

KX +∆′ ∼Q KX +∆, so we may replace ∆ by ∆′ by Lemma 3.9. Therefore we can

assume that ∆ = S +A+B, where A is a general ample Q-divisor and B ≥ 0, and

the result follows from Corollary 3.21 and Theorem 3.12.
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Chapter 4

Convex Geometry

In this chapter I build techniques in order to prove that superlinear functions sat-

isfying suitable conditions are piecewise linear. I exhibit general properties of such

maps, concentrating on the central role of Lipschitz continuity. The results ob-

tained below will be used in Chapters 5 and 6. I use without explicit mention basic

properties of closed cones, see [Deb01, Section 6.3].

4.1 Functions on Monoids and Cones

Firstly we recall a definition.

Definition 4.1. Let C be a cone in Rn and let ∥ · ∥ be any norm on Rn. A function

f : C → R is locally Lipschitz if for every point x ∈ int C there are a closed ball

Bx ⊂ C centred at x and a constant λx such that |f(y)− f(z)| ≤ λx∥y − z∥ for all
y, z ∈ Bx.

Every locally Lipschitz function is continuous on int C. Therefore if a function is

locally Lipschitz, we say it is locally Lipschitz continuous . The next result can be

found in [HUL93].

Proposition 4.2. Let C be a cone in Rn and let f : C → R be a concave function.

Then f is locally Lipschitz continuous on the topological interior of C with respect

to any norm ∥ · ∥ on Rn.

In particular, let C be a rational polyhedral cone and assume a function g : CQ →
Q is Q-superadditive. Then g extends to a unique superlinear function on C.

35
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Proof. Since f is locally Lipschitz if and only if −f is locally Lipschitz, we can

assume f is convex. Fix x = (x1, . . . , xn) ∈ int C, and let ∆ = {(y1, . . . , yn) ∈ Rn
+ :∑

yi ≤ 1}. It is easy to check that translations of the domain do not affect the

result, so we may assume x ∈ int∆ ⊂ int C.
Firstly let us prove that f is bounded above on ∆. Let {ei} be the standard

basis in Rn, y = (y1, . . . , yn) ∈ ∆ and let y0 = 1−
∑

yi ≥ 0. Then

f(y) = f
(∑

yiei + y0 · 0
)
≤

∑
yif(ei) + y0f(0)

≤ max{f(0), f(e1), . . . , f(en)} =: M.

For each γ > 0 denote Bx(γ) = {z ∈ Rn : ∥z − x∥ ≤ γ}. Choose δ such that

Bx(2δ) ⊂ int∆. Again by translating the domain and composing f with a linear

function we may assume that x = 0 and f(0) = 0. Then for all y ∈ B0(2δ) we have

−f(y) = −f(y) + 2f(0) ≤ −f(y) + f(y) + f(−y) = f(−y) ≤M,

so |f | ≤M on B0(2δ).

Fix u, v ∈ B0(δ). Set α = ∥v − u∥/δ and w = v + α−1(v − u) ∈ B0(2δ) so that

v = α
α+1

w + 1
α+1

u. Then convexity of f gives

f(v)− f(u) ≤ α

α+ 1
f(w) +

1

α+ 1
f(u)− f(u)

=
α

α+ 1

(
f(w)− f(u)

)
≤ 2Mα =

2M

δ
∥v − u∥.

Similarly f(u)− f(v) ≤ 2M∥u− v∥/δ, giving

|f(v)− f(u)| ≤ L∥v − u∥

for all u, v ∈ B0(δ) and L = 2M/δ.

For the second claim, it is enough to apply the proof of the first part of the

lemma with respect to the sup-norm ∥ · ∥∞; observe that ∥ · ∥∞ takes values in Q on

CQ. Applied to the interior of C and to the relative interiors of the faces of C shows

g is locally Lipschitz, and therefore extends to a unique superlinear function on the

whole C.
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I will use the following result, classically referred to as Gordan’s lemma, often

without explicit mention.

Lemma 4.3. Let S ⊂ Nr be a finitely generated monoid and let C ⊂ Rr be a rational

polyhedral cone. Then the monoid S ∩ C is finitely generated.

Proof. Assume first that dim C = r. Let ℓ1, . . . , ℓm be linear functions on Rr with

integral coefficients such that C =
∩m

i=1{z ∈ Rr : ℓi(z) ≥ 0} and define S0 = S
and Si = Si−1 ∩ {z ∈ Rr : ℓi(z) ≥ 0} for i = 1, . . . ,m; observe that S ∩ C = Sm.
Assuming by induction that Si−1 is finitely generated, by [Swa92, Theorem 4.4] we

have that Si is finitely generated.

Now assume dim C < r and let H be a rational hyperplane containing C. Let ℓ

be the linear function with rational coefficients such that H = ker(ℓ). From the first

part of the proof applied to the functions ℓ and −ℓ we have that the monoid S ∩H
is finitely generated. Now we proceed by descending induction on r.

The following simple lemmas will turn out to be indispensable and they show

that in the context of our assumptions it is enough to check additivity (respectively

linearity) of the map at one point only.

Lemma 4.4. Let S =
∑n

i=1 Nei be a monoid and let f : S → G be a superadditive

map to a monoid G. Assume that there is a point s0 =
∑

siei ∈ S with all si > 0

such that f(s0) =
∑

sif(ei) and that f(κs0) = κf(s0) for every positive integer κ.

Then the map f is additive.

Proof. For p =
∑

piei ∈ S, let κ0 be a big enough positive integer such that κ0si ≥ pi

for all i. Then we have

n∑
i=1

κ0sif(ei) = κ0f(s0) = f(κ0s0) ≥ f(p) +
n∑

i=1

f
(
(κ0si − pi)ei

)
≥

n∑
i=1

f(piei) +
n∑

i=1

f
(
(κ0si − pi)ei

)
≥

n∑
i=1

pif(ei) +
n∑

i=1

(κ0si − pi)f(ei) =
n∑

i=1

κ0sif(ei).

Therefore all inequalities are equalities and f(p) =
∑

pif(ei).
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Analogously we can prove a continuous counterpart of the previous result.

Lemma 4.5. Let C =
∑n

i=1 R+ei be a cone in Rr and let f : C → V be a superlinear

map to a cone V . Assume that there is a point s0 =
∑

siei ∈ C with all si > 0 such

that f(s0) =
∑

sif(ei). Then the map f is linear.

4.2 Forcing Diophantine Approximation

In this section I will prove the following.

Theorem 4.6. Let S ⊂ Nr be a finitely generated monoid and let f : SR → R be

a superlinear map. Assume that there is a real number c > 0 such that for every

s1, s2 ∈ S, either f(s1 + s2) = f(s1) + f(s2) or f(s1 + s2) ≥ f(s1) + f(s2) + c. Let

C be a rational polyhedral cone in intSR. Then f|C is rationally piecewise linear.

Corollary 4.7. Let S ⊂ Nr be a finitely generated monoid and let f : SR → R be a

superlinear map such that f(S) ⊂ Z. Let C be a rational polyhedral cone in intSR.
Then f|C is rationally piecewise linear.

Remark 4.8. In Theorem 4.6 and Corollary 4.7, instead of S ⊂ Nr we can assume

that S ⊂ Qr and that SR is strongly convex.

Example 4.9. The condition f(S) ⊂ Z in Corollary 4.7 is crucial. Let S = N(0, 1)+
N(1, 2) ⊂ R2 and let f : [0, 1] → R be a function given by f(x) = −x2 + 2x + 1.

Let xn = ( 1
n
, f( 1

n
)) for positive integers n, set Cn = R+xn + R+xn+1 and define

g(αxn + βxn+1) = αf( 1
n
) + βf( 1

n+1
) for α, β ≥ 0. We obviously have g(S) ⊂ Q and

that g is superlinear and continuous, but it is not PL on the cone SR.

The first step in the proof of Theorem 4.6 is the following.

Lemma 4.10. Let S = Nr+1 and let f : SR → R be a superlinear map. Assume

that there is a real number c > 0 such that for every s1, s2 ∈ S, either f(s1 + s2) =

f(s1) + f(s2) or f(s1 + s2) ≥ f(s1) + f(s2) + c. Let x = (1, x1, . . . , xr) ∈ intSR and

let R be a ray in SR not containing x.

Then there exists a ray R′ ⊂ R+x + R not containing x such that the map

f |R+x+R′ is linear.
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Proof. By induction, I assume Theorem 4.6 when dimSR = r.

The proof consists of three parts. In Steps 2-8 I assume the components of x are

linearly independent over Q. In Step 9 I assume that x is a rational point while the

remaining case when x is a non-rational point which belongs to a rational hyperplane

is settled in Step 10.

Step 1: Let H be any 2-plane not contained in a rational hyperplane. Points of the

form (1, z1, . . . , zr), where 1, z1, . . . , zr are linearly independent over Q, are dense on

the line L = H ∩ (z0 = 1). Otherwise there would exist an open neighbourhood U

on L such that for each point z ∈ U there is a rational hyperplane Hz ⊃ Rz. But

the set of rational hyperplanes is countable.

On the other hand, fix a rational point t ∈ Rr+1\H and observe rational hyper-

planes containing R+t. I claim that the set of points which are intersections of those

hyperplanes and the line L are dense on L. To see this, let y = (1, y1, . . . , yr) be a

point in H and let A = (α0z0 + · · ·+αrzr = 0) be any hyperplane containing y and

t. H is given as a solution of a system of r−1 linear equations in z0, . . . , zr, thus y is

a solution of a system of r linear equations and the components of y are linear func-

tions in α0, . . . , αr, where αi are linearly dependent over Q (since t ∈ A). Therefore,
without loss of generality, wiggling αi for i < r we can obtain a point y′ ∈ L arbi-

trarily close to y which belongs to a rational hyperplane A′ = (α′
0z0+ · · ·+α′

rzr = 0)

containing t. Furthermore, if H contains a rational point t0, then y′ cannot belong

to a rational plane Ã of dimension < n − 1 since otherwise H would be contained

in a rational hyperplane generated by Ã and t0.

Step 2: In Steps 2-8 I assume that the real numbers 1, x1, . . . , xr are linearly inde-

pendent over Q.

By Theorem 2.32, there are infinitely many positive integers q such that

∥qxi∥ < q−1/r (4.1)

for all i. Fix such a q big enough so that the ball of radius 1/q centred at x is

contained in intSR and so that q1/r > r, and in particular
∑
∥qxi∥ < 1. Let pi be

positive integers with |qxi − pi| < q−1/r.
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Let

p̂i =

⌊qxi⌋ if pi = ⌈qxi⌉

⌈qxi⌉ if pi = ⌊qxi⌋.

Let e0, e1, . . . , er be the standard basis of Rr+1. Set

u0 = qe0 +
∑

piei and ui = qe0 +
∑

j ̸=i
pjej + p̂iei

for i = 1, . . . , r. From (4.1) we have

∥x− u0/q∥∞ < q−1−1/r. (4.2)

It is easy to see that u0, . . . , ur are linearly independent and that(
1−

∑
∥qxi∥

)
u0 +

∑
∥qxi∥ui = qx. (4.3)

Assume that for every open cone U containing x the map f|U is not linear . Then

in Steps 3-7 I will prove that for all q ≫ 0 satisfying (4.1) we have

f(x) =
(
1−

∑
∥qxi∥

)
f(u0/q) +

∑
∥qxi∥f(ui/q) + eq, (4.4)

where eq ≥ c(1−
∑
∥qxi∥)/q. I will then derive a contradiction in Step 8.

Step 3: Let K =
∑

i≥0R+ui and Ki = R+x +
∑

j ̸=iR+uj for i = 0, . . . , r; observe

that K =
∪

i≥0Ki. Define the sequences vn ∈ Nr+1 and jn ∈ N as follows: set v0 =∑
i≥0 ui. If vn is defined then, since the components of x are linearly independent

over Q, there is a unique jn ∈ {0, . . . , r} such that vn belongs to the interior of Kjn .

Set vn+1 = vn + ujn . Define the sequence of non-negative real numbers en by

f(vn+1) = f(vn) + f(ujn) + en.

Step 4: In this step I assume that for all n ≥ n0 with jn = 0 we have en ≥ c. Then

we have

f(vn) =
r∑

i=0

α
(n)
i f(ui) + e(n), (4.5)
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where α
(n)
i ∈ N and e(n) ≥ c(α

(n)
0 −n0). Observe that vn =

∑r
i=0 α

(n)
i ui, and therefore

from Lemma 4.11 we have

qx = lim
n→∞

vn
n

=
r∑

i=0

lim
n→∞

α
(n)
i

n
ui.

Since ui are linearly independent, from (4.3) we obtain

lim
n→∞

α
(n)
0

n
= 1−

∑
∥qxi∥

and

lim
n→∞

α
(n)
i

n
= ∥qxi∥ for i > 0.

Dividing (4.5) by n, taking a limit when n → ∞ and using continuity of f and

Lemma 4.11 we obtain

f(qx) =
(
1−

∑
∥qxi∥

)
f(u0) +

∑
∥qxi∥f(ui) + êq,

where êq ≥ c(1−
∑
∥qxi∥). Dividing now by q we get (4.4).

Step 5: In Steps 5-7 I assume there are infinitely many n with jn = 0 and en = 0.

Then by Lemma 4.5 the map f |R+vn+R+u0 is linear for each such n (observe that

when r = 1 this finishes the proof since then x ∈ int(R+vn + R+u0)). But then we

have

f(vn/n+ u0) = f(vn/n) + f(u0),

so letting n→∞ and using Lemma 4.11 we get

f(qx+ u0) = f(qx) + f(u0),

thus the map f |R+x+R+u0 is linear by Lemma 4.5.

Let us first prove that there is an (r+1)-dimensional polyhedral cone Cr+1 such

that R+x + R+u0 ⊂ Cr+1, (R+x + R+u0) ∩ int Cr+1 ̸= ∅ and f|Cr+1 is linear. Let

t ∈ intSR\(Rx+Ru0) be a rational point. By Step 1 there is a rational hyperplane
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H ∋ t such that there is a nonzero w ∈ H∩ relint(R+x+R+u0), and there does not

exist a rational plane of dimension < n− 1 containing w. By Theorem 4.6 applied

to H ∩ SR there is an r-dimensional cone Cr =
∑r

i=1 R+hi ⊂ H ∩ SR such that

w ∈ relint Cr and f|Cr is linear. Set Cr+1 = Cr + R+x + R+u0. Now if w =
∑

µihi

with all µi > 0, since f is linear on Cr we have

f
(
x+ u0 +

∑
µihi

)
= f(x+ u0 + w)

= f(x) + f(u0) + f(w) = f(x) + f(u0) +
∑

µif(hi),

so the map f|Cr+1 is linear by Lemma 4.5.

Step 6: Let C = R+g1 + · · · + R+gm be any (r + 1)-dimensional polyhedral cone

containing x such that f|C is linear and let ℓ be the linear extension of f|C to Rr+1.

Assume that for a point h ∈ SR we have f |R+h = ℓ|R+h. There are real numbers λi

such that

h =
∑

i
λigi.

Then setting e :=
∑

(1 + |λi|)gi + h =
∑

(1 + |λi|+ λi)gi ∈ C we have

f(e) = ℓ
(∑

(1 + |λi|+ λi)gi

)
=

∑
(1 + |λi|+ λi)ℓ(gi)

=
∑

(1 + |λi|)ℓ(gi) + ℓ(h) =
∑

(1 + |λi|)f(gi) + f(h),

so f is linear on the cone C + R+h by Lemma 4.5. Therefore the set Ĉ = {z ∈ SR :

f(z) = ℓ(z)} is an (r + 1)-dimensional closed cone.

Step 7: Since f is not linear in any open neighbourhood of x we have x /∈ int Ĉ.
Therefore there is a tangent hyperplane T to Ĉ containing x. Let W1 and W2 be

the half-spaces such that W1 ∩ W2 = T , W1 ∪ W2 = Rr+1 and Ĉ ⊂ W1. Since

(R+x+ R+u0) ∩ int Ĉ ̸= ∅ we must have (Rx+ Ru0) ∩W2 ̸= ∅.
By Step 1 applied to the 2-plane Rx+Ru0, for every non-negative ε < q−1−1/r−

max{∥qxi∥/q} let

xε = (1, xε,1, . . . , xε,r) ∈ (Rx+ Ru0) ∩W2

be such that 0 < ∥x− xε∥∞ ≤ ε and the components of xε are linearly independent
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over Q. The map f |R+u0+R+xε is not linear since otherwise we would have f(xε) =

ℓ(xε). Observe that |qxε,i − pi| < q−1/r for every i. Then as in Step 4 we have

f(qxε) =
(
1−

∑
∥qxε,i∥

)
f(u0) +

∑
∥qxε,i∥f(ui) + êq,

where êq ≥ c(1 −
∑
∥qxε,i∥). Finally dividing by q and letting ε → 0 we obtain

(4.4).

Step 8: Therefore for all q ≫ 0 satisfying (4.1) we have (4.4). Then since f is locally

Lipschitz around x there is a constant L > 0 such that

c(q1/r − r)q−1−1/r < c
(
1−

∑
∥qxi∥

)
/q ≤ eq

= f(x)−
(
1−

∑
∥qxi∥

)
f(u0/q)−

∑
∥qxi∥f(ui/q)

=
(
f(x)− f(u0/q)

)
+
∑
∥qxi∥

(
f(u0/q)− f(ui/q)

)
≤ L∥x− u0/q∥∞ +

∑
∥qxi∥L∥u0/q − ui/q∥∞

< Lq−1−1/r +
r∑

i=1

q−1/rLq−1 = L(r + 1)q−1−1/r,

where I used (4.1) and (4.2). Hence L > c
r+1

(q1/r − r) for q ≫ 0, a contradiction.

Thus if 1, x1, . . . , xr are linearly independent over Q then there is an open cone

containing x where f is linear, so the lemma follows. In particular there are linearly

independent rational rays R1, . . . , Rr+1 ⊂ intSR such that R ⊂ int(R1 + · · ·+Rr+1)

and the map f |R1+···+Rr+1 is linear.

Step 9: Assume now that x is a rational point. By induction I assume there does

not exist a rational hyperplane containing R+x and R. By clearing denominators I

can assume x = (κ, x1, . . . , xr) where κ, xi ∈ N.
Fix q big enough so that the ball of radius 1/q centred at x is contained in intSR

and so that q1/r > r. Fix a positive ε < q−1−1/r. By Step 1 there is a point

xε = (κ, xε,1, . . . , xε,r) ∈ R+x+R

such that ∥x−xε∥∞ ≤ ε and the components of xε are linearly independent over Q.
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Set u0 = qx, define integers pi and p̂i with respect to xε as in Step 2 and set

ui = qκe0 +
∑
j ̸=i

pjej + p̂iei

for i = 1, . . . , r. Then u0, . . . , ur are linearly independent and we have(
1−

∑
∥qxε,i∥

)
u0 +

∑
∥qxε,i∥ui = qxε.

With respect to xε define the sequences vn ∈ Nr+1 and (jn, en) ∈ N×R+ as in Step

3. Assume that for all n ≥ n0 with jn = 0 we have en ≥ c. Then as in Step 4 we

obtain

f(qxε) =
(
1−

∑
∥qxε,i∥

)
f(u0) +

∑
∥qxε,i∥f(ui) + êq, (4.6)

where êq ≥ c(1 −
∑
∥qxε,i∥). If (4.6) stands for every ε < q−1−1/r then dividing

(4.6) by q and letting ε→ 0 we get

f(x) = f(x) + eq

where eq ≥ c/q, a contradiction. Therefore there is a positive ε < q−1−1/r such that

there are infinitely many n with jn = 0 and en = 0. But then as in Step 5 we have

that the map f |R+x+R+xε is linear and we are done.

Step 10: Assume finally that x is a non-rational point contained in a rational hy-

perplane; let H be a rational plane of the smallest dimension containing x and set

k = dimH. Let R = R+v.

By Theorem 4.6 there is a rational cone C =
∑k

i=1 R+gi ⊂ H with gi being

rational points such that f|C is linear and x ∈ relint C, or equivalently x =
∑

λigi

with all λi > 0. Take a rational point y =
∑k

i=1 gi. Then by Step 9 there is a point

x′ = αy + βv with α, β > 0 such that the map f |R+y+R+x′ is linear. Now we have

f
(∑

gi + x′
)
= f(y + x′) = f(y) + f(x′) =

∑
f(gi) + f(x′),

so the map f |C+R+x′ is linear by Lemma 4.5. Taking µ = max
i
{ α
λiβ
} and setting
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v̂ = µx+ v ∈ relint(R+x+R), it is easy to check that

v̂ =
∑

(µλi − α
β
)gi +

1
β
x′ ∈ C + R+x

′,

so the map f |R+x+R+v̂ is linear.

Lemma 4.11. Assume the notation from Lemma 4.10. Then

lim
n→∞

vn
n

= qx.

Proof. I work with the standard scalar product ⟨·, ·⟩ and the induced Euclidean norm

∥ · ∥; denote wn = vn
n+r+1

. It is enough to prove limn→∞wn = qx. By restricting to

the hyperplane (z0 = q) in Rr+1 I assume the ambient space is Rr.

u1

u0 u2

W1

W2

qx
H1

H3

H2

σ0

Hρ

Step 1: Let σ denote the simplex with vertices u0, . . . , ur and let d =
√
2 be the

diameter of σ. For each i, let σi be the simplex with vertices qx and uj for j ̸= i.

The points wn belong to σ and

wn+1 =
1

n+ r + 2

(
(n+ r + 1)wn + ujn

)
,

so we immediately get

∥wn − wn+1∥ ≤
d

n+ r + 2
. (4.7)

For α = 1, . . . ,
(
r+1
2

)
let Hα be all hyperplanes containing the faces of the simplices

σi which contain qx.
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Step 2: Let us prove that for each α and for each n,

dist{wn+1, Hα} < dist{wn, Hα} (4.8)

if the segment [wn, wn+1] does not intersect Hα, and otherwise

dist{wn+1, Hα} <
d

n+ r + 2
. (4.9)

To this end, if Hα contains ujn , then obviously dist{wn+1, Hα} < dist{wn, Hα}. If

Hα does not contain ujn , then ujn and wn are on different sides of Hα. Now if the

segment [wn, wn+1] does not intersect Hα then (4.8) is obvious, whereas otherwise

(4.9) follows from (4.7).

Step 3: Now assume that for each α, there are infinitely many segments [wn, wn+1]

intersecting Hα. Then from (4.8) and (4.9) we get

lim
n→∞

dist{wn, Hα} = 0

and thus the sequence wn accumulates on each of the hyperplanes Hα. But
∩

α Hα =

{qx}, so lim
n→∞

wn = qx.

Step 4: Finally let α0 be such that no segment [wn, wn+1] intersectsHα0 for all n ≥ n0

and lim
n→∞

dist{wn, Hα0} = ρ > 0 (the sequence dist{wn, Hα0} converges by (4.8)).

Therefore there is a hyperplane Hρ parallel to Hα0 such that dist{Hρ, Hα0} = ρ and

the sequence wn accumulates on Hρ; let W1 and W2 be the two half-spaces such that

W1∪W2 = Rr and W1∩W2 = Hρ. Relabelling we can assume u0, . . . , ur−1, qx ∈ W1

and wn, ur ∈ W2 for all n ≥ n0; observe that then ujn ∈ {u0, . . . , ur−1} for all n ≥ n0.

By change of coordinates I may assume that Hα0 contains the origin. Fix a

nonzero vector a perpendicular to Hα0 such that W2 ⊂ {z ∈ Rr : ⟨a, z⟩ ≥ 0}. Since
W2 ∩Hα0 = ∅ the linear function ⟨a, ·⟩ attains its minimum m > 0 on the compact
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set W2 ∩ σ. Then since ⟨a, ujn⟩ ≤ 0 for n ≥ n0 we have

dist{wn, Hα0} − dist{wn+1, Hα0} =
⟨a, wn − wn+1⟩

∥a∥

=
⟨a, wn − ujn⟩
(n+ r + 2)∥a∥

≥ m

(n+ r + 2)∥a∥
,

and therefore

dist{wn0 , Hα0} ≥
m

∥a∥
∑
n≥n0

1

n+ r + 2
= +∞,

a contradiction.

Corollary 4.12. Let S ⊂ Nr+1 be a finitely generated monoid and let f : SR → R
be a superlinear map. Assume there is a real number c > 0 such that for every

s1, s2 ∈ S, either f(s1 + s2) = f(s1) + f(s2) or f(s1 + s2) ≥ f(s1) + f(s2) + c. Let

C be a polyhedral cone in intSR.
Then for every 2-plane H the map f|C∩H is piecewise linear.

Proof. If C =
∪
Ci is a finite subdivision of C into rational simplicial cones, then

f|C∩H is PL if and only if f|Ci∩H is PL for every i, so I assume C is simplicial. Take

a basis g1, . . . , gr+1 ∈ S of C, set s :=
∑

gi and let 0 < α≪ 1 be a rational number

such that gi + α(gi − s) ∈ intSR for all i. Take g′i ∈ S ∩ R+

(
gi + α(gi − s)

)
. It is

easy to check that g′i are linearly independent and that C ⊂ int
∑

R+g
′
i. Therefore

I can assume S = Nr+1.

By Lemma 4.10, for every ray R ⊂ C ∩ H there is a polyhedral cone CR with

R ⊂ CR ⊂ C∩H such that there is a polyhedral decomposition CR = CR,1∪CR,2 with

f|CR,1
and f|CR,2

being linear maps, and if R ⊂ relint(C ∩H), then R ⊂ relint CR.
Let ∥ · ∥ be the standard Euclidean norm and let Sr = {z ∈ Rr+1 : ∥z∥ = 1} be

the unit sphere. Restricting to the compact set Sr ∩ C ∩ H we can choose finitely

many polyhedral cones Ci with C ∩ H =
∪
Ci such that each f|Ci is PL. But then

f|C∩H is PL.

Lemma 4.13. Let f be a superlinear function on a polyhedral cone C ⊂ Rr+1 with

dim C = r + 1 such that for every 2-plane H the function f|C∩H is piecewise linear.

Then f is piecewise linear.
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Proof. I will prove the lemma by induction on the dimension.

Step 1: Fix a ray R ⊂ C. In this step I prove that for any ray R′ ⊂ C there is an

(r+1)-dimensional cone C(r+1) ⊂ C containing R such that the map f|C(r+1)
is linear

and C(r+1) ∩ (R +R′) ̸= R.

Let Hr ⊃ (R + R′) be any hyperplane. By induction there is an r-dimensional

polyhedral cone C(r) =
∑r

i=1 R+ei ⊂ Hr ∩ C containing R such that f|C(r) is linear

and C(r) ∩ (R + R′) ̸= R. Set e0 = e1 + · · · + er. Let H2 be a 2-plane such that

H2 ∩ Hr = R+e0. Since f|H2∩C is PL, there is a point er+1 ∈ H2 ∩ C such that

f |R+e0+R+er+1 is linear. Set C(r+1) = R+e1 + · · ·+ R+er+1. Then we have

f
(∑

ei

)
= f(e0 + er+1) = f(e0) + f(er+1) =

∑
f(ei),

so the map f|C(r+1)
is linear by Lemma 4.5. Observe that choosing er+1 appropriately

we can ensure that the cone C(r+1) is contained in either of the half-spaces into which

Hr divides Rr+1.

Step 2: Fix a ray R ⊂ C and let C(r+1) be any (r + 1)-dimensional cone such that

f |C(r+1)
is linear. Let ℓ be the linear extension of f|Cr+1 to Rr+1. Let Ĉ = {z ∈ C :

f(z) = ℓ(z)}; it is a closed cone by Step 6 of the proof of Lemma 4.10.

I claim Ĉ is a locally polyhedral cone (and thus polyhedral). Otherwise, fix a

boundary ray R∞ and let H be any hyperplane containing R∞ such that H∩ int Ĉ ≠
∅. Let Rn be a sequence of boundary rays which converge to R∞ and they are all

on the same side of H.

Let T ⊃ R∞ be any hyperplane tangent to Ĉ. Fix an (r − 1)-plane Hr−1 ⊂ T

containing R∞ and let H⊥
r−1 be the unique 2-plane orthogonal to Hr−1. For each

n consider a hyperplane H
(n)
r generated by Hr−1 and Rn (if Rn ⊂ Hr−1 the we

can finish by induction on the dimension). Let ∥ · ∥ be the standard Euclidean

norm and let Sr = {z ∈ Rr+1 : ∥z∥ = 1} be the unit sphere. The set of points∪
n∈N

(
Sr ∩H⊥

r−1 ∩H
(n)
r

)
has a limit P∞ on the circle Sr ∩H⊥

r−1 and let H
(∞)
r be the

hyperplane generated by Hr−1 and P∞; without loss of generality I can assume all

Rn are on the same side of H
(∞)
r .

Now by the construction in Step 1, there is an (r+1)-dimensional cone C∞ such

that C∞ ∩ H
(∞)
r is a face of C∞, f|C∞ is linear and C∞ intersects hyperplanes H

(n)
r
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for all n ≫ 0. In particular Rn ⊂ C∞ for all n ≫ 0 and int C∞ ∩ Ĉ ̸= ∅. Let

w ∈ int C∞∩Ĉ and let B ⊂ int C∞ be a small ball centred at w. Then the cone B∩Ĉ
is (r + 1)-dimensional (otherwise the cone Ĉ would be contained in a hyperplane)

and thus C∞∩Ĉ is an (r+1)-dimensional cone. Therefore the linear extension of f|C∞

coincides with ℓ and thus C∞ ⊂ Ĉ. Since Rn ̸⊂ int Ĉ we must have Rn ⊂ C∞ ∩H(∞)
r ,

and we finish by induction on the dimension.

Step 3: Again fix a ray R ⊂ C. By Steps 1 and 2 there is a collection of (r + 1)-

dimensional polyhedral cones {Cα}α∈IR such that R ⊂ Cα ⊂ C for every α ∈ IR, for

every ray R′ ⊂ C there is α ∈ IR such that Cα ∩ (R + R′) ̸= R and for every two

distinct α, β ∈ IR the linear extensions of f|Cα and f|Cβ to Rr+1 are not the same

function. I will prove that IR is a finite set.

For each α ∈ IR let xα be a point in int Cα and let Hα = (R + R+xα) ∪ (−R +

R+xα). Let Rα ⊂ Hα be the unique ray orthogonal to R. Let R⊥ be the hyperplane

orthogonal to R. For each α let Sr ∩ R⊥ ∩ Hα = {Qα}. If there are infinitely

many cones Cα, then the set {Qα : α ∈ IR} has an accumulation point Q∞. Let

H∞ = (R + R+Q∞) ∪ (−R + R+Q∞), let Hn be a sequence in the set {Hα} such

that lim
n→∞

Qn = Q∞ where Sr ∩ R⊥ ∩Hn = {Qn}, and let Cn be the corresponding

cones in {Cα}.
By assumptions of the lemma there is a point y ∈ H∞ such that f |R+R+y is linear.

Let x be a point on R and let H be any hyperplane such that H ∩ (Rx + Ry) =

R(x+ y). By induction there are r-dimensional polyhedral cones C1, . . . , Ck in H∩C
such that x+ y ∈ Ci for all i, there is a small r-dimensional ball B(r) ⊂ H centred at

x+ y such that B(r) ∩ C = B(r) ∩ (C1 ∪ · · · ∪ Ck) and the map f|Ci is linear for every

i. Fix i and let gij be generators of Ci. Then

f
(∑

j
gij + x+ y

)
=

∑
j
f(gij) + f(x+ y) =

∑
j
f(gij) + f(x) + f(y),

so f is linear on the cone C̃i = Ci + R+x + R+y by Lemma 4.5. Therefore if we

denote C̃ = C1+ · · ·+Ck+R+x+R+y, then f|C̃ is PL and there is a small ball B(r+1)

centred at x+ y such that B(r+1) ∩ C = B(r+1) ∩ C̃.
Take a ball Bε of radius ε≪ 1 centred at x+ y such that x /∈ Bε and Bε ∩ C =

Bε∩C̃. Since ∥Qn−Q∞∥ < ε for n≫ 0, then considering the subspace generated by

R,Qn and Q∞ we obtain that Hn intersects intBε for n≫ 0. Since C̃ =
∪
C̃i, there
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is an index i0 such that C̃i0 ∩ intBε intersects infinitely many Hn. In particular,

C̃i0 ∩ int Cn ̸= ∅ for infinitely many n and therefore C̃i0 ∩Cn is an (r+1)-dimensional

cone as in Step 2. Thus for every such n the linear extensions of f|C̃i0
and f|Cn to

Rr+1 are the same since they coincide with the linear extension of f|C̃i0∩Cn
, which is

a contradiction and IR is finite.

Step 4: Finally, we have that for every ray R ⊂ C the map f|
∪

α∈IR
Cα is PL and there

is small ball BR centred at R ∩ Sr such that BR ∩ C = BR ∩
∪

α∈IR Cα. There are

finitely many open sets intBR which cover the compact set Sr ∩ C and therefore we

can choose finitely many polyhedral cones Ci with C =
∪
Ci such that f|Ci is PL for

every i. Thus f is PL.

Now I can prove the main result of this section.

Proof of Theorem 4.6. By Corollary 4.12 and Lemma 4.13 the map f|C is PL; in

other words we can choose finitely many polyhedral cones Ci with C =
∪
Ci such

that f|Ci is linear for each i. We can assume the linear extensions of the maps f|Ci
and f|Cj to Rr are not the same by Step 6 of the proof of Lemma 4.10.

Let H be a hyperplane which contains a common (r − 1)-dimensional face of

cones Ci and Cj and assume H is not rational. Then similarly as in Step 1 of the

proof of Lemma 4.10 there is a point x ∈ Ci ∩ Cj whose components are linearly

independent over Q. By the proof of Lemma 4.10 there is an r-dimensional cone C̃
such that x ∈ int C̃ and the map f|C̃ is linear. But then as in Step 2 of the proof of

Lemma 4.13 the cones C̃∩Ci and C̃∩Ci are r-dimensional and linear extensions of f|Ci
and f|Cj coincide since they are equal to the linear extension of f|C̃, a contradiction.

Therefore all (r−1)-dimensional faces of the cones Ci belong to rational hyperplanes

and thus Ci are rational cones. Thus the map f|C is Q-PL.



Chapter 5

Higher Rank Algebras

In this chapter I develop the theory of higher rank divisorial and b-divisorial alge-

bras that will be useful in the approach to finite generation in Chapter 6. Mobile

b-divisors give useful criteria for assessing whether algebras in question are finitely

generated, and a relation to convex geometry techniques from Chapter 4 is estab-

lished. In the second part of the chapter I formulate natural conjectures that extend

rank 1 conjectures of Shokurov [Sho03], and I prove them on curves.

5.1 Algebras Attached to Monoids

I start with the following definitions.

Definition 5.1. Let X be a variety and let S be a finitely submonoid of Nr. If

µ : S →WDiv(X)κ≥0 is an additive map, the algebra

R(X,µ(S)) =
⊕
s∈S

H0(X,OX(µ(s)))

is called the divisorial S-graded algebra associated to µ. When S =
⊕ℓ

i=1 Nei is a

simplicial cone, the algebra R(X,µ(S)) is called the Cox ring associated to µ, and

is denoted also by R(X;µ(e1), . . . , µ(eℓ)).

Definition 5.2. Let X be a variety, S a finitely generated submonoid of Nr, and

m : S → Div(X) a superadditive map. The systemm(S) = {m(s)}s∈S (respectively

the map m) is bounded if the following two conditions are satisfied:

51
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• there is a reduced divisor F on X such that Suppm(s)X ⊂ F for every s ∈ S,
i.e. m has bounded support on X,

• for every s ∈ S, the limit lim
κ→∞

1
κ
m(κs) exists in Div(X)R.

Let π : X → Z be a projective morphism of normal varieties and letm : S → Div(X)

be a bounded superadditive map such that OX(m(s)) is a coherent sheaf for all

s ∈ S. The algebra

R(X,m(S)) =
⊕
s∈S

π∗OX(m(s))

is a b-divisorial S-graded OZ-algebra.

Remark 5.3. Divisorial algebras considered in this thesis are algebras of sections .

I will occasionally, and without explicit mention, view them as algebras of rational

functions, in particular to be able to write H0(X,D) ≃ H0(X,Mob(D)) ⊂ k(X).

Assume now that X is smooth, D ∈ Div(X) and that Γ is a prime divisor on X.

If σΓ is the global section of OX(Γ) such that div σΓ = Γ, from the exact sequence

0→ H0(X,OX(D − Γ))
·σΓ−→ H0(X,OX(D))

ρD,Γ−→ H0(Γ,OΓ(D))

we define resΓH
0(X,OX(D)) = Im(ρD,Γ). For σ ∈ H0(X,OX(D)), I denote σ|Γ :=

ρD,Γ(σ). Observe that

ker(ρD,Γ) = H0(X,OX(D − Γ)) · σΓ, (5.1)

and that resΓH
0(X,OX(D)) = 0 if Γ ⊂ Bs |D|. If D ∼ D′ such that the restriction

D′
|Γ is defined, then

resΓH
0(X,OX(D)) ≃ resΓH

0(X,OX(D
′)) ⊂ H0(Γ,OΓ(D

′
|Γ)).

The restriction of R(X,µ(S)) to Γ is defined as

resΓR(X,µ(S)) =
⊕
s∈S

resΓH
0(X,OX(µ(s))).

This is an S-graded, not necessarily divisorial algebra.
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Remark 5.4. Under assumptions from Definition 5.1, define the map Mobµ : S →
Mob(X) by Mobµ(s) = Mob(µ(s)) for every s ∈ S. Then we have the b-divisorial

algebra

R(X,Mobµ(S)) ≃ R(X,µ(S)).

If S ′ is a finitely generated submonoid of S, I use R(X,µ(S ′)) to denote the algebra

R(X,µ|S′(S ′)). If S is a submonoid of WDiv(X)κ≥0 and ι : S → S is the identity

map, I use R(X,S) to denote R(X, ι(S)).

The following lemma summarises the basic properties of higher rank finite gen-

eration.

Lemma 5.5. Let S ⊂ Nn be a finitely generated monoid and let R =
⊕

s∈S Rs be

an S-graded algebra.

(1) Let S ′ be a truncation of S. If the S ′-graded algebra R′ =
⊕

s∈S′ Rs is finitely

generated over R0, then R is finitely generated over R0.

(2) Assume furthermore that S is saturated and let S ′′ ⊂ S be a finitely generated

saturated submonoid. If R is finitely generated over R0, then the S ′′-graded

algebra R′′ =
⊕

s∈S′′ Rs is finitely generated over R0.

(3) Let X be a variety and let m : S →Mob(X) be a superadditive map. If there

exists a rational polyhedral subdivision SR =
∪k

i=1 ∆i such that, for each i,

m|∆i∩S is an additive map up to truncation, then the algebra R(X,m(S)) is

finitely generated.

Proof. For (1), let S =
∑n

i=1 Nei and S ′ =
∑n

i=1 Nκiei for positive integers κi. It

is enough to observe that R is an integral extension of R′: for any φ ∈ R we have

φκ1···κn ∈ R′.

For (3), let {eij : j ∈ Ii} be a finite set of generators of ∆i ∩ S by Lemma 4.3

and let κij be positive integers such that m|∑
j∈Ii

Nκijeij is additive for each i. Set

κ :=
∏

i,j κij and let S ′ =
∑

i,j Nκeij be a truncation of S.
Let ẽ =

∑
i,j λijκeij ∈ ∆i ∩ S ′ for some λij ∈ N. Then

∑
i,j λijeij ∈ ∆i ∩ S and

thus there are µj ∈ N such that
∑

i,j λijeij =
∑

j∈Ii µjeij. From here we have

ẽ = κ
∑

j∈Ii
µjeij ∈

∑
j∈Ii

Nκeij
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and therefore ∆i ∩ S ′ =
∑

j∈Ii Nκeij is a truncation of
∑

j∈Ii Nκijeij; in particular

m|∆i∩S′ is additive for each i.

I claim the algebra R(X,m(S ′)) is finitely generated, and thus the algebra

R(X,m(S)) is finitely generated by part (1). To that end, let Y → X be a model

such that m(κeij) descend to Y for all i, j, and let mY : S ′ →WDiv(Y ) be the map

given by mY (s) = m(s)Y . Let s =
∑

j∈Ii νijκeij ∈ ∆i ∩ S ′ for some i and some

νij ∈ N. Then

m(s) =
∑

j∈Ii
νijm(κeij) =

∑
j∈Ii

νijm(κeij)Y =
∑

j∈Ii
νijm(κeij)Y = m(s)Y ,

and thus m(s) descends to Y and R(X,m(S ′)) ≃ R(Y,mY (S ′)). Fix i, and consider

the free monoid Ŝi =
⊕

j∈Ii Nκeij and the natural projection π : Ŝi → ∆i ∩ S ′
i. The

Cox ring R(Y, (mY ◦ π)(Ŝi)) is finitely generated by [HK00, Lemma 2.8], thus the

algebra R(X,m(∆i ∩ S ′)) is finitely generated for each i by projection. The set of

generators of R(X,m(∆i∩S ′)) for all i generates R(X,m(S ′)) and the claim follows.

Finally, statement (2) is [ELM+06, Lemma 4.8].

Following [Cor07, Lemma 2.3.53], in the rank 1 case we have the converse of

Lemma 5.5(3).

Lemma 5.6. Let X be a variety and m : N → Mob(X) be a superadditive map.

The algebra R(X,m(N)) is finitely generated if and only if there exists an integer i

such that m(ik) = km(i) for all k ≥ 0.

Proof. We only need to prove necessity as sufficiency was proved in Lemma 5.5(3).

Up to truncation, we may assume that R(X,m(N)) is generated by H0(X,m(1)).

For each j, take a resolution Yj → X such that both m(1) and m(j) descend to Yj.

Superadditivity and the finite generation imply

H0(Yj, jm(1)Yj
) ⊂ H0(Yj,m(j)Yj

) = H0(Yj,m(1)Yj
)j ⊂ H0(Yj, jm(1)Yj

).

Therefore jm(1)Yj
= m(j)Yj

and thus jm(1) = m(j).

Definition 5.7. Let S be a monoid and let f : S → G be a superadditive map to

a monoid G. For every s ∈ S, the smallest positive integer ιs, if it exists, such that

f(Nιss) is an additive system is called the index of s (otherwise we set ιs =∞).
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The following result gives the connection to superlinear functions.

Lemma 5.8. Let X be a variety, S ⊂ Nr a finitely generated monoid and let f : S →
G be a superadditive map to a monoid G which is a subset of WDiv(X) or Div(X),

such that for every s ∈ S the index ιs is finite.

Then there is a unique superlinear function f ♯ : SR → GR such that for every

s ∈ S there is a positive integer λs with f(λss) = f ♯(λss). Furthermore, let C be

a rational polyhedral subcone of SR. Then f|C∩S is additive up to truncation if and

only if f ♯
|C is linear.

If µ : S → Div(X) is an additive map and m = Mobµ is such that for every

s ∈ S there is a positive integer ιs such that m|Nιss is an additive map, then we have

m♯(s) = µ(s)−
∑(

ordE ∥µ(s)∥
)
E, (5.2)

where the sum runs over all geometric valuations E on X.

Proof. The construction will show that f ♯ is the unique function with the stated

properties. To start with, fix a point s ∈ SQ and let κ be a positive integer such

that κs ∈ S. Set
f ♯(s) :=

f(ικsκs)

ικsκ
.

This is well-defined: take another κ′ such that κ′s ∈ S. Then by the definition of

the index we have

f(ικsικ′sκκ
′s) = ικsκf(ικ′sκ

′s) = ικ′sκ
′f(ικsκs),

so f(ικsκs)/ικsκ = f(ικ′sκ
′s)/ικ′sκ

′.

Now let s ∈ SQ, let ξ be a positive rational number and let λ be a sufficiently

divisible positive integer such that λξs ∈ S. Then

f ♯(ξs) =
f
(
(ιλξsλ)ξs

)
ιλξsλ

= ξ
f
(
(ιλξsλξ)s

)
ιλξsλξ

= ξf ♯(s),

so f ♯ is positively homogeneous (with respect to rational scalars). It is also super-

additive: let s1, s2 ∈ SQ and let κ be a sufficiently divisible positive integer such

that f(κs1) = f ♯(κs1), f(κs2) = f ♯(κs2) and f
(
κ(s1 + s2)

)
= f ♯

(
κ(s1 + s2)

)
. By
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superadditivity of f we have

f(κs1) + f(κs2) ≤ f
(
κ(s1 + s2)

)
,

so dividing the inequality by κ we obtain superadditivity of f ♯.

Let E be any divisor on X, respectively any geometric valuation E over X,

when G ⊂WDiv(X), respectively G ⊂ Div(X). Consider the function f ♯
E given by

f ♯
E(s) = multE f ♯(s). Proposition 4.2 applied to each f ♯

E shows that f ♯ extends to a

superlinear function on the whole SR.
For the statement on cones, necessity is clear. Assume f ♯|C is linear, and by

Lemma 4.3 let e1, . . . , en be generators of C ∩ S. For s0 = e1 + · · ·+ en we have

f ♯(s0) = f ♯(e1) + · · ·+ f ♯(en). (5.3)

Let µ be a positive integer such that f(µs0) = f ♯(µs0) and f(µei) = f ♯(µei) for all

i. From (5.3) we obtain

f(µs0) = f(µe1) + · · ·+ f(µen),

and Lemma 4.4 implies that f ♯ is additive on the truncation Ŝ =
∑

Nµei of C ∩ S.
Equation (5.2) is a restatement of the definition given above.

Definition 5.9. In the context of Lemma 5.8, the function f ♯ is called the straight-

ening of f .

Remark 5.10. In the context of the assumptions of Lemma 5.8, let s ∈ S and let

λ be a positive integer such that f ♯(λs) = f(λs). Then for every positive integer µ

we have

f(µλs) ≥ µf(λs) = µf ♯(λs) = f ♯(µλs) ≥ f(µλs),

so f(µλs) = µf(λs). Therefore the index ιs is the smallest integer λ such that

f ♯(λs) = f(λs).

To conclude this section, I prove a result that will be crucial in the constructions

in Chapter 6.
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Proposition 5.11. Let X be a variety, S ⊂ Nr a finitely generated saturated monoid

and µ : S →WDiv(X)κ≥0 an additive map. Let L be a finitely generated submonoid

of S and assume R(X,µ(S)) is finitely generated. Then R(X,µ(L)) is finitely gen-

erated. Moreover, the map m = Mobµ|L is piecewise additive up to truncation. In

particular, there is a positive integer p such that Mobµ(ips) = iMobµ(ps) for every

i ∈ N and every s ∈ L.

Proof. DenoteM = LR ∩ Nr. By Lemma 5.5(2), R(X,µ(M)) is finitely generated,

and by the proof of [ELM+06, Theorem 4.1], there is a finite rational polyhedral

subdivisionMR =
∪

∆i such that for every geometric valuation E on X, the map

ordE ∥ · ∥ is Q-additive on ∆i ∩MQ for every i. Since for every saturated rank 1

submonoid R ⊂M the algebra R(X,µ(R)) is finitely generated by Lemma 5.5(2),

the map mR∩L is additive up to truncation by Lemma 5.6 and thus there is the well-

defined straightening m♯ : LQ → Mob(X)Q since MQ = LQ. Then (5.2) implies

that the map m♯
|∆i∩LQ

is Q-additive for every i, hence by Lemma 5.8 the map m is

piecewise additive up to truncation, and therefore R(X,µ(L)) is finitely generated

by Lemma 5.5(3).

5.2 Shokurov Algebras on Curves

In this section I define higher rank analogues of algebras defined in [Sho03, Cor07],

and I prove a possibly surprising finite generation result on curves.

Definition 5.12. Let X be a variety, let S be a monoid and let m : S →Mob(X)

be a superadditive map. Let F be a b-divisor on X with ⌈F⌉ ≥ 0.

We say the system m(S) is F-saturated (or that it satisfies the saturation condi-

tion with respect to F) if for all s, s1, . . . , sn ∈ S such that s = ξ1s1 + · · ·+ ξnsn for

some non-negative rational numbers ξi, there is a model Ys,s1,...,sn → X such that

for all models Y → Ys,s1,...,sn we have

Mob⌈ξ1m(s1)Y + · · ·+ ξnm(sn)Y + FY ⌉ ≤m(s)Y .

If the models Ys,s1,...,sn do not depend on s, s1, . . . , sn, we say the system m(S) is

uniformly F-saturated .
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Remark 5.13. It is important to understand that the numbers ξi in the previous

definition are rational, and that s is not merely an integral combination of si. This

fact is crucial in proofs.

Lemma 5.14. Let X be a variety, let S be a monoid and let m : S →Mob(X) be

a superadditive map. Let F be a b-divisor on X with ⌈F⌉ ≥ 0. The system m(S) is
F-saturated if and only if for all s ∈ S and all positive integers λ and µ, there is a

model Ys,λ,µ → X such that for all models Y → Ys,λ,µ we have

Mob
⌈
λ
µ
m(µs)Y + FY

⌉
≤m(λs)Y .

Proof. Necessity is clear. For sufficiency, fix s, s1, . . . , sn ∈ S and fix non-negative

rational numbers ξi such that s = ξ1s1 + · · ·+ ξnsn. Let λ be a positive integer such

that λξi ∈ N for all i. Then on all models Y higher than Ys,1,λ we have

Mob
⌈∑

ξim(si)Y + FY

⌉
= Mob

⌈
1
λ

∑
λξim(si)Y + FY

⌉
≤ Mob

⌈
1
λ
m(λs)Y + FY

⌉
≤m(s)Y .

Therefore we can take Ys,s1,...,sn := Ys,1,λ.

Definition 5.15. Let (X,∆) be a relative weak Fano klt pair projective over an

affine variety Z where KX +∆ is Q-Cartier, and let S ⊂ Nr be a finitely generated

monoid. A Shokurov algebra on X is the b-divisorial algebra R(X,m(S)), where
m : S → Mob(X) is a superadditive map such that the system m(S) is bounded

and A(X,∆)-saturated.

The next result says that saturation is preserved under restriction.

Lemma 5.16. Let (X,∆) be a relative weak Fano pair projective over an affine

variety Z and let S be a prime component in ∆. Let S be a finitely generated

monoid and assume the system of mobile b-divisors {Ms}s∈S on X is (A(X,∆)+Ŝ)-

saturated. Assume S ̸⊂ SuppMsX for any s ∈ S. Then the system {Ms|S}s∈S on S

is A(S,Diff(∆− S))-saturated.

Proof. This is analogous to [Cor07, Lemma 2.3.43, Lemma 2.4.3]. Denote A =

A(X,∆) and A0 = A(S,Diff(∆ − S)). The claim follows as soon as we have the
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surjectivity of the restriction map

H0
(
Y,

⌈∑
ξiMsiY + (A+ Ŝ)Y

⌉)
→ H0

(
ŜY ,

⌈∑
ξiMsiY |ŜY

+A0
ŜY

⌉)
for all ξi ∈ Q+ and all si ∈ S, on log resolutions f : Y = Ys1,...,sn → X where MsiY

is free for every i. The obstruction to surjectivity is the group

H1
(
Y,

⌈∑
ξiMsiY +AY

⌉)
= H1

(
Y,KY +

⌈
− f ∗(KX +∆) +

∑
ξiMsiY

⌉)
.

But this group vanishes by Kawamata-Viehweg vanishing since −(KX + ∆) is nef

and big and all MsiY are nef.

Definition 5.17. Let π : X → Z be a projective morphism of varieties, let S ⊂ Nr

be a finitely generated monoid and let δ : S → N be an additive map. Assume

{Bs}s∈S is a system of effective Q-b-divisors on X such that

(1) the system {δ(s)Bs}s∈S is superadditive and bounded,

(2) for each s ∈ S there is a divisor ∆s on X such that KX + ∆s is klt and

lim
κ→∞

1
κ
BκsX ≤ ∆s,

(3) for each s ∈ S there is a model Ys over X and a mobile b-divisor Ms such that

MsY = Mob
(
δ(s)(KY +BsY )

)
for every model Y over Ys.

Let m : S →Mob(X) be the superadditive map given by m(s) = Ms for all s ∈ S.
If the system m(S) is F-saturated for a b-divisor F with ⌈F⌉ ≥ 0, we say the system

m(S) is adjoint and that the algebra R(X,m(S)) is an adjoint algebra on X.

I pose the following two natural conjectures.

Conjecture A. Let (X,∆) be a relative weak Fano klt pair projective over a normal

affine variety Z, where KX + ∆ is Q-Cartier. Let S ⊂ Nr be a finitely generated

monoid and let m : S →Mob(X) be a superadditive map such that the system m(S)
is bounded and A(X,∆)-saturated. Let C be a rational polyhedral cone in intSR.
Then the Shokurov algebra R(X,m(C ∩ S)) is a finitely generated OZ-algebra.
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Conjecture B. Let π : X → Z be a projective morphism between normal varieties,

let S ⊂ Nr be a finitely generated monoid and let m : S →Mob(X) be a superaddi-

tive map such that the system m(S) is adjoint. Let C be a rational polyhedral cone in

intSR. Then the adjoint algebra R(X,m(C ∩ S)) is a finitely generated OZ-algebra.

Ideally we would like the conjectures to extend to the whole cone SR, however
this is in general not possible, see Remark 5.18.

Remark 5.18. The formulations of Conjectures A and B are in general the best

possible, that is we cannot extend the results to the boundary of the cone SR. For

let X be a variety, let S = N2 and assume m : S →Mob(X) is a superadditive map

such that the system m(S) is bounded and F-saturated. Let n : S →Mob(X) be

the superadditive map given by

n(s) =

m(s), s ∈ SR\ intSR,

m(2s), s ∈ intSR.

Since saturation is the property of rays by Lemma 5.14, the system n(S) is again

F-saturated. However the algebra R(X,n(S)) is not finitely generated since the

map n♯ is not continuous on the whole SR.

I will confirm Conjectures A and B on an affine curve.

Theorem 5.19. Let X be an affine curve, let S be a finitely generated submonoid

of Nr and let m : S →Mob(X) be a superadditive map such that the system m(S)
is bounded and F-saturated. Let C be a rational polyhedral cone in intSR.

Then the algebra R(X,m(C ∩ S)) is finitely generated.

Remark 5.20. Observe that on a curve b-divisors are just the usual divisors. Also

all divisors move in the corresponding linear systems, so the saturation condition

reads

⌈µ
ν
m(νs) + F⌉ ≤m(µs)

for every s ∈ S and all positive integers µ and ν. By boundedness, for every

s ∈ S the limit lim
µ→∞

1
µ
m(µs) exists, and therefore the map m|Ns is additive up to

truncation by Lemma 5.21 below. Thus there exists the well-defined straightening



5.2. Shokurov Algebras on Curves 61

m♯. Furthermore the map m♯|C is Q-PL if and only if for every prime divisor E in

the support of m(S) the function m♯
E|C is Q-PL, see the proof of Lemma 5.8. Also

the saturation condition on a curve is a component-wise condition, so from now on

I assume the system m(S) is supported at a point.

Lemma 5.21. Let X be an affine curve and let m : N → Mob(X) be a bounded

superadditive map such that the system m(N) is supported at a point P and F-

saturated. Then m is additive up to truncation.

Proof. Let F = −fP with 0 ≤ f < 1, and let m(ν) = mνP ≥ 0 for every ν ∈ N.
Denote dν = mν/ν and d = lim

ν→∞
dν . The saturation condition when ν →∞ becomes

⌈µd− f⌉ ≤ µdµ

for all µ > 0. If d /∈ Q, then there exists µ ∈ N such that {µd} > f and therefore

µdµ ≤ µd < ⌈µd− f⌉ ≤ µdµ,

a contradiction. Thus for every κ ∈ N such that κd ∈ Z we have

κdκ ≤ κd = ⌈κd− f⌉ ≤ κdκ,

and so d = dκ and mκN is additive for any such κ.

Lemma 5.22. Let X be an affine curve, let S be a finitely generated monoid and

let m : S → Mob(X) be a superadditive map such that the system m(S) is bounded,
supported at a point P and F-saturated. Let m♯ be the straightening of m, see

Remark 5.20.

Then there exists a constant 0 < b ≤ 1/2 with the following property: for each

s ∈ S either m♯(s) = m(s) or m♯(s) = m(s) + esP for some es with b ≤ es ≤ 1− b.

Proof. Let F = −fP with f < 1. Fix s ∈ S and assume m♯(s) ̸= m(s). Then there

is the smallest positive integer λ such that m
(
(λ+1)s

)
̸= (λ+1)m(s); in particular

m(λs) = λm(s) and m
(
(λ+ 1)s

)
= (λ+ 1)m(s) + eλsP
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for some eλs ≥ 1. From the saturation condition we have

⌈
λ

λ+1
m
(
(λ+ 1)s

)
− fP

⌉
≤m(λs),

that is ⌈
m(λs) + λ

λ+1
eλsP − fP

⌉
≤m(λs).

This implies λ
λ+1
≤ f , and so 1

λ+1
≥ 1− f . Therefore

m♯(s) ≥ 1
λ+1

m
(
(λ+ 1)s

)
= m(s) + 1

λ+1
eλsP ≥m(s) + (1− f)P.

On the other hand, let κ be a positive integer such that m♯(κs) = m(κs). Then

saturation gives ⌈
1
κ
m(κs)− fP

⌉
≤m(s),

i.e. ⌈m♯(s)− fP ⌉ ≤m(s). Hence

m♯(s)−m(s) ≤ fP.

In particular if f ≤ 1/2 then m♯(s) = m(s) for every s ∈ S. Set b := min{1 −
f, 1/2}.

Lemma 5.23. Let X be an affine curve, let S be a finitely generated monoid and

let m : S → Mob(X) be a superadditive map such that the system m(S) is bounded,
supported at a point P and F-saturated. Let b be the constant from Lemma 5.22.

Then for each s ∈ S we have ιs ≤ 1/b.

Proof. By Lemma 5.21 and Remark 5.20, there exists a well-defined straightening

m♯ of m. Observe that Lemma 5.22 implies that m(s) = ⌊m♯(s)⌋ for each s ∈ S,
and this in turn implies that the index ιs is the smallest integer λ such that m♯(λs)

is an integral divisor (cf. Remark 5.10).

Now fix s ∈ S, assume ιs > 1 and let m♯(ιss) = m(ιss) = µsP . Notice that ιs

and µs must be coprime: otherwise assume p is a prime dividing both ιs and µs.

Then

m♯
(
ιs
p
s
)
= µs

p
P

is an integral divisor and so ιs is not the index of s, a contradiction. Therefore there
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is an integer 1 ≤ κ ≤ ιs − 1 such that κµs ≡ 1 (mod ιs), and therefore

m♯(κs) = κµs

ιs
P and m(κs) = κµs−1

ιs
P.

Combining this with Lemma 5.22 we obtain

bP ≤m♯(κs)−m(κs) = 1
ιs
P,

and finally ιs ≤ 1/b.

Finally we have

Proof of Theorem 5.19. By Lemma 4.3 the monoid S ′ = C ∩ S is finitely generated

and let e1, . . . , en be its generators. We have S ′
R = C and m♯ is continuous on S ′

R.

Setting κ := ⌊1/b⌋! for b as in Lemma 5.22, and taking the truncation Ŝ =
∑n

i=1 Nκei
of S ′, we have that m♯(s) = m(s) for every s ∈ Ŝ by Lemma 5.23 and S ′

R = ŜR. By
Remark 5.20, I assume the system m(S) is supported at a point.

By Corollary 4.7 applied to the monoid Ŝ the map m♯|ŜR
is Q-PL and thus the

algebra R(X,m(S ′)) is finitely generated by Lemmas 5.8 and 5.5(3).
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Chapter 6

Finite Generation of

the Canonical Ring

In this Chapter I establish the first step in a project to prove finite generation of

the canonical ring without the Minimal Model Program. I prove:

Theorem 6.1. Let (X,∆) be a projective klt pair and assume Property LG
A in di-

mensions ≤ dimX. Then the canonical ring R(X,KX +∆) is finitely generated.

As explained in Chapter 1, there are several issues when trying to prove the

finite generation by induction on the dimension. The main conceptual problem is

the finite generation of the kernel of the restriction map. Note that the “kernel

issue” did not exist in the case of pl flips, since the relative Picard number = 1

ensured that the kernel was a principal ideal, at least after shrinking the base and

passing to a truncation. However, the proof of Lemma 3.18 models the general lines

of the proof in Section 6.2.

It is natural to try and restrict to a component of ∆, the issue of course being

that (X,∆) does not have log canonical centres. Therefore I allow restrictions to

components of some effective divisorD ∼Q KX+∆, and a tie-breaking-like technique

allows to create log canonical centres. Algebras encountered this way are, in effect,

plt algebras, and proving their restriction is finitely generated is technically the most

involved part of the proof, see Section 6.1.

Since the algebras I consider are of higher rank, not all divisors will have the same

log canonical centres. I therefore restrict to available centres, and lift generators from

65
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algebras that live on different divisors. Since the restrictions will also be algebras of

higher rank, the induction process must start from them.

Thus, the main technical result of this chapter is the following.

Theorem 6.2. Let X be a smooth projective variety, and for i = 1, . . . , ℓ let Di =

ki(KX +∆i+A), where A is an ample Q-divisor and (X,∆i+A) is a log smooth log

canonical pair with |Di| ̸= ∅. Assume Property LG
A in dimensions ≤ dimX. Then

the Cox ring R(X;D1, . . . , Dℓ) is finitely generated.

Property LG
A in the statement of Theorems 6.1 and 6.2 describes the convex

geometry of the set of log canonical pairs with big boundaries in terms of divisorial

components of the stable base loci. More precisely:

Property LG
A. Let X be a smooth variety projective over an affine variety Z, B

a simple normal crossings divisor on X and A a general ample Q-divisor. Let

V ⊂ Div(X)R be the vector space spanned by the components of B and let LV =

{Θ ∈ V : (X,Θ) is log canonical}; this is a rational polytope in V . Then for any

component G of B, the set

LG
A = {Φ ∈ LV : G ̸⊂ B(KX + Φ+ A)}

is a rational polytope.

As a demonstration, I show how results of [BCHM06] imply Property LG
A. Of

course, a hope is that this will be proved without Mori theory.

Proposition 6.3. Property LG
A follows from the MMP.

Proof. Let KX be a divisor with OX(KX) ≃ ωX and SuppA ̸⊂ SuppKX , and let

Λ be the monoid in Div(X) generated by the components of KX , B and A. Let

ι : Λ→ Λ be the identity map, and denote S = R+(KX +A+LV )∩Λ. Since LV is

a rational polytope, S is a finitely generated monoid and let Di be generators of S.
By [BCHM06, Corollary 1.1.9], the Cox ring R(X;D1, . . . , Dk) is finitely generated,

thus so is the algebra R(X,S) by projection. The setM = {D ∈ S : |D|Q ̸= ∅} is
a convex cone, and therefore finitely generated since R(X,S) is finitely generated,

so I can assumeM = S. By Proposition 5.11, the map Mobι is piecewise additive
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up to truncation, which proves that the closure C of the set (LG
A)Q is a rational

polytope, and I claim it equals LG
A. Otherwise there exists Φ ∈ LG

A\C, and therefore

the convex hull of the set C ∪ {Φ}, which is by convexity a subset of LG
A, contains a

rational point Φ′ ∈ LG
A\C, a contradiction.

6.1 Restricting Plt Algebras

In this section I establish one of the technically most difficult steps in the proof

of Theorem 6.2. Crucial results and techniques will be those used to prove Non-

vanishing theorem in [Hac08] using methods developed in [HM08], and the tech-

niques of Chapter 4.

The key result is Theorem 3.19, which also immediately implies:

Corollary 6.4. Let π : X → Z be a projective morphism to a normal affine variety

Z, where (X,∆ = S +A+B) is a purely log terminal pair, S = ⌊∆⌋ is irreducible,
(X,S) is log smooth, A is a general ample Q-divisor and (S,Ω + A|S) is canonical,

where Ω = (∆−S)|S. Assume S ̸⊂ B(KX+∆), and let Φm = Ω∧ 1
m
Fix |m(KX+∆)|S

for every m such that m∆ is Cartier. Then

|m(KS + Ω− Φm)|+mΦm = |m(KX +∆)|S.

The following lemma shows that finite generation implies certain boundedness

on the convex geometry of boundaries, and it will be used in the proof of Theorem

6.6 below.

Lemma 6.5. Let (X,∆ = B + A) be a log smooth klt pair, where A is a general

ample Q-divisor, B is an effective R-divisor, and assume that no component of B

is in B(KX +∆). Assume Property LG
A and Theorem 6.2 in dimension dimX. Let

V ⊂ Div(X)R be the vector space spanned by the components of B and W ⊂ V

the smallest rational affine subspace containing B. Then there is a constant η > 0

and a positive integer r such that if Φ ∈ W and k is a positive integer such that

∥Φ − B∥ < η and k(KX + Φ + A)/r is Cartier, then no component of B is in

Fix |k(KX + Φ+ A)|.
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Proof. Let KX be a divisor such that OX(KX) ≃ ωX and SuppA ̸⊂ SuppKX , and

let Λ ⊂ Div(X) be the monoid spanned by components of KX , B and A. Let G be

a components of B. By Property LG
A there is a rational polytope P ⊂ W such that

∆ ∈ relintP and G ̸⊂ B(KX+Φ+A) for every Φ ∈ P . Let D1, . . . , Dℓ be generators

of R+(KX +A+P) ∩ Λ. By Theorem 6.2 the Cox ring R(X;D1, . . . , Dℓ) is finitely

generated, and thus so is the algebra R(X,Λ) by projection. By Proposition 5.11

there is a rational polyhedral cone C ⊂ ΛR such that ∆ ∈ C and the map Mobι|C∩Λ(r)

is additive for some positive integer r, where ι : Λ → Λ is the identity map. In

particular, if Φ ∈ C∩P and k(KX+Φ+A)/r is Cartier, thenG ̸⊂ Fix |k(KX+Φ+A)|.
Pick η such that Φ ∈ C ∩P whenever Φ ∈ W and ∥Φ−∆∥ < η. We can take η and

r to work for all components of B, and we are done.

The rest of this section is devoted to proving the following main technical result.

Theorem 6.6. Let X be a smooth variety, S a smooth prime divisor and A a

very general ample Q-divisor on X. For i = 1, . . . , ℓ let Di = ki(KX + ∆i), where

(X,∆i = S +Bi +A) is a log smooth plt pair with ⌊∆i⌋ = S and |Di| ≠ ∅. Assume

Property LG
A in dimensions ≤ dimX and Theorem 6.2 in dimension dimX − 1.

Then the algebra resS R(X;D1, . . . , Dℓ) is finitely generated.

Proof. Step 1. I first show that we can assume S /∈ Fix |Di| for all i.
To prove this, let KX be a divisor with OX(KX) ≃ ωX and SuppA ̸⊂ SuppKX ,

and let Λ be the monoid in Div(X) generated by the components of KX and all ∆i.

Denote CS = {P ∈ ΛR : S /∈ B(P )}. By Property LG
A, the set A =

∑
iR+Di ∩ CS is

a rational polyhedral cone.

The monoid
∑ℓ

i=1 R+Di ∩Λ is finitely generated and let P1, . . . , Pq be its gener-

ators with Pi = Di for i = 1, . . . , ℓ. Let µ :
⊕q

i=1 Nei → Div(X) be an additive map

from a simplicial monoid such that µ(ei) = Pi. Therefore S = µ−1(A∩Λ)∩
⊕ℓ

i=1 Nei
is a finitely generated monoid and let h1, . . . , hm be generators of S, and observe

that µ(hi) is a multiple of an adjoint bundle for every i.

Since resS H
0(X,µ(s)) = 0 for every s ∈

(⊕ℓ
i=1 Nei

)
\S, we have that the algebra

resS R(X,µ(
⊕ℓ

i=1 Nei)) = resS R(X;D1, . . . , Dℓ) is finitely generated if and only if
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resS R(X,µ(S)) is. Since we have the diagram

resS R(X;µ(h1), . . . , µ(hm)) resS R(X,µ(S))//

R(X;µ(h1), . . . , µ(hm))

resS R(X;µ(h1), . . . , µ(hm))
��

R(X;µ(h1), . . . , µ(hm)) R(X,µ(S))// R(X,µ(S))

resS R(X,µ(S))
��

where the horizontal maps are natural projections and the vertical maps are re-

strictions to S, it is enough to prove that the algebra resS R(X;µ(h1), . . . , µ(hm))

is finitely generated. By passing to a truncation, I can assume further that S /∈
Fix |µ(hi)| for i = 1, . . . ,m.

Step 2. Therefore I can assume S =
⊕ℓ

i=1 Nei and µ(ei) = Di for every i. For s =∑ℓ
i=1 tiei ∈ SQ and ts =

∑ℓ
i=1 tiki, denote ∆s =

∑ℓ
i=1 tiki∆i/ts and Ωs = (∆s−S)|S.

Observe that

R(X;D1, . . . , Dℓ) =
⊕
s∈S

H0(X, ts(KX +∆s)).

In this step I show that we can assume that (S,Ωs + A|S) is terminal for every

s ∈ SQ.
Let

∑
Fk =

∪
i SuppBi, and denote Bi = B(X,∆i) and B = B(X,S+ν

∑
k Fk+

A), where ν = maxi,k{multFk
Bi}. By Lemma 2.7 there is a log resolution f : Y → X

such that the components of {BY } do not intersect, and denote D′
i = ki(KY +BiY ).

Observe that

R(X;D1, . . . , Dℓ) ≃ R(Y ;D′
1, . . . , D

′
ℓ). (6.1)

Since Bi ≤ ν
∑

k Fk, by comparing discrepancies we see that the components of

{BiY } do not intersect for every i, and notice that f ∗A = f−1
∗ A ≤ BiY for every

i since A is very general. For s =
∑ℓ

i=1 tiei ∈ SQ and ts =
∑ℓ

i=1 tiki, denote

∆′
s =

∑ℓ
i=1 tikiBiY /ts. Let H be a small effective f -exceptional Q-divisor such that

A′ ∼Q f ∗A − H is a general ample Q-divisor, and let T = f−1
∗ S. Then, setting

Ψs = ∆′
s− f ∗A−T +H ≥ 0 and Ω′

s = Ψs|T +A′
|T , the pair (T,Ω

′
s+A′

|T ) is terminal

and KY +T +Ψs+A′ ∼Q KY +∆′
s. Now replace X by Y , S by T , ∆s by T +Ψs+A′

and Ωs by Ω′
s.

Step 3. For every s ∈ S, denote Fs = 1
ts
Fix |ts(KX + ∆s)|S and F ♯

s = lim inf
m→∞

Fms.
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Define the maps Θ: S → Div(S)Q and Θ♯ : S → Div(S)Q by

Θ(s) = Ωs − Ωs ∧ Fs, Θ♯(s) = Ωs − Ωs ∧ F ♯
s .

Then, denoting Θs = Θ(s) and Θ♯
s = Θ♯(s), we have

resS R(X;D1, . . . , Dℓ) ≃
⊕
s∈S

H0(S, ts(KS +Θs)) (6.2)

by Corollary 6.4. Furthermore, for s ∈ S let ε > 0 be a rational number such that

ε(KX +∆s) + A is ample. Then by Theorem 3.19 we have

|ks(KS + Ωs − Φs)|+ ksΦs ⊂ |ks(KX +∆s)|S

for any Φs and ks such that ks∆s, ksΦs ∈ Div(X) and Ωs ∧ (1 − ε
ks
)Fs ≤ Φs ≤ Ωs.

Then similarly as in the proof of Theorem 3.20, by Lemma 6.5 we have that Ωs∧F ♯
s

is rational and

resS R(X,KX +∆s)
(k♯s) ≃ R(S,KS +Θ♯

s)
(k♯s), (6.3)

where k♯
sΘ

♯
s and k♯

s∆s are both Cartier. Note also, by the same proof, that G ̸⊂
B(KS + Θ♯

s) for every component G of Θ♯
s. In particular, Θk♯sps

= Θk♯ss
= Θ♯

s for

every p ∈ N.
Define maps λ : S → Div(S)Q and λ♯ : S → Div(S)Q by

λ(s) = ts(KS +Θs), λ♯(s) = ts(KS +Θ♯
s).

Then λ♯ extends to a function on SR, and by Theorem 6.9 below, there is a finite

rational polyhedral subdivision SR =
∪
Ci such that the map λ♯ is linear on each Ci.

In particular, there is a sufficiently divisible positive integer κ such that κλ♯(s) is

Cartier for every s ∈ S, and thus κλ♯(s) = λ(κs) for every s ∈ S. Therefore the re-

striction of λ to S(κ)
i is additive, where Si = S∩Ci. If si1, . . . , siz are generators of S

(κ)
i ,

then the Cox ring R(S;λ(si1), . . . , λ(s
i
z)) is finitely generated by Theorem 6.2, and

so is the algebra R(S, λ(S(κ)
i )) by projection. Hence the algebra

⊕
s∈S H

0(S, λ(s))

is finitely generated, and this together with (6.2) finishes the proof.

It remains to prove that the map λ♯ is rationally piecewise linear. Firstly we
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have the following result, which can be viewed as a global version of Lemma 6.5.

Recall that S =
⊕ℓ

i=1 Nei.

Lemma 6.7. There is a positive integer r such that the following stands. If Ψ ∈
Div(S)Q is such that SuppΨ ⊂

∪ℓ
i=1 Supp(Ωei − A|S) and no component of Ψ is in

B(KS +Ψ+A|S), then no component of Ψ is in Fix |k(KS +Ψ+A|S)| for every k

with k(Ψ + A|S)/r Cartier.

Proof. Let
∑q

j=1 Gj =
∪ℓ

i=1 Supp(Ωei − A|S), and for each j let PGj
= {Ξ ∈∑

j[0, 1]Gj : Gj ̸⊂ B(KS + Ξ + A|S)}. Each PGj
is a rational polytope by Property

LG
A. Let KS be a divisor such that OS(KS) ≃ ωS and SuppA ̸⊂ SuppKX , let P be

the convex hull of all rational polytopes KS +A|S +PGj
, and set C = R+P . Observe

that KS +Ψ+A|S ∈ C. Let Gq+1, . . . , Gw be the components of KS +A|S not equal

to Gj for j = 1, . . . , q, and let Λ =
⊕w

j=1 NGj. Then by Theorem 6.2 in dimen-

sion dimS the algebra R(S, C ∩ Λ) is finitely generated and the map Mobι|C∩Λ(r) is

piecewise additive for some r by Proposition 5.11, where ι : Λ → Λ is the identity

map. In particular, if Gj ̸⊂ B(KS + Ψ + A|S) and k(Ψ + A|S)/r is Cartier, then

Gj ̸⊂ Fix |k(KS +Ψ+ A|S)|.

Theorem 6.8. For any s, t ∈ SR we have

lim
ε↓0

Θ♯
s+ε(t−s) = Θ♯

s.

Proof. Step 1. First we will prove that Θσ
s = Θ♯

s, where

Θσ
s = Ωs − Ωs ∧Nσ∥KX +∆s∥S,

cf. Remark 2.24. I am closely following the proof of [Hac08, Theorem 7.16]. Let r be

a positive integer as in Lemma 6.7, let ϕ < 1 be the smallest positive coefficient of

Ωs−Θσ
s if it exists, and set ϕ = 1 otherwise. Let V ⊂ Div(X)R and W ⊂ Div(S)R be

the smallest rational affine spaces containing ∆s and Θσ
s respectively. Let 0 < η ≪ 1

be a rational number such that η(KX + ∆s) +
1
2
A is ample, and if ∆′ ∈ V with

∥∆′−∆s∥ < η, then ∆′−∆s+
1
2
A is ample. Then by Lemma 2.27 there are rational

points (∆i,Θi) ∈ V ×W and integers ki ≫ 0 such that:

(1) we may write ∆s =
∑

ri∆i and Θσ
s =

∑
riΘi, where ri > 0 and

∑
ri = 1,
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(2) ki∆i/r are integral and ∥∆s −∆i∥ < ϕη/2ki,

(3) kiΘi/ks are integral, ∥Θσ
s − Θi∥ < ϕη/2ki and observe that Θi ≤ Ωi since

ki ≫ 0 and (∆i,Θi) ∈ V ×W .

Step 2. Set Ai = A/ki and Ωi = (∆i − S)|S. In this step I prove that for any

component P ∈ SuppΩs, and for any l > 0 sufficiently divisible, we have

multP (Ωi ∧ 1
l
Fix |l(KX +∆i + Ai)|S) ≤ multP (Ωi −Θi). (6.4)

If ϕ = 1, (6.4) follows immediately from Lemma 2.25. Now assume 0 < ϕ < 1. Since

∥Ωs − Ωi∥ < ϕη/2ki and ∥Θσ
s −Θi∥ < ϕη/2ki, it suffices to show that

multP (Ωi ∧ 1
l
Fix |l(KX +∆i + Ai)|S) ≤ (1− η

ki
)multP (Ωs −Θσ

s ).

Let δ > η/ki be a rational number such that δ(KX +∆i) +
1
2
Ai is ample. Since

KX +∆i + Ai = (1− δ)(KX +∆i +
1
2
Ai) +

(
δ(KX +∆i) +

1+δ
2
Ai

)
,

we have

ordP ∥KX +∆i + Ai∥S ≤ (1− δ) ordP ∥KX +∆i +
1
2
Ai∥S,

and thus

multP
1
l
Fix |l(KX +∆i + Ai)|S ≤ (1− η

ki
)σP∥KX +∆i∥S

for l sufficiently divisible, cf. Lemma 2.25.

Step 3. In this step we prove that there exists an effective divisor H ′ on X not

containing S such that for all sufficiently divisible positive integers m we have

|m(KS +Θi)|+m(Ωi −Θi) + (mAi +H ′)|S ⊂ |m(KX +∆i) +mAi +H ′|S. (6.5)

First observe that since S ̸⊂ B(KX + ∆i), we have S ̸⊂ Bs |m(KX + ∆i + Ai)| for
m sufficiently divisible. Assume further that m is divisible by l, for l as in Step 2.

Let f : Y → X be a log resolution of (X,∆i + Ai) and of |m(KX + ∆i + Ai)|. Let
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Γ = B(X,∆i + Ai)Y and E = KY + Γ− f ∗(KX +∆i + Ai), and define

Ξ = Γ− Γ ∧ 1
m
Fix |m(KY + Γ)|.

We have that m(KY +Ξ) is Cartier, Fix |m(KY +Ξ)| ∧Ξ = 0 and Mob(m(KY +Ξ))

is free. Since Fix |m(KY + Ξ)| + Ξ has simple normal crossings support, it follows

that B(KY + Ξ) contains no log canonical centres of (Y, ⌈Ξ⌉). Let T = f−1
∗ S,ΓT =

(Γ− T )|T and ΞT = (Ξ− T )|T , and consider a section

σ ∈ H0(T,OT (m(KT + ΞT ))) = H0(T,J∥m(KT+ΞT )∥(m(KT + ΞT ))).

(cf. Lemma 2.15). By Theorem 2.18, there is an ample divisor H on Y such that if

τ ∈ H0(T,OT (H)), then σ · τ is in the image of the homomorphism

H0(Y,OY (m(KY + Ξ) +H))→ H0(T,OT (m(KY + Ξ) +H)).

Therefore

|m(KT + ΞT )|+m(ΓT − ΞT ) +H|T ⊂ |m(KY + Γ) +H|T . (6.6)

We claim that

Ωi + Ai|S ≥ (f|T )∗ΞT ≥ Θi + Ai|S (6.7)

and so, as (S,Ωi + Ai|S) is canonical, we have

|m(KS +Θi)|+m((f|T )∗ΞT −Θi) ⊂ |m(KS + (f|T )∗ΞT )| = (f|T )∗|m(KT + ΞT )|.

Pushing forward the inclusion (6.6), we obtain (6.5) for H ′ = f∗H.

We will now prove the inequality (6.7) claimed above. We have ΞT ≤ ΓT and

(f|T )∗ΓT = Ωi + Ai|S and so the first inequality follows.

In order to prove the second inequality, let P be any prime divisor on S and let

P ′ = (f|T )
−1
∗ P . Assume that P ⊂ SuppΩi, and thus P ′ ⊂ SuppΓT . Then there is a

component Q of the support of Γ such that

multP ′ Fix |m(KY + Γ)|T = multQ Fix |m(KY + Γ)|
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and multP ′ ΓT = multQ Γ. Therefore

multP ′ ΞT = multP ′ ΓT −min{multP ′ ΓT ,multP ′
1
m
Fix |m(KY + Γ)|T}.

Notice that multP ′ ΓT = multP (Ωi+Ai|S) and since E|T is exceptional, we have that

multP ′ Fix |m(KY + Γ)|T = multP Fix |m(KX +∆i + Ai)|S.

Therefore (f|T )∗ΞT = Ωi + Ai|S − Ωi ∧ 1
m
Fix |m(KX + ∆i + Ai)|S. The inequality

now follows from Step 2.

Step 4. In this step we prove

|ki(KS +Θi)|+ ki(Ωi −Θi) ⊂ |ki(KX +∆i)|S. (6.8)

For any Σ ∈ |ki(KS + Θi)| and any m > 0 sufficiently divisible, we may choose a

divisor G ∈ |m(KX+∆i)+mAi+H| such that G|S = m
ki
Σ+m(Ωi−Θi)+(mAi+H)|S.

If we define Λ = ki−1
m

G+∆i − S − A, then

ki(KX +∆i) ∼Q KX + S + Λ+ Ai − ki−1
m

H,

where Ai − ki−1
m

H is ample as m ≫ 0. By Lemma 2.12, we have a surjective

homomorphism

H0(X,JS,Λ(ki(KX +∆i)))→ H0(S,JΛ|S(ki(KX +∆i))).

Since (S,Ωi) is canonical, (S,Ωi+
ki−1
m

H|S) is klt asm≫ 0, and so J
Ωt+

ki−1

m
H|S

= OS.

Since

Λ|S − (Σ + ki(Ωi −Θi)) =
ki−1
m

G|S + Ωi − A|S − (Σ + ki(Ωi −Θi)) ≤ Ωi +
ki−1
m

H|S,

then by Lemma 2.10(3) we have IΣ+ki(Ωi−Θi) ⊂ JΛ|S , and so

Σ + ki(Ωi −Θi) ∈ |ki(KX +∆i)|S,

which proves (6.8).
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Step 5. There are ample divisors An with SuppAn ⊂ Supp(∆s − S) such that

∥An∥ → 0 and ∆s + An are Q-divisors. Observe that Θσ
s = lim

n→∞
Θσ

n with

Θσ
n = Ωn − Ωn ∧Nσ∥KX +∆n∥S,

where ∆n = ∆s + An and Ωn = (∆n − S)|S. Note that

Nσ∥KX +∆n∥S =
∑

ordP ∥KX +∆n∥S · P

for all prime divisors P on S for all n, cf. Remark 2.24. But then as in Step 3 of the

proof of Theorem 6.6, no component of Θσ
n is in B(KS +Θσ

n), and thus, by Property

LG
A and since Θσ

n ≥ Θσ
s for every n, no component of Θσ

s is in B(KS +Θσ
s ). Since ki

is divisible by r and Θi ∈ W , by (6.8) we have

Ωi −Θi ≥ Ωi ∧ 1
ki
Fix |ki(KX +∆i)|S ≥ Ωi −Θ♯

i,

and so Θ♯
i ≥ Θi, where

Θ♯
i = Ωi − Ωi ∧ lim inf

m→∞
1
m
Fix |m(KX +∆i)|S.

Let P be a prime divisor on S. If multP Θσ
s = 0, then multP Θ♯

s = 0 since Θσ
s ≥ Θ♯

s

by Lemma 2.25. Otherwise multP Θi > 0 for all i and thus multP Θ♯
i > 0. Therefore

by concavity we have

multP Θ♯
s ≥

∑
rimultP Θ♯

i ≥
∑

rimultP Θi = multP Θσ
s ,

proving the claim from Step 1.

Step 6. Now let C be an ample Q-divisor such that ∆t−∆s +C is ample. Then by

the claim from Step 1 and by Lemma 2.25,

Ωs −Θ♯
s = Ωs ∧ lim

ε↓0

(∑
ordP ∥KX +∆s + ε(∆t −∆s + C)∥S · P

)
≤ Ωs ∧ lim

ε↓0

(∑
ordP ∥KX +∆s + ε(∆t −∆s)∥S · P

)
≤ Ωs −Θ♯

s,

where the last inequality follows from convexity. Therefore that inequality is an
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equality, and this completes the proof.

Now, let Z be a prime divisor on S and let LZ be the closure in SR of the set

{s ∈ SR : multZ Θ♯
s > 0}. Then LZ is a closed cone. Let λ♯

Z : SR → R be the

function given by λ♯
Z(s) = multZ λ♯(s), and similarly for Θ♯

Z .

Theorem 6.9. For every prime divisor Z on S, the map λ♯
Z is rationally piecewise

linear. Therefore, λ♯ is rationally piecewise linear.

Proof. Let G1, . . . , Gw be prime divisors on X not equal to S and SuppA such

that Supp(∆s − S − A) ⊂
∑

Gi for every s ∈ S. Let ν = max{multGi
∆s : s ∈

S, i = 1, . . . , w} < 1, and let 0 < η ≪ 1 − ν be a rational number such that

A − η
∑

Gi is ample. Let A′ ∼Q A − η
∑

Gi be a general ample Q-divisor. Define

∆′
s = ∆s − A + η

∑
Gi + A′ ≥ 0, and observe that ∆′

s ∼Q ∆s, ⌊∆′
s⌋ = S and

(S, (∆′
s − S)|S) is terminal.

Define the map χ : S → Div(X) by χ(s) = κts(KX + ∆′
s), for κ sufficiently

divisible. Then as before, we can construct maps Θ̃♯ : SR → Div(S)R, λ̃
♯ : SR →

Div(S)R and λ̃♯
Z : SR → R associated to χ. By construction, ordE ∥λ̃♯

s/κts∥S =

ordE ∥λ♯
s/ts∥S, and thus multZ Θ̃♯

s = multZ Θ♯
s + η for every s ∈ LZ . Let L̃Z be the

closure in SR of the set {s ∈ SR : multZ Θ̃♯
s > 0}, and thus LZ is the closure in

SR of the set {s ∈ SR : multZ Θ̃♯
s > η}. Note that multZ Θ̃♯

s ≥ η for every s ∈ LZ

by Theorem 6.8. Now for every face F of SR, either F ∩ LZ ⊂ relint(F ∩ L̃Z) or

∂(F∩LZ)∩∂(F∩L̃Z) ⊂ ∂F . Therefore by compactness there is a rational polyhedral

coneMZ such that LZ ⊂MZ ⊂ L̃Z , and so the map λ̃♯
Z |MZ

is superlinear.

By Theorem 6.11 below, for any 2-plane H ⊂ Rℓ the map λ̃♯
Z |MZ∩H is piecewise

linear, and thus λ̃♯
Z |MZ

is piecewise linear by Lemma 4.13.

To prove that λ̃♯
Z |MZ

is rationally piecewise linear, let k = dimMZ and let

MZ =
∪
Cm be a finite polyhedral decomposition such that λ̃♯

Z |Cm is linear for every

m. Let H be a hyperplane which contains a common (k − 1)-dimensional face of

cones Ci and Cj and assume H is not rational. By Step 1 of the proof of Lemma 4.10

there is a point s ∈ Ci ∩ Cj such that the minimal affine rational space containing

s has dimension k − 1. Then as in Step 1 of the proof of Theorem 6.11 there is

an k-dimensional cone C̃ such that s ∈ int C̃ and the map λ̃♯
Z |C̃ is linear. But then

the cones C̃ ∩ Ci and C̃ ∩ Ci are k-dimensional and linear extensions of λ̃♯
Z |Ci and

λ̃♯
Z |Cj coincide since they are equal to the linear extension of λ̃♯

Z |C̃, a contradiction.
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Therefore all (k−1)-dimensional faces of the cones Ci belong to rational hyperplanes

and thus Ci are rational cones.

Therefore the map λ̃♯
Z |MZ

is rationally piecewise linear, and since LZ is the

closure of the set {s ∈ SR : multZ Θ̃♯
s > η}, we have that LZ is a rational polyhedral

cone, the map λ̃♯
Z |LZ

is rationally piecewise linear, and therefore so is λ♯
Z . Now it is

trivial that λ♯ is a rationally piecewise linear map.

Thus it remains to prove that λ♯
Z |MZ∩H is piecewise linear for every 2-plane

H ⊂ Rℓ. As in Step 1 of the proof of Theorem 6.6, by replacing SR byMZ and λ♯
Z

by λ̃♯
Z , it is enough to assume, and I will until the end of the section, that λ♯

Z is a

superlinear function on SR for a fixed prime divisor Z on S.

Let Cs be a local Lipschitz constant of Θ♯ around s ∈ SR in the smallest rational

affine space containing s. For every s ∈ S, let ϕs be the smallest coefficient of

Ωs −Θ♯
s.

Theorem 6.10. Fix s ∈ SR and let U ⊂ Rℓ be the smallest rational affine subspace

containing s. If ϕs > 0, let 0 < δ ≪ 1 be a rational number such that ϕu > 0 for

u ∈ U with ∥u − s∥ ≤ δ, set ϕ = min{ϕu : u ∈ U, ∥u − s∥ ≤ δ} and let 0 < ε ≪ δ

be a rational number such that (Cs/ϕ+ 1)ε(KX +∆s) + A is ample. If ϕs = 0 and

Supp∆s =
∑

Fi, let 0 < ε≪ 1 be a rational number such that
∑

fiFi +A is ample

for any fi ∈ (−ε, ε), and set ϕ = 1. Let t ∈ U ∩ SQ and kt ≫ 0 be an integer such

that ∥t− s∥ < ε/kt, kt∆t/r is Cartier for r as in Lemma 6.7 and S ̸⊂ B(KX +∆t).

Then for any divisor Θ on S such that Θ ≤ Ωt, ∥Θ − Θ♯
s∥ < ϕε/kt and ktΘ/r is

Cartier we have

|kt(KS +Θ)|+ kt(Ωt −Θ) ⊂ |kt(KX +∆t)|S.

Proof. Set At = A/kt. I first prove that for any component P ∈ SuppΩs, and for

any l > 0 sufficiently divisible, we have

multP (Ωt ∧ 1
l
Fix |l(KX +∆t + At)|S) ≤ multP (Ωt −Θ). (6.9)

Assume first that ϕs = 0. Then in particular ordP ∥KX+∆s∥S = 0 and ∆t−∆s+At
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is ample since ∥∆t −∆s∥ < ε/kt, so

ordP ∥KX +∆t + At∥S = ordP ∥KX +∆s + (∆t −∆s + At)∥S
≤ ordP ∥KX +∆s∥S = 0.

Since for l sufficiently divisible we have

multP
1
l
Fix |l(KX +∆t + At)|S = ordP ∥KX +∆t + At∥S (6.10)

as in Step 3 of the proof of Theorem 6.6, we obtain (6.9).

Now assume that ϕs ̸= 0 and set C = Cs/ϕ. By Lipschitz continuity we have

∥Θ♯
t−Θ♯

s∥ < Cϕε/kt, so ∥Θ♯
t−Θ∥ < (C+1)ϕε/kt. Therefore it suffices to show that

multP (Ωt ∧ 1
l
Fix |l(KX +∆t + At)|S) ≤ (1− C+1

kt
ε)multP (Ωt −Θ♯

t).

Since kt ≫ 0, we can choose a rational number η > (C + 1)ε/kt such that η(KX +

∆t) + At is ample. From

KX +∆t + At = (1− η)(KX +∆t) + (η(KX +∆t) + At),

we have

ordP ∥KX +∆t + At∥S ≤ (1− η) ordP ∥KX +∆t∥S,

and thus by (6.10),

multP
1
l
Fix |l(KX +∆t + At)|S ≤ (1− C+1

kt
ε) ordP ∥KX +∆t∥S

for l sufficiently divisible.

Now the theorem follows as in Steps 3 and 4 of the proof of Theorem 6.8.

Finally, we have

Theorem 6.11. Fix s ∈ SR and let R be a ray in SR not containing s. Then there

exists a ray R′ ⊂ R+s + R not containing s such that the map λ♯
Z |R+s+R′ is linear.

In particular, for every 2-plane H ⊂ Rℓ, the map λ♯
Z |SR∩H is piecewise linear.
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Proof. Step 1. Let U ⊂ Rℓ be the smallest rational affine space containing s. In this

step I prove that the map Θ♯ is linear in a neighbourhood of s contained in U .

Let ε and ϕ be as in Theorem 6.10. Let W ⊂ Rℓ and V ⊂ Div(S)R be the

smallest rational affine spaces containing s and Θ♯
s respectively, and let r be as in

Lemma 6.7. By Lemma 2.27, there exist rational points (ti,Θ
′
ti
) ∈ W × V and

integers kti ≫ 0 such that:

(1) we may write s =
∑

rtiti, ∆s =
∑

rti∆ti and Θ♯
s =

∑
rtiΘ

′
ti
, where rti > 0

and
∑

rti = 1,

(2) kti∆ti/r are integral and ∥s− ti∥ < ε/kti ,

(3) ktiΘ
′
ti
/r are integral, ∥Θ♯

s−Θ′
ti
∥ < ϕε/kti and note that Θ′

ti
≤ Ωti since kti ≫ 0

and (ti,Θ
′
ti
) ∈ W × V .

Observe that S ̸⊂ B(KX +∆ti) since ti ∈ W for every i and ε≪ 1 by Property LG
A.

By Theorem 6.10 we have that

|kti(KS +Θ′
ti
)|+ kti(Ωti −Θ′

ti
) ⊂ |kti(KX +∆ti)|S.

Since Θ′
ti
∈ V and ktiΘ

′
ti
/r is Cartier, no component of Θ′

ti
is in Fix |kti(KS +Θ′

ti
)|

for every i by Lemma 6.7. In particular,

Ωti −Θ′
ti
≥ Ωti ∧ 1

kti
Fix |kti(KX +∆ti)|S ≥ Ωti −Θ♯

ti ,

and so

Θ♯
ti ≥ Θ′

ti
.

But by assumption (1) and since the map Θ♯
Z is concave, we have

Θ♯
Z(s) ≥

∑
rtiΘ

♯
Z(ti) ≥

∑
rti multZ Θ′

ti
= Θ♯

Z(s),

which proves the statement by Lemma 4.5.

Step 2. Now assume s ∈ SQ, ϕs = 0 and fix u ∈ R such that s and u belong to

a rational affine subspace P of Rℓ. Let ∆:
⊕ℓ

i=1 Rei → Div(X)R be a linear map

given by ∆(pi) = ∆pi for linearly independent points p1, . . . , pℓ ∈ P ∩ SQ, and then

extended linearly. Observe that ∆(p) = ∆p for every p ∈ P ∩ SR.
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Let W be the smallest rational affine subspace containing s and u. If there is a

sequence sn ∈ (s, u] such that limn→∞ sn = s and ϕsn = 0, then λ♯ is linear on the

cone R+s+ R+s1 by Lemma 4.5.

Therefore we can assume that there are rational numbers 0 < ε, η ≪ 1 such that

for all v ∈ [s, u] with 0 < ∥v − s∥ < 2ε we have ϕv > 0, that for every prime divisor

P on S, we have either multP Ωv > multP Θ♯
v or multP Ωv = multP Θ♯

v and either

multP Θ♯
v = 0 or multP Θ♯

v > 0 for all such v, and that ∆v − ∆s + Ξ + A is ample

for all such v and for any divisor Ξ such that SuppΞ ⊂ Supp∆s ∪ Supp∆u and

∥Ξ∥ < η.

Pick t ∈ (s, u] such that ∥s− t∥ < ε/ks, kss is integral and the smallest rational

affine subspace containing t is precisely W . Let 0 < δ ≪ 1 be a rational number

such that ϕv > 0 for v ∈ W with ∥v − t∥ ≤ δ, set ϕ = min{ϕv : v ∈ W, ∥v − t∥ ≤ δ}
and let 0 < ξ ≪ min{δ, ε} be a rational number such that (Ct/ϕ+1)ξ(KX +∆t)+A

is ample. Denote by V ⊂ Div(S)R the smallest rational affine space containing

Θ♯
s = Ωs and Θ♯

t, and let r be as in Lemma 6.7. Then by Lemma 2.28 there exist

rational points (ti,Θ
′
ti
) ∈ W × V and integers kti ≫ 0 such that:

(1) we may write t =
∑

rtiti, ∆t =
∑

rti∆ti and Θ♯
t =

∑
rtiΘ

′
ti
, where rti > 0

and
∑

rti = 1,

(2) t1 = s, Θ′
t1
= Θ♯

t1 = Ωt1 , kt1 = ks,

(3) kti∆ti/r are integral and ∥t− ti∥ < ξ/kti for i = 2, . . . , n− 1,

(4) Θ′
ti
≤ Ωti , ktiΘ

′
ti
/r are integral, ∥Θ♯

t−Θ′
ti
∥ < ϕξ/kti and (ti,Θ

′
ti
) belong to the

smallest rational affine space containing (t,Θ♯
t) for i = 2, . . . , n− 1,

(5) ∆t =
kt1

kt1+ktn
∆t1 +

ktn
kt1+ktn

∆tn +Ψ, where ktn∆tn/r is integral, ∥t− tn∥ < ε/ktn

and ∥Ψ∥ < η/(kt1 + ktn),

(6) Θ♯
t =

kt1
kt1+ktn

Θ′
t1
+ ktn

kt1+ktn
Θ′

tn + Φ, where Θ′
tn ≤ Ωtn , ktnΘ

′
tn/r is integral,

∥Θ♯
t −Θ′

tn∥ < ε/ktn and ∥Φ∥ < η/(kt1 + ktn).

Observe also that SuppΨ ⊂ Supp∆t and SuppΦ ⊂ SuppΘ♯
t by Remarks 2.29 and

2.30 applied to the linear map ∆ defined at the beginning of Step 2. Then by
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Theorem 6.10,

|kti(KS +Θ′
ti
)|+ kti(Ωti −Θ′

ti
) ⊂ |kti(KX +∆ti)|S

for i = 2, . . . , n − 1. Let P be a component in SuppΩt and denote Atn = A/ktn . I

claim that

multP (Ωtn ∧ 1
l
Fix |l(KX +∆tn + Atn)|S) ≤ multP (Ωtn −Θ′

tn) (6.11)

for l≫ 0 sufficiently divisible. Assume first that multP Θ♯
t = 0. Then multP Θ♯

s = 0

by the choice of ε, and thus multP Θ′
tn = 0 since Θ′

tn ∈ V . Therefore

multP (Ωtn ∧ 1
l
Fix |l(KX +∆tn + Atn)|S) ≤ multP Ωtn = multP (Ωtn −Θ′

tn).

Now assume that multP Θ♯
t > 0. Then for l sufficiently divisible we have

multP
1
l
Fix |l(KX +∆tn + Atn)|S = ordP ∥KX +∆tn + Atn∥S

as in Step 3 of the proof of Theorem 6.6, and since ∆t−∆t1−
kt1+ktn

kt1
Ψ+A is ample

by the choice of η,

multP (Ωtn ∧ 1
l
Fix |l(KX +∆tn + Atn)|S) ≤ ordP ∥KX +∆tn + Atn∥S

= ordP

∥∥KX +∆t +
kt1
ktn

(
∆t −∆t1 −

kt1+ktn
kt1

Ψ+ A
)∥∥

S

≤ ordP ∥KX +∆t∥S = multP (Ωt −Θ♯
t).

Combining assumptions (5) and (6) above we have

Ωt −Θ♯
t ≤ Ωt −Θ♯

t +
kt1
ktn

(
Ωt −Θ♯

t −
kt1+ktn

kt1
(Ψ|S − Φ)

)
= Ωtn −Θ′

tn ,

and (6.11) is proved. Furthermore, we can choose ε ≪ 1 and ktn ≫ 0 such that

S ̸⊂ B(KX + ∆tn). Otherwise, if we denote Q = {p ∈ SR : S ̸⊂ B(KX + ∆p)}, Q
is a rational polyhedral cone by Property LG

A, and t ∈ ∂Q for every t ∈ [s, u] with

0 < ∥t − s∥ ≪ 1, and thus s ∈ ∂Q. But then for 0 < ∥t − s∥ ≪ 1, s and t belong

to the same face of Q, and so does tn, a contradiction. Therefore as in the proof of
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Theorem 6.8 we have

|ktn(KS +Θ′
tn)|+ ktn(Ωtn −Θ′

tn) ⊂ |ktn(KX +∆tn)|S.

Denote
∑

Gj = Supp(Ωs − A|S) ∪ Supp(Ωu − A|S), and let Q′ = {Ξ ∈
∑

j[0, 1]Gj :

Z ̸⊂ B(KS + Ξ + A|S)}. Then by Property LG
A, Q′ is a rational polytope and

Θ♯
p ∈ Q′ for every p ∈ SR. Therefore as above and by Theorem 6.8, if ε ≪ 1 then

Z ̸⊂ B(KS+Θ′
tn), and as in Step 1 we have that λ♯

Z is linear on the cone
∑n

i=1 R+ti,

and in particular on the cone R+s+ R+t.

Step 3. Assume now that s ∈ SQ, ϕs > 0 and fix u ∈ R. Let again W be the smallest

rational affine space containing s and u. Let 0 < ξ ≪ 1 be a rational number such

that ϕv > 0 for v ∈ [s, u] with ∥v − s∥ ≤ 2ξ, that for every prime divisor P on S

we have either multP Ωv > multP Θ♯
v or multP Ωv = multP Θ♯

v for all such v, and let

ϕ = min{ϕv : v ∈ [s, u], ∥v − s∥ ≤ 2ξ}.
Let ks be a positive integer such that ks∆s/r and ksΘ

♯
s/r are integral, where r is

as in Lemma 6.7. Let us first show that there is a real number 0 < ε≪ ξ such that

(Ct/ϕ + 1)ε(KX + ∆v) + A is ample for all v ∈ SR such that ∥v − s∥ < 2ξ, where

∥t−s∥ = ε/ks. If Θ
♯ is locally Lipschitz around s this is straightforward. Otherwise,

assume Θ♯ is not locally Lipschitz around s and assume we cannot find such ε. But

then there is a sequence sn ∈ (s, u] such that lim
n→∞

sn = s and Csn∥sn−s∥ ≥M , where

M is a constant and Csn →∞. Since a local Lipschitz constant is the maximum of

local slopes of the concave function Θ♯|[s,u], we have that

Θ♯
sn −Θ♯

s

∥sn − s∥
> Csn .

Therefore

Θ♯
sn −Θ♯

s > Csn∥sn − s∥ ≥M

for all n ∈ N, which contradicts Theorem 6.8.

Increase ε a bit, and pick t ∈ (s, u] such that ∥s − t∥ < ε/ks, the smallest

rational subspace containing t is precisely W and (Ct/ϕ + 1)ε(KX + ∆v) + A is

ample for all v ∈ SR such that ∥v − s∥ < 2ε. In particular, Θ♯ is locally Lipschitz

in a neighbourhood of t contained in W . Furthermore, by changing ϕ slightly I can
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assume that ϕ ≤ min{ϕv : v ∈ W, ∥v − t∥ ≪ 1}. Denote by V the smallest rational

affine space containing Θ♯
s and Θ♯

t, and let r be as in Lemma 6.7. Then by Lemma

2.28 there exist rational points (ti,Θ
′
ti
) ∈ W × V and integers kti ≫ 0 such that:

(1) we may write t =
∑

rtiti, ∆t =
∑

rti∆ti and Θ♯
t =

∑
rtiΘ

′
ti
, where rti > 0

and
∑

rti = 1,

(2) t1 = s, Θ′
t1
= Θ♯

t1 , kt1 = ks,

(3) kti∆ti/r are integral and ∥t− ti∥ < ε/kti for all i,

(4) Θ′
ti
≤ Ωti , ktiΘ

′
ti
/r are integral and ∥Θ♯

t −Θ′
ti
∥ < ϕε/kti .

Observe that similarly as in Step 2 we have S ̸⊂ B(KX +∆ti) for all i, and therefore

by Theorem 6.10,

|kti(KS +Θ′
ti
)|+ kti(Ωti −Θ′

ti
) ⊂ |kti(KX +∆ti)|S

for all i. Then we finish as in Step 2.

Step 4. Assume in this step that s ∈ SR is a non-rational point and fix u ∈ R.

By Step 1 there is a rational cone C =
∑k

i=1 R+gi with gi ∈ SQ and k > 1 such

that λ♯
Z is linear on C and s =

∑
αigi with all αi > 0. Consider the rational point

g =
∑k

i=1 gi. Then by Step 2 there is a point s′ = αg + βu with α, β > 0 such that

the map λ♯
Z is linear on the cone R+g + R+s

′. Now we have

λ♯
Z

(∑
gi + s′

)
= λ♯

Z(g + s′) = λ♯
Z(g) + λ♯

Z(s
′) =

∑
λ♯
Z(gi) + λ♯

Z(s
′),

so the map λ♯
Z |C+R+s′ is linear by Lemma 4.5. Taking µ = max

i
{ α
αiβ
} and taking a

point û = µs+ u in the relative interior of R+s+R, it is easy to check that

û =
∑

(µαi − α
β
)ti +

1
β
s′ ∈ C + R+s

′,

so the map λ♯
Z |R+s+R+û is linear.

Step 5. Finally, let H be any 2-plane in Rℓ. Then by the previous steps, for every

ray R ⊂ SR ∩ H there is a polyhedral cone CR with R ⊂ CR ⊂ SR ∩ H such that
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there is a polyhedral decomposition CR = CR,1 ∪ CR,2 with λ♯
Z |CR,1

and λ♯
Z |CR,2

being

linear maps, and if R ⊂ relint(SR ∩H), then R ⊂ relint CR.
Let Sℓ−1 be the unit sphere. Restricting to the compact set Sℓ−1 ∩ SR ∩ H we

see that λ♯
Z |SR∩H is piecewise linear.

6.2 Proof of the Main Result

Proof of Theorem 6.2.

Step 1. I first show that it is enough to prove the theorem in the case when A is a

general ample Q-divisor and (X,∆i + A) is a log smooth klt pair for every i.

Let p and k be sufficiently divisible positive integers such that all divisors k(∆i+

pA) are very ample and (p + 1)kA is very ample. Let (p + 1)kAi be a general

section of |k(∆i + pA)| and let (p + 1)kA′ be a general section of |(p + 1)kA|. Set

∆′
i =

p
p+1

∆i + Ai. Then the pairs (X,∆′
i + A′) are klt and

(p+ 1)k(KX +∆i + A) ∼ (p+ 1)k(KX +∆′
i + A′) =: D′

i

for all i. Then a truncation of R(X;D1, . . . , Dℓ) is isomorphic to R(X;D′
1, . . . , D

′
ℓ),

so it is enough to prove the latter algebra is finitely generated.

Step 2. Therefore I can assume that ∆i =
∑N

j=1 δijFj with δij ∈ [0, 1). Write

KX + ∆i + A ∼Q
∑N

j=1 f
′
ijFj ≥ 0, where Fj ̸= A since A is general. By blowing

up, and by possibly replacing the pair (X,∆i) by (Y,∆′
i) for some model Y → X

as in Step 2 of the proof of Theorem 6.6, I can assume that the divisor
∑N

j=1 Fj has

simple normal crossings. Thus for every i,

KX ∼Q −A+
∑N

j=1
fijFj,

where fij = f ′
ij − δij > −1.

Let Λ =
⊕N

j=1 NFj ⊂ Div(X) be a simplicial monoid and set T = {(t1, . . . , tℓ) :
ti ≥ 0,

∑
ti = 1} ⊂ Rℓ. For each τ = (t1, . . . , tℓ) ∈ T , denote δτj =

∑
i tiδij and

fτj =
∑

i tifij, and observe that KX ∼R −A +
∑

j fτjFj. Denote Bτ =
∑N

j=1[δτj +

fτj, 1 + fτj]Fj ⊂ ΛR and let B =
∪

τ∈T Bτ . It is easy to see that B is a rational

polytope: every point in B is a barycentric combination of the vertices of Bτ1 , . . . ,Bτℓ ,
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where τi are the standard basis vectors of Rℓ. Thus C = R+B is a rational polyhedral

cone.

For each j = 1, . . . , N fix a section σj ∈ H0(X,Fj) such that div σj = Fj.

Consider the Λ-graded algebra R =
⊕

s∈ΛRs ⊂ R(X;F1, . . . , FN) generated by the

elements of R(X, C ∩Λ) and all σj; observe that Rs = H0(X, s) for every s ∈ C ∩Λ.
I claim that it is enough to show that R is finitely generated.

To see this, assume R is finitely generated and denote

ωi = rki
∑

j
(δij + fij)Fj ∈ Λ

for r sufficiently divisible and i = 1, . . . , ℓ. Set G =
∑

i R+ωi ∩ Λ and observe that

ωi ∼ rDi. Then by Lemma 5.5(2) the algebra R(X, C ∩ Λ) is finitely generated,

and therefore by Proposition 5.11 there is a finite rational polyhedral subdivision

GR =
∪

k Gk such that the map Mobι|Gk∩Λ is additive up to truncation for every k,

where ι : Λ→ Λ is the identity map.

Let ω′
1, . . . , ω

′
q be generators of G such that ω′

i = ωi for i = 1, . . . , ℓ, and let

π :
⊕q

i=1 Nω′
i → G be the natural projection. Then the map Mobπ|π−1(Gk∩Λ) is addi-

tive up to truncation for every k, and thus R(X, π(
⊕q

i=1 Nω′
i)) is finitely generated

by Lemma 5.5(3). Therefore R(X, π(
⊕ℓ

i=1 Nωi)) ≃ R(X; rD1, . . . , rDℓ) is finitely

generated by Lemma 5.5(2), thus R(X;D1, . . . , Dℓ) is finitely generated by Lemma

5.5(1).

Step 3. Therefore it suffices to prove that R is finitely generated. Take a point∑
j(fτj + bτj)Fj ∈ B\{0}; in particular bτj ∈ [δτj, 1]. Setting

rτ =
N

max
j=1

{fτj + bτj
fτj + 1

}
and b′τj = −fτj +

fτj + bτj
rτ

,

we have ∑
j
(fτj + bτj)Fj = rτ

∑
j
(fτj + b′τj)Fj. (6.12)

Observe that rτ ∈ (0, 1], b′τj ∈ [bτj, 1] and there exists j0 such that b′τj0 = 1. For

every j = 1, . . . , N , let

Fτj = (1 + fτj)Fj +
∑

k ̸=j
[δτk + fτk, 1 + fτk]Fk,
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and set Fj =
∪

τ∈T Fτj, which is a rational polytope. Then Cj = R+Fj is a rational

polyhedral cone, and (6.12) shows that C =
∪

j Cj. Furthermore, since
∑

j(fτj +

bτj)Fj ∼R KX +
∑

j bτjFj + A for τ ∈ T , for every j and for every s ∈ Cj ∩ Λ there

is rs ∈ Q+ such that s ∼Q rs(KX +Fj +∆s+A) where Supp∆s ⊂
∑

k ̸=j Fk and the

pair (X,Fj +∆s + A) is log canonical.

Step 4. Assume that the restricted algebra resFj
R(X, Cj ∩ Λ) is finitely generated

for every j. I will show that then R is finitely generated.

Let V =
∑N

j=1 RFj ≃ RN , and let ∥ · ∥ be the Euclidean norm on V . By

compactness there is a constant C such that every Fj ⊂ V is contained in the closed

ball centred at the origin with radius C. Let deg denote the total degree function

on Λ, i.e. deg(
∑N

j=1 αjFj) =
∑N

j=1 αj; it induces the degree function on elements of

R. Let M be a positive integer such that, for each j, resFj
R(X, Cj ∩Λ) is generated

by {σ|Fj
: σ ∈ R(X, Cj ∩ Λ), deg σ ≤ M}, and such that M ≥ CN1/2max

i,j
{ 1
1−δij
}.

By Hölder’s inequality we have ∥s∥ ≥ N−1/2 deg s for all s ∈ C ∩ Λ, and thus

∥s∥/C ≥ max
i,j

{ 1

1− δij

}
for all s ∈ C ∩ Λ with deg s ≥ M . Let H be a finite set of generators of the finite

dimensional vector space ⊕
s∈C∩Λ,deg s≤M

H0(X, s)

such that for every j, the set {σ|Fj
: σ ∈ H} generates resFj

R(X, Cj ∩ Λ). I claim

that R is generated by {σ1, . . . , σN} ∪ H, with σj as in Step 2.

To that end, take any section σ ∈ R with deg σ > M . By definition, possibly

by considering monomial parts of σ and dividing σ by a suitable product of sections

σj, I can assume that σ ∈ R(X, C ∩ Λ). Furthermore, by Step 3 there exists w ∈
{1, . . . , N} such that σ ∈ R(X, Cw ∩ Λ), thus there is τ ∈ T ∩ Qℓ such that σ ∈
H0(X, rσ

∑
j(fτj + bτj)Fj) with bτw = 1. Observe that rσ ≥ max

i,j
{ 1
1−δij
} since

∥
∑

j(fτj + bτj)Fj∥ ≤ C, and in particular rσ−1
rσ
≥ δτw for every τ ∈ T .

Therefore by assumption there are elements θ1, . . . , θz ∈ H and a polynomial φ ∈
C[X1, . . . , Xz] such that σ|Fw = φ(θ1|Fw , . . . , θz|Fw). Therefore by (5.1) in Remark



6.2. Proof of the Main Result 87

5.3,

(σ − φ(θ1, . . . , θz))/σw ∈ H0
(
X, rσ

∑
j
(fτj + bτj)Fj − Fw

)
.

Since

rσ
∑
j

(fτj + bτj)Fj − Fw = rσ

(
(fτw + rσ−1

rσ
)Fw +

∑
j ̸=w

(fτj + bτj)Fj

)
,

we have rσ
∑

j(fτj + bτj)Fj − Fw ∈ C ∩ Λ. We finish by descending induction on

deg σ.

Step 5. Therefore it remains to show that for each j, the algebra resFj
R(X, Cj ∩Λ)

is finitely generated.

To that end, choose a rational 0 < ε ≪ 1 such that ε
∑

k∈I Fk + A is ample

for every I ⊂ {1, . . . , N}, and let AI ∼Q ε
∑

k∈I Fk + A be a very general ample

Q-divisor. Fix j, and for I ⊂ {1, . . . , N}\{j} let

F I
τj = (1 + fτj)Fj +

∑
k∈I

[1− ε+ fτk, 1 + fτk]Fk +
∑

k/∈I∪{j}

[δτk + fτk, 1− ε+ fτk]Fk.

Set F I
j =

∪
τ∈T F I

τj; these are rational polytopes such that Fj =
∪

I⊂{1,...,N}\{j}F I
j ,

and therefore CIj = R+F I
j are rational polyhedral cones such that Cj =

∪
CIj .

Furthermore, for every s ∈ CIj ∩ Λ we have s ∼Q rs(KX + Fj + ∆s + A) ∼Q

rs(KX + Fj +∆′
s +AI), where ∆′

s = ∆s − ε
∑

k∈I Fk ≥ 0 and ⌊Fj +∆′
s +AI⌋ = Fj.

Therefore it is enough to prove that resFj
R(X, CIj ∩ Λ) is finitely generated for

every I. Fix I and let h1, . . . , hm be generators of CIj ∩ Λ. Similarly as in Step

1 of the proof of Theorem 6.6, it is enough to prove that the restricted algebra

resFj
R(X;h1, . . . , hm) is finitely generated. For p sufficiently divisible, by the argu-

ment above we have phv ∼ ρv(KX + Fj + Bv + AI) =: Hv, where ⌈Bv⌉ ⊂
∑

k ̸=j Fk,

⌊Bv⌋ = 0, ρv ∈ N and AI is a very general ample Q-divisor. Therefore it is enough

to show that resFj
R(X;H1, . . . , Hm) is finitely generated by Lemma 5.5(1). But

this follows from Theorem 6.6 and the proof is complete.

Proof of Theorem 6.1. By Theorem 3.10 and by induction on dimX, we may assume

KX+∆ is big. WriteKX+∆ ∼Q B+C with B effective and C ample. Let f : Y → X

be a log resolution of (X,∆+B+C) and let H be an effective f -exceptional divisor
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such that f ∗C − H is ample. Then writing KY + Γ = f∗(KX + ∆) + E, where

Γ = B(X,∆)Y , we have that R(Y,KY + Γ) and R(X,KX + ∆) have isomorphic

truncations. Since KY +Γ ∼Q (f ∗B+H+E)+(f∗C−H), we may assume from the

start that Supp(∆ +B + C) has simple normal crossings. Let ε be a small positive

rational number and set ∆′ = (∆+ εB) + εC. Then KX +∆′ ∼Q (ε+ 1)(KX +∆),

and R(X,KX + ∆) and R(X,KX + ∆′) have isomorphic truncations, so the result

follows from Theorem 6.2.
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