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Towards Finite Generation of the Canonical Ring

without the Minimal Model Program

Vladimir Lazié¢

Summary

The purpose of this thesis is to make the first step in a project to prove finite gener-
ation of the canonical ring without the techniques of the Minimal Model Program.
The proof of the finite generation by Birkar, Cascini, Hacon and M°Kernan exploits
fully constructions of Mori theory, and is a part of a larger induction scheme in
which several other conjectures of the theory are settled.

The route undertaken in this thesis is completely different, and the idea is to
prove the finite generation directly, by induction on the dimension. A version of
the hyperplane section principle is applied in order to restrict to carefully chosen log
canonical centres. The biggest conceptual difficulty in attempts to obtain a proof by
induction was the finite generation of the kernel of the restriction map. The idea to
resolve the kernel issue in this thesis is to view the canonical ring as a subalgebra of
a larger algebra, which would a priori contain generators of the kernel. In practice
this means that the new algebra will have higher rank grading, and techniques to
deal with these algebras are developed along the way.

The problem of finite generation is reduced to a property which should be easier
to handle with analytic techniques. I also discuss the ultimate goal of the project —
the finite generation in the case of pairs with log canonical singularities, as well as
relations to Abundance Conjecture and the finite generation in positive character-

istic.
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Chapter 1
Introduction

The topic of this thesis is to make the first of two steps in a project to prove finite
generation of the canonical ring without using techniques of the Minimal Model

Program.

Finite Generation Conjecture. Let (X, A) be a projective log canonical pair.

Then the canonical ring

R(X,Kx +A) = P H (X, Ox([n(Ex + A))))

n>0
s a finitely generated C-algebra.

The ring above is often called the log canonical ring, to stress the log structure.
I will drop the “log” part since there is no danger of ambiguity.

There has been a recent enormous progress in Mori Theory, starting with papers
of Shokurov [Sho03] and Hacon and M°Kernan [HMO05], and culminating with the
paper by Birkar, Cascini, Hacon and M°Kernan [BCHMO6]|, which settled several
conjectures of the MMP for kawamata log terminal pairs: existence of flips and
existence of minimal models for varieties of log general type. However, the picture
is still incomplete — ultimately, we would like the programme to work for varieties
with log canonical singularities and not necessarily of log general type. Certainly,
finite generation of the canonical ring is a consequence of the existence of minimal

models and of Basepoint Free theorem.
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This thesis undertakes a different approach. The philosophy is that finite gen-
eration lies at the beginning, and that (almost) the whole Mori Theory can be
reconstructed from the point of view of finite generation. The existence of flips is
a straightforward consequence of the finite generation, and there is some work that
suggests that other conjectures, including Abundance Conjecture, can be deduced
from it. Actually, a form of abundance is the main technical obstacle to performing
the procedure from [BCHMO6] to complete the MMP in the case of klt singularities.

The paper [BCHMO06] uses the bigness of boundary divisors almost everywhere,
and it seems very difficult to avoid that fact. One of the motivations for this thesis,
apart from the very appealing project of having a proof of finite generation which is
conceptual, concise and by induction on the dimension, is to try use the bigness of
the boundary as little as possible. At present, avoiding that assumption completely
does not seem foreseeable, in particular because of the form of the extension results
that we have at present which use bigness essentially. It seems reasonable to expect
that analytic techniques could be involved in a similar manner to that of Siu’s paper
[Siu02] to get around the existence of an ample divisor in the boundary, but this
seems a far-fetched task at the moment.

Let me outline the contents of this thesis; more is given at the beginning of
individual chapters and sections. In Chapter 2 I survey the known properties of
b-divisors, multiplier ideals, asymptotic invariants of linear systems and Diophan-
tine approximation used in the following chapters. The common feature of all these
concepts is that they measure the behaviour of certain objects in some limiting pro-
cesses. | will use the techniques from Chapter 2 extensively throughout the thesis,
and I have tried to make the presentation self-contained and to keep citing external
sources to the minimum. The basic reference for b-divisors is [Cor07]. There are
many references for standard multiplier ideal sheaves, but the presentation of mul-
tiplier ideals used in this thesis is closely following [HMO08]. Asymptotic numerical
invariants attached to linear series have been systematically investigated ever since
the book [Nak04] appeared, and papers [ELMT06, Bou04, Hac08] are the main ref-
erences used in this work. As for Diophantine approximation, I draw upon results of
[Cas57, BCHMO06], apart from Lemma 2.28, where I have to make use of the precise
quantity of the error term between the actual and approximated values.

Chapter 3 surveys the Minimal Model Program, and I sketch the central role of
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finite generation, in particular in the problem of the existence of flips. The standard
literature on this is [KMM87, KM98]. The last part of the chapter concentrates
on the existence of pl flips, and in particular we prove that a suitable statement
in dimension one less implies finite generation of the restricted canonical ring. The
presentation here follows closely, and is occasionally taken almost verbatim from,
the paper [HMO0S|, and I stress potential issues that will be equally observable in
the general case of the finite generation in Chapter 6. Apart from Chapters 2 and
3, the thesis is my own original work.

Chapter 4 is devoted to developing techniques that will be used in Chapters 5
and 6 in order to prove that certain superlinear maps are in fact piecewise linear.
The method developed requires deep techniques of Diophantine approximation and
extensive use of Lipschitz continuity, and is one of the technically most demanding
parts of the thesis which is not within the realm of algebraic geometry.

In Chapter 5 I develop necessary tools to deal with algebras of higher rank.
There are two approaches: that algebras should be given by additive maps of ad-
joint divisors, or by superadditive maps of mobile b-divisors which satisfy a certain
saturation condition in the sense of Shokurov. The former is undertaken successfully
in Chapter 6 to prove finite generation of the canonical ring under certain assump-
tions, which is the core of this work. The latter is used in Chapter 5 to show that
suitable higher rank analogues of Shokurov algebras that appeared in the context
of 3-dimensional flips [Sho03, Cor07] stand, perhaps surprisingly, a good chance of
being finitely generated, and the proof of this fact is given on curves. In particular,
this method demonstrates that the saturation condition gives very strong numeri-
cal constraints on the divisors involved (not only rationality of divisors, but also a
bound on the denominators).

Finally, Chapter 6 is the heart of this thesis. I prove finite generation of the
canonical ring under a natural assumption on the convex geometry of the set of
log canonical pairs with big boundaries in terms of divisorial components of the
stable base loci, see Property £§ there. This property is a consequence of the
MMP, however my hope is that there will very soon exist a proof of this statement
obtained by techniques similar to those used in the proof of finite generation of the
restricted algebra in Section 6.1 below.

Let me sketch the strategy for the proof of finite generation and present diffi-
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culties that arise on the way. The natural idea is to pick a smooth divisor S on X
and to restrict the algebra to it. If we are very lucky, the restricted algebra will be
finitely generated and we might hope that the generators lift to generators on X.
There are several issues with this approach.

Firstly, in order to obtain something meaningful on S, S should be a log canonical
centre of some pair (X, A’) such that R(X, Kx + A) and R(X, Kx + A’) share a
common truncation. Secondly, even if the restricted algebra were finitely generated,
the same might not be obvious for the kernel of the restriction map. Thirdly, the
natural choice is to use the Hacon-M“Kernan extension theorem, and hence we must
be able to ensure that S does not belong to the stable base locus of Ky + A.

The idea to resolve the kernel issue is to view R(X, Kx + A) as a subalgebra of a
larger algebra, which would a priori contain generators of the kernel. In practice this
means that the new algebra will have higher rank grading. Namely, we will see that,
roughly, the rank corresponds to the number of components of A. The proof then
proceeds to employ the techniques from all previous chapters: generalities about
higher rank finite generation allow me to deduce finite generation of initial algebras
from that of bigger algebras, and finite generation of the image is dealt with by
using difficult techniques revolving around Hacon-M®Kernan methods of extending
sections of adjoint line bundles.

Finally, it is my hope that the techniques of this thesis could be adapted to
handle finite generation in the case of log canonical singularities, Abundance Con-
jecture and the case of positive characteristic. The Minimal Model Program and the
finite generation in the case of log canonical singularities seem increasingly within
reach, especially since the works of Ambro and Fujino [Amb03, Fuj07b]. One of
the main obstacles is finding a suitable analogue of the canonical bundle formula
of Fujino and Mori, which would allow us to restrict attention to the log general
type case. Abundance Conjecture is closely related to a certain non-vanishing state-
ment, which has been successfully proved without Mori Theory in [Pau08]; similar
techniques appeared in [Hac08] and they are precisely those used here in order to
prove finite generation of the restricted algebra. Finally, the case of positive char-
acteristic is also an active field of research. The method presented here is mostly
characteristic-free, apart from two important ingredients: resolution of singulari-

ties and the extension theorem of Hacon and M®Kernan, which uses in its proof
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Kawamata-Viehweg vanishing which is known only in characteristic zero. I expect
that some of these projects will be completed by using the techniques developed in
this thesis.
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Notation and Conventions

Unless stated otherwise, varieties in this thesis are normal over C and projective
over an affine variety Z. The group of Weil, respectively Cartier, divisors on a
variety X is denoted by WDiv(X), respectively Div(X). I denote WDiv(X)"=0 =
{D € WDiv(X) : k(X, D) > 0}, and similarly for Div(X)"2% where & is the litaka
dimension. I write ~ for linear equivalence of Weil divisors and = for numerical
equivalence of Cartier divisors, and p(X) = rk N'(X) is the Picard number of
X. Similarly for relative versions. Subscripts denote either the ring in which the
coefficients of divisors are taken or that the equivalence is relative to a specified
morphism.

An ample Q-divisor A on a variety X is (very) general if there is a sufficiently
divisible positive integer k such that kA is very ample and kA is a (very) general
section of the linear system |kA|. In particular we can assume that for some k > 0,
kA is a smooth divisor on X. In practice, we fix k in advance, and generality is
needed to ensure that A does not make singularities of pairs worse, as in Theorem
3.19.

If T is a prime divisor on X such that 7' ¢ Fix |D|, then |D|r denotes the image
of the linear system |D| under restriction to T.

For any two divisors P = Y p;E; and @ = ) ¢;E; on a variety X, set P A Q =
> min{p;, ¢;} E;.

I use the adjunction formula with differents as explained in [K792, Chapter 16].

The sets of non-negative (respectively non-positive) rational and real numbers
are denoted by Q, and R, (Q_ and R_ respectively).

Geometry of pairs and valuations. In this thesis, a log pair (X, A) consists
of a variety X and an effective divisor A € WDiv(X)g such that Kx + A is R-
Cartier. A pair (X, A) is log smooth if X is nonsingular and Supp A has simple
normal crossings. A model over X is a proper birational morphism f: Y — X. A
log resolution of (X, A) is amodel f: Y — X such that the pair (Y, f7!A+Exc f) is
log smooth. A boundary is a divisor A = > d;D; € WDiv(X)g such that 0 < d; <1
for all . A birational morphism f:Y — X is small if codimy Exc f > 2.

A valuation v: k(X) — Z is geometric if v = multy, where £ C Y is a prime
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divisor on a model Y — X. In that case I denote the valuation also by E. The centre

of a geometric valuation v on X associated to a divisor £ on a model f: Y — X is
CxVlV = f(E)

Convex geometry. If S =) Ne; is a submonoid of N*, I denote Sg = ) Q. ¢;
and Sg = Y R, e;. A monoid S C N" is saturated if S = Sg N N".

If S = " Ne and ky,...,k, are positive integers, the submonoid &' =
> oo Nrse; is called a truncation of S. If ky = -+ = K, = &, I denote Sk =
> Nke;, and this truncation does not depend on a choice of generators of S.

A submonoid § = > Ne; of N™ (respectively a cone C = > Rye; in R") is
simplicial if its generators e; are R-linearly independent. The e; form a basis of S
(respectively C).

For a cone C C R", I denote Cg = C N Q". The dimension dimC of a cone
C = > Rye; is the dimension of the space ) Re;. All cones considered are convex
and strongly convex, that is they do not contain lines.

In this thesis the relative interior of a cone C = Y Rie; C R™, denoted by
relint C, is the topological interior of C in the space »_ Re; union the origin. If
dim C = n, we instead call it the interior of C and denote it by int C. The boundary
of a closed set C is denoted by OC.

Let & € N be a finitely generated monoid, C € {S,Sg, Sg} and V an R-vector
space. A function f: C — V is: positively homogeneous if f(Ax) = Af(z) for
x € C,\ > 0; superadditive if f(z)+ f(y) < f(x +y) for z,y € C; Q-superadditive
if MNf(x) + pf(y) < fQOx + py) for z,y € C, A\ pu € Qp; Q-additive if the pre-
vious inequality is an equality; superlinear if Af(x) + pf(y) < f(Ax + uy) for
x,y € Sg, A\, u € Ry, or equivalently, if and only if it is superadditive and posi-
tively homogeneous. Similarly for additive, subadditive, sublinear. It is piecewise
additive if there is a finite polyhedral decomposition C = (JC; such that fic, is ad-
ditive for every 7; additionally, if each C; is a rational cone, it is rationally piecewise
additive. Similarly for (rationally) piecewise linear, abbreviated PL and Q-PL. As-
sume furthermore that f is linear on C and dim C = n. The linear extension of f to
R™ is the unique linear function £: R™ — V such that {;¢c = f.

I often use without explicit mention that if A\: M — S is an additive surjective

map between finitely generated saturated monoids, and if C is a rational polyhe-
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dral cone in Sg, then A™(SNC) = M N A YC). In particular, the inverse image
of a saturated finitely generated submonoid of § is a saturated finitely generated
submonoid of M.

For a polytope P C R", I denote Py = P N Q". A polytope is rational if it is
the convex hull of finitely many rational points.

If B C R"is a convex set, then R, B will denote the set {rb:r € Ry,b € B}, the
cone over B. In particular, if B is a rational polytope, R, B is a rational polyhedral
cone. The dimension of a rational polytope P, denoted dim P, is the dimension of

the smallest rational affine space containing P.



Chapter 2
Asymptotic Techniques

In this chapter I present some recent techniques that will be useful in the rest of this
thesis. Their common feature is that they describe asymptotic behaviour of certain

objects attached to varieties.

2.1 b-Divisors

b-Divisors can be understood as limits of regular divisors on different birational mod-
els. In particular, mobile b-divisors are useful when dealing with finite generation
issues as they help keep track of sections needed to generate an algebra. Further, the
language of b-divisors makes, on occasion, mathematical texts more concise, which

is already obvious in the proofs of basic properties of multiplier ideals.

Definition 2.1. An integral b-divisor D on X is an element of the group
Div(X) = @WDiV(Y),

where the limit is taken over all models f: Y — X with the induced homomorphisms
fe: WDiv(Y) — WDiv(X). Thus D is a collection of divisors Dy € WDiv(Y)
compatible with push-forwards. Each Dy is the trace of D on Y.

For every model f: Y — X the induced map f,: Div(Y) — Div(X) is an

isomorphism, so b-divisors on X can be identified with b-divisors on any model
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over X. For every open subset U C X we naturally define the restriction Dy of a
b-divisor D on X.

Definition 2.2. The b-divisor of a nonzero rational function ¢ is

divy ¢ = ZmultE p- b,
where F runs through geometric valuations with centre on X.

The b-divisorial sheaf Ox(D) associated to a b-divisor D is defined by
D(U, 0x(D)) = {p € k(X) : (divx o+ D) > 0},

Definition 2.3. The proper transform b-divisor D of an R-divisor D has trace
Dy = f7D on every model f: Y — X.

The Cartier closure of an R-Cartier divisor D on X is the b-divisor D with trace
Dy = f*D on every model f: Y — X.

A b-divisor D descends to a model Y — X if D = Dy; we then say that D is a
Cartier b-divisor.

A b-divisor M on X is mobile if it descends to a model Y — X, where My is

basepoint free.

Note that if a mobile b-divisor M descends to a model W — X, then My is
free and H°(X, M) ~ H°(W, Myy).

Cartier restriction. Let D be a Cartier b-divisor on X and let S be a normal
prime divisor on X such that S ¢ SuppDx. Let f: Y — X be a log resolution of
(X, 5) such that D descends to Y. Define the restriction of D to S as

This is a b-divisor on S via ( f| §Y)* and it does not depend on the choice of f. By
definition, Djg is a Cartier b-divisor that satisfies (D; + D3)s = Dy + Dyyg, and
Dy5 > Dyig if Dy > Da.
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Definition 2.4. The canonical b-divisor Kx on X has a trace (Ky)y = Ky on
every model Y — X. The discrepancy A(X,A) of the pair (X, A) is

A(X,A) =Ky — Kx T A.

To streamline several arguments in the thesis, we introduce the following.

Definition 2.5. Let (X, A) be a log pair. For a model f: Y — X we can write
uniquely

Ky+By:f*<KX—|—A)+EY7

where By and Fy are effective with no common components and Ey is f-exceptional.
The boundary b-divisor B(X, A) is given by B(X, A)y = By for every model ¥ —
X. If the pair (X, A) is log smooth and A is a reduced divisor, define A*(X,A) =
A(X,A) + B(X,A); this is an effective and exceptional integral b-divisor.

Lemma 2.6. If (X,A) is a log pair, then the boundary b-divisor B(X, A) is well-
defined.

Proof. Let g: Y — X be a model such that there is a proper birational morphism
h:Y'" — Y. Pushing forward Ky: + By, = g*(Kx + A) + Ey+ via h, yields

Ky + h.By: = f*(Kx + A) + h.Ey,

and since h, By and h,Fys have no common components, h, By, = By. ]

The following result will be used several times in this thesis, and it will enable

us to pass to more suitable models in order to apply extension results.

Lemma 2.7. Let (X, A) be a log canonical pair. There exists a log resolution Y — X
such that the components of {B(X,A)y} are disjoint.

Proof. See [KM98, Proposition 2.36] or [HMO05, Lemma 6.7]. O

2.2 Multiplier Ideals

Multiplier ideal sheaves and their asymptotic versions have proved absolutely es-

sential in recent major progress in Mori theory. The techniques as we know them
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today were introduced in the seminal paper [Siu98| in order to prove invariance of
plurigenera. The form of multiplier ideas used in this thesis is not the most general,
and with a bit of work some of the results of this chapter can be generalised to the

context of [Fuj08], but I do not pursue this here.

Definition 2.8. Let (X,A) be a log smooth pair where A is a reduced divisor,
and let V' be a linear system whose base locus contains no log canonical centres of
(X,A). Let u: Y — X be a log resolution of V' and (X, A), and let F' = Fix u*V.

Then for any real number ¢ > 0, define the multiplier ideal sheaf
jA,c-V = M*OY(A*(Xv A)Y - LCFJ)

If A =0 we will write J..v/, and if D = ¢G, where G > 0 is a Cartier divisor, we
define

Iap = IAcv,
where V = {G}.

Lemma 2.9. The multiplier ideal Ja v in Definition 2.8 does not depend on the

choice of a log resolution p.

Proof. Denote A* = A*(X,A) and B = B(X,A). Observe that the b-divisor F
given by F; = Fix7*V for every model 7: Z — X, descends to Y. It is enough
to show that A* — |cF| > A} — |c¢F'|. For this, let f: Y — Y be a model. The

inequality, on Y”, is equivalent to
’VKY/ — f*<KY + {CF} + By) + By/—‘ > 0.

Observe that the log canonical centres of (Y, {cF'}+By ) are exactly the intersections
of components of By. Thus By~ is the locus of log canonical singularities on Y for
(Y, {cF} 4+ By), and the lemma follows. O

The basic properties of multiplier ideal sheaves are listed in the following result.

Lemma 2.10. Let (X, A) be a log smooth pair where A is reduced, let V' be a linear

system whose base locus contains no log canonical centres of (X, A), and let G and
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D be effective Q-Cartier divisors whose supports contain no log canonical centres of

(X,A). Then:
(1) Ja.p = Ox if and only if (X, A+ D) is divisorially log terminal and | D] = 0,
(2) if 0 < A" <A then Jacv C Iarev; in particular, Ja v C Jev C Ox,
(3) if £ >0 is a Cartier divisor, D — X < G and Jac = Ox then Iy, C Jap.

Proof. (1) and (2) follow easily from the definitions. To see (3), notice that as ¥ is
Cartier and Ja ¢ = Ox, we have Ja ¢(—X) = Ox(—X) = Is. But since D < G+,
we also have Ja ¢(—%) = Jac+z C Jap- O

The following is an extension of [Laz04, Theorem 9.4.8].

Theorem 2.11 (Nadel Vanishing). Let 7: X — Z be a projective morphism to a
normal affine variety Z. Let (X, A) be a log smooth pair where A is reduced, let D
be an effective Q-Cartier divisor whose support does not contain any log canonical
centres of (X, A) and let N be a Cartier divisor. If N — D is ample then

H (X, Iap(Kx + A+ N)) =0

forv > 0.

Proof. By [Sza94], there is a log resolution u: Y — X of (X, A 4+ D) which is an
isomorphism over the generic point of each log canonical centre of (X, A). Denote
I'=B(X,A)y and £ = A*(X,A)y. Since (Y, I'+p*D) is log smooth and I" and p*D
have no common components, (Y,I'+ {¢*D}) is divisorially log terminal. Therefore
we may pick an effective p-exceptional divisor H such that Ky + '+ {u*D} + H is
divisorially log terminal, and p*(N — D) — H and —H are p-ample. As

E—|pwD|—(Ky+T+{¢'D}+H)=—-p (Kx+A+D)—H
is pu-ample, Kawamata-Viehweg vanishing implies that

R'11,Oy (E— | D] +p* (Kx +A+N)) = ROy (E— | "D ])@0x (Kx +A+N) = 0
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for i > 0. As
E—|pwD]+p (Kx+A+N)—(Ky +T'+{y'D}+ H)=p*(N—-D) - H
is ample, Kawamata-Viehweg vanishing again implies that
H(YY,E— D]+ (Kx + A+ N))=0

for 2 > 0. Since the Leray spectral sequence degenerates, this proves the result. [

Lemma 2.12. Let m: X — Z be a projective morphism to a normal affine variety
Z. Let (X,A) be a log smooth pair where A is reduced, S a component of A, D an
effective Q-Cartier divisor whose support does not contain any log canonical centres
of (X,A) and denote © = (A — S)|5. Then there is a short exact sequence

0= Ja-s,p+s = Ia.p = Jo,ns — 0. (2.1)
If N s a Cartier divisor such that N — D is ample, then the restriction map
HO<X, jAJ)(KX + A+ N)) — HO(S, j@7D|S<KX + A+ N)) (22)

1S surjective.

Proof. Let 1: Y — X be a log resolution as in the proof of Theorem 2.11, and
denote I' = B(X,A)y, E = A*(X,A)y and T = p;'S. There is a short exact

sequence
0= Oy(E—|uD|]-T)— Oy(E—|p'D]|) = Or(E — |u*'D]) — 0.
Now 11,0y (E — |u*D]) = Ja.p, and since
E—wD-T=(Ky+I-T)—pu"(Kx+A-S+(D+59)),

we have (1, Oy (E — |[*D| = T) = Ja-s.p+s, and similarly u,Or(E — [p*D]) =
Jo,p,s- As in the proof of Theorem 2.11, we may pick an effective p-exceptional
divisor H such that Ky +1' — T + {g*D} + H is divisorially log terminal and —H
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is pu-ample. As
E—|\uwD| -T—(Ky+0-T+{u'D}+H)=—-p"(Kx+A+D)—H
is pu-ample, Kawamata-Viehweg vanishing implies that
R'p,Oy(E — [@'D] = T) =0,

and this gives (2.1). Now (2.2) follows from (2.1) and Theorem 2.11. O

Now we turn to asymptotic multiplier ideal sheaves. Firstly, if D is a divisor
on a normal variety X, an additive sequence of linear systems associated to D is a
sequence V, such that V;, C P(H*(X,mD)) and V; + V; C V4.

Lemma 2.13. Let (X, A) be a log smooth pair where A is reduced, and let Vi be
an additive sequence of linear systems associated to a divisor D on X. Assume that
there is a positive integer k such that no log canonical centre of (X, A) is contained
in the base locus of Vi.. If ¢ is a positive real number, and p and q are positive

integers such that k divides q and q divides p, then
Inev, CIn v,

Proof. 1f p divides ¢ then pick a common log resolution p: Y — X of V,,V, and
(X, A), and note that in < %Fp, where F, = Fix p*V, and F, = Fix p*V,,. Therefore
In.cv, CIn v, O

Definition 2.14. Let (X, A) be a log smooth pair where A is reduced, and let V, be
an additive sequence of linear systems associated to a divisor D on X. Assume that
there is a positive integer k such that no log canonical centre of (X, A) is contained
in the base locus of V}. If ¢ is a positive real number, the asymptotic multiplier ideal
sheaf of Vi, given by

Ineve = U In.2v,,

p>0
is equal to J, ALV, for p sufficiently divisible by Lemma 2.13 and Noetherian condi-
tion. If we take V,,, = [mD|, then define Ja ¢p| = Jacv., and if S is a component
of A, © = (A — S)|5 and W, = |mD’5, define j@,CHDHS = j@,c-W..
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The next result is analogous to [Laz04, Proposition 11.2.10].
Lemma 2.15. Let (X,A) be a log smooth pair with A reduced, let D € Div(X)~=0

and assume that there is a positive integer p such that no log canonical centre of
(X, A) is contained in Bs |pD|. Then

H(X, JIap)(D)) = H(X, D).

Proof. Let Ja,p| = jA,%|kD|> let f: Y — X be a log resolution of (X,A), |f*kD|
and |f*D|, and denote £ = A*(X,A)y and F, = Fix|f*pD| for every p. Since
[Fy./k] < Fy, |—Fy/k| < [E — Fy/k]| and [E] is effective and f-exceptional,

HY(X, D) = H'(X, .0y (f*D - \))
C HY(X, £.Oy(f*D + [E — Fy/k)) = H(X, Ty (D))
C H(X, [.Oy(f*D + [E])) = H(X, D).

This concludes the proof. O

The following lemma is a weak version of Mumford’s theorem [Laz04, Theorem
1.8.5].

Lemma 2.16. Let n: X — Z be a projective morphism, where X is smooth of
dimension n, Z s affine and let H be a very ample divisor on X. If F is a coherent
sheaf on X such that H (X, F(mH)) =0 fori > 0 and for all m > —n, then F is
globally generated.

Proof. Pick x € X. Let T C F be the torsion subsheaf supported at z, and let
G =F/T. Then H(X,G(mH)) = 0 for i > 0 and for all m > —n, and F is globally
generated if and only if G is globally generated. Replacing F by G we may therefore
assume that 7 = 0.

Pick a general element Y € |H| containing x. As 7 = 0 there is an exact

sequence

0—F(-Y)—>F—Q—0,

where @ = F ® Oy. As H(Y,Q(mH)) = 0 for i > 0 and for all m > —(n — 1),
Q is globally generated by induction on the dimension. As H'(X, F(-Y)) = 0, it
follows that F is globally generated. O]
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Lemma 2.17. Let m: X — Z be a projective morphism, where X is smooth of
dimension n and Z is affine. If D € Div(X)"*2°, A € Div(X) is ample and H €
Div(X) is very ample, then Jyp (D + Kx + A+ nH) is globally generated.

Proof. Pick a positive integer p such that if pB C |pD] is a general element, then
Jip| = J11pp) = TIB-
P

Then by Theorem 2.11, H(X, Jyp (D + Kx + A+ mH)) = 0 for all ¢ > 0 and
m > 0, and we may apply Lemma 2.16. O

To end this section, I will state the main technical result of [HMO08] which will
enable me to derive a version of extension results in Chapter 6, in order to prove that
the restricted algebra is finitely generated. The stable base locus B(D) is defined in
Definition 2.19.

Theorem 2.18 ([HMO08, Theorem 5.3]). Let m: X — Z be a projective morphism to
a normal affine variety Z. Suppose that (X, A) is log smooth, S = | A] is irreducible
and let k be a positive integer such that D = k(Kx + A) is Cartier. If B(D) does
not contain any log canonical centre of (X,[A]) and if A is a sufficiently ample

Cartier divisor, then
H(S, Tjmpys|(mD + A)) C Im (H(X, Ox(mD + A)) = H(S,Os(mD + A)))

for all positive integers m.

2.3 Asymptotic Invariants of Linear Systems

Definition 2.19. Let X be a variety and D € WDiv(X)g. For k € {Z,Q,R},
define

The stable base locus of D is

B(D) = ﬂ Supp C

Ce|Dlr



2.3. ASYMPTOTIC INVARIANTS OF LINEAR SYSTEMS 18

if |[Dlg # 0, otherwise we define B(D) = X. The stable fized locus of D, de-
noted Fix (D), is a divisorial part of B(D). The diminished base locus is B_(D) =
U.2o B(D +¢€A) for an ample divisor A; this definition does not depend on a choice
of A. In particular B_(D) C B(D).

By [BCHMO06, Lemma 3.5.3], B(D) = ﬂCe|D\@ Supp C when D is a Q-divisor,
which is the standard definition of the stable base locus. It is elementary that
B(D;, + Dy) € B(D;,) UB(Dy) for Dy, Dy € WDiv(X)g. In other words, the set
{D € WDiv(X)g : ¢ B(D)} is convex for every point z € X.

Definition 2.20. Let Z be a closed subvariety of a smooth variety X and let
D e WDiV(X)&zO. The asymptotic order of vanishing of D along Z is
ordy || D|| = inf{mult, C : C € |D|g}.
More generally, one can consider any discrete valuation v of k(X)) and define

v||D]| = inf{v(C) : C € |D|g}

for D € WDiv(X)g". Then [ELM*06] shows that v||D|| = v||E| if D and E are
numerically equivalent big divisors, and that v extends to a sublinear function on
Big(X)r.

Remark 2.21. When X is projective, Nakayama in [Nak04] defines a function

oz: Big(X) — Ry by
oz(D) = liﬂ)lordz | D+ Al

for any ample R-divisor A, and shows that it agrees with ordy || - || on big classes.

Analytic properties of these invariants were studied in [Bou04].
We can define the restricted version of the invariant introduced.

Definition 2.22. Let S be a smooth divisor on a smooth variety X and let D €
Div(X)5~? be such that S ¢ B(D). Let P be a closed subvariety of S. The restricted

asymptotic order of vanishing of |D|s along P is

ordp || D||g = inf{multp Cjg : C'~p D,C > 0,5 ¢ Supp C}.
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In the case of rational divisors, the infimum above can be taken over rational

divisors:

Lemma 2.23. Let X be a smooth variety, D € Div(X)(Bzo and let D" > 0 be an
R-divisor such that D ~g D'. Then for every e > 0 there is a Q-divisor D" > 0 such
that D ~q D", Supp D' = Supp D" and ||D' — D"|| < €. In particular, if S C X is
a smooth divisor such that S ¢ B(D), then for every closed subvariety P C S we

have
ordp || D||g = inf{multp Cig : C ~g D,C > 0,5 ¢ SuppC}.

Proof. Let D' = D+ %" r;(f;) for r; € R and f; € k(X). Let Fi,...,Fy be the
components of D and of all (f;), and assume that multy, D' = 0 for j = 1,...,/¢
and multy, D' > 0 for j = £+ 1,...,N. Let (fi) = Y1, ¢;;F; for all i and
D = Zjvzl 0;Fj. Then we have §; + > 7 @i =0for j=1,..., 0. Let K C RP be
the space of solutions of the system » 7| @;;x; = —d; for j=1,...,¢. Then K is a

rational affine subspace and (r1,...,7,) € K, thus for 0 < n < 1 there is a rational
point (s1,...,s,) € K with ||s; —r;]| < n for all i. Therefore for n sufficiently small,
setting D" = D + ", s;(f;) we have the desired properties. O]

Remark 2.24. Similarly as in Remark 2.21, [Hac08] introduces a function
opll - [ls: C- — Ry by

op||Dlls = leiﬁ)lordp | D+ cAlls
for any ample R-divisor A, where C_ C m is the set of classes of divisors D
such that S ¢ B_(D). Then one can define a formal sum N,|D||s = > op|Dls- P
over all prime divisors P on S. If S ¢ B(D), then for every gy > 0 we have
lim. ., op||D + cAl||s = ordp || D + 9 A||s for any ample divisor A on X similarly as
in [Nak04, Lemma 2.1.1], cf. [Hac08, Lemma 7.8].

In this thesis I need a few basic properties cf. [Hac08, Lemma 7.14].

Lemma 2.25. Let S be a smooth divisor on a smooth projective variety X, let
D € Div(X)FZ" be such that S ¢ B(D) and let P be a closed subvariety of S. If A
is an ample R-divisor on X, then ordp ||D + A|ls < ordp ||D||s, and in particular
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op||D|ls < ordp||Dlls. If D and A are Q-divisors and op||D||s = 0, then there is a
positive integer | such that multp Fix |[(D + A)|s = 0.

Proof. The first statement is trivial. For the second one, we have ordp || D+ 1 A|s =
0. Set n = dim X, let H be a very ample divisor on X and fix a positive integer [
such that H' = LA — (Kx 4+ S) — (n+ 1)H is very ample. Let A ~g D + 1A be a
Q-divisor such that S ¢ Supp A and multp Ajg < 1/1. We have

HY(X, Jins(Ks + Hlg + (n+1)Hs + 1A + mHs)) = 0

for m > —n by Nadel vanishing. Since (D + A) ~g Kx +S+ H'+ (n+1)H + IA,
the sheaf Jia 4 (I(D + A)) is globally generated by Lemma 2.16 and its sections lift
to H(X,1(D + A)) by Lemma 2.12. Since multp(IAs) < 1, Jia,, does not vanish
along P and so multp Fix |I[(D + A)|s = 0. O

2.4 Diophantine Approximation

Techniques of Diophantine approximation have appeared in almost all recent work in
birational geometry after the paper of Shokurov [Sho03], since it became increasingly
clear that we have to work with real divisors, as limits of rational divisors. I present
several versions of approximation that will be used in different contexts to prove

rationality, or polyhedrality, of certain objects.

Lemma 2.26. Let A C R" be a lattice spanned by rational vectors, and let V =
A ®z R. Fix a vector v € V and denote X = Nv + A. Then the closure of X is
symmetric with respect to the origin. Moreover, if m: V' — V /A is the quotient map,
then the closure of w(X) is a finite disjoint union of connected components. If v is

not contained in any proper rational affine subspace of V', then X s dense in V.

Proof. T am closely following the proof of [BCHMO06, Lemma 3.7.6]. Let G be the
closure of 7(X). Since G is infinite and V/A is compact, G has an accumulation
point. It then follows that zero is also an accumulation point and that G is a closed
subgroup. The connected component Gy of the identity in G is a Lie subgroup of
V/A and so by [Bum04, Theorem 15.2], Gy is a torus. Thus Gy = V/A¢, where

Vo = Ao ®z R is a rational subspace of V. Since G/Gj is discrete and compact, it
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is finite, and it is straightforward that X is symmetric with respect to the origin.
Therefore a translate of v by a rational vector is contained in Vj, and so if v is not

contained in any proper rational affine subspace of V', then V, = V. O
The next result is [BCHMO06, Lemma 3.7.7].

Lemma 2.27. Let x € R™ and let W be the smallest rational affine space containing
x. Fiz a positive integer k and a positive real number . Then there are wy, ..., w, €
W NQ" and positive integers ki, ..., k, divisible by k, such that x =Y %_, ryw; with

ri>0and Y r; =1, ||lv —w| <e/k; and kw;/k is integral for every i.

I will need a refinement of this lemma when the smallest rational affine space

containing a point is not necessarily of maximal dimension.

Lemma 2.28. Let x € R", let 0 < e,n < 1 be rational numbers and let w, € Q"
and k; € N be such that ||x — wi|| < €/ki and kywy is integral. Then there are

Wa, ..., Wy, € Q" positive integers ks, ..., kp such that ||z — w;|| < e/k; and k;w;
is integral for every i, and positive numbers ry, ...,y such that x = 3" rw;
and > r; = 1. Furthermore, we can assume that ws, ..., w, belong to the smallest

rational affine space containing x, and we can write

T kit ky kit ky 2

with |E]} < n/(ky + k2).

Proof. Let W be the minimal rational affine subspace containing x, let 7: R" —
R"™/Z" be the quotient map and let G be the closure of the set m(Nz + Z"). Then
by Lemma 2.26 we have m(—k1x) € G and there is ko € N such that 7(kex) is in
the connected component of 7(—kix) in G and ||koz — y|| < n for some y € R™ with
7(y) = m(—kix). Thus there is a point wy € Q" such that kewy € Z", ||kax —kows|| <
e and the open segment (w,ws) intersects WW.

Pick ¢ € (0,1) such that wy = tw; + (1 — t)wy € W, and choose, by Lemma
2.27, rational points ws,...,w,, € W and positive integers ks, ..., k,, such that
kiw; € Z", ||z —w;|| < e/k; and x = Y _." ; ryw; + ryw, with , > 0 and all r; > 0, and
re+ > oy =1 Thus ¢ = > ryw; with ry = try and ry = (1 — t)r.
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Finally, observe that the vector y/ke — wy is parallel to the vector z — w; and

ly — kawsl|| = ||k12z — kyws]|. Denote z =  — y/ky. Then

T — w T — w ko

(w2+z)—x_w2—y/k2 :k_f

SO
. ]{31 1{32 . kl k2
Gy s ey U Rl v L Il marr U
where ||| = |[k2z/ (k1 + k2)|| < n/(ky + k2). O

Remark 2.29. Assuming notation from the previous proof, the connected compo-

nents of G' are precisely the connected components of the set 7(|J,., kW). Therefore
Yy / k’z eWw.

Remark 2.30. Assume \: V — W is a linear map between vector spaces such that
A(Vg) € Wo. Let x € V and let H C V' be the smallest rational affine subspace con-
taining x. Then A(H) is the smallest rational affine subspace of W containing A\(x).
Otherwise, assume H' # A(H) is the smallest rational affine subspace containing
A(z). Then A™!(H’) is a rational affine subspace containing x and H ¢ A\™'(H'), a

contradiction.
Definition 2.31. For a real number « set ||| := min{a — |a], [a] — a}.

The following is a slightly weaker version of [Cas57, Chapter I, Theorem VII]
which is sufficient for the purposes of this thesis. It can be viewed both as a strength-
ening and a weakening Lemma 2.26. On one hand, it gives an effective rational
approximation of a point in R™ in terms of denominators of approximation points.
On the other hand, it does not give uniformity of the distribution of approximations

in the unit cube as in Lemma 2.26.

Theorem 2.32. Let 01, ...,0, be real numbers. There are infinitely many positive

integers q such that

max{[|gé1 [}, .. [lgfall} < /"



Chapter 3

Finite Generation in the MMP

In this chapter I review a part of the recent progress in settling some of the main
conjectures in the Minimal Model Program. I concentrate on finite generation of
the canonical ring, in particular on the techniques introduced by Shokurov, Hacon
and M°Kernan in order to resolve a special case related to pl flips. Pl flips are
important because they give a good candidate for what to restrict our algebra to—
it is the unique log canonical centre which is, possibly after shrinking, proportional
to an adjoint bundle. This enables one to deal pretty quickly with the issue of
finite generation of the kernel of the restriction map, and the focus shifts to finite
generation of the image. Some of these methods will be employed in Chapter 6 in
the general construction related to the finite generation. In particular, the central

role is played by the extension theorem of Hacon and M°Kernan.

3.1 Review of the Minimal Model Program

In this section I review the Minimal Model Program in the case of log canonical
singularities. Some of the results have only been established recently in the work by
Ambro and Fujino [Amb03, Fuj07b].

The base of the programme is the following fundamental theorem.

Theorem 3.1 (Cone and Contraction Theorem). Let (X, A) be a log canonical pair
and let m: X — Z be a projective morphism. Denote Rc = R, [C] for a rational
curve C'in X and its class [C] € NE(X). Then:

23
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(1) there are countably many rational curves C; such that w(C;) is a point for every
iand 0 < —(Kx +A)-C; <2dim X, and

NE(X/2) = NE(X/Z)kx a0+ Y Re,

Such R¢o are called extremal rays,

(2) for any e > 0 and any m-ample R-divisor H we have

W(‘)(/Z) = W(X/Z>Kx+A+6HZO + Z RCH

finite

(3) let R C NE(X/Z) be a (Kx+A)-negative extremal ray. Then there is a unique
morphism pr: X — Y such that pr has connected fibres, Y s projective over
Z, pY/Z) = p(X/Z) — 1, and an irreducible curve C' C X is mapped to a
point by g if and only if [C| € R. Furthermore, if L is a line bundle on X
such that L € R*, then there is a line bundle Ly on'Y such that L ~ ¢%Ly.
The map @r is called the contraction of R.

Remark 3.2. The estimate on the length of rays in Theorem 3.1(1) is obtained
using the full force of the MMP for kit pairs [BCHMO6]. It is conjectured that there
is a sharper estimate 0 < —(Kx +A)-C; < dim X +1. I will not use these estimates

here.
The following result is closely related to Contraction Theorem.

Theorem 3.3 (Basepoint Free Theorem). Assume (X, A) is a kit pair, f: X — Z
a proper morphism and D an f-nef Cartier divisor such that dD — (Kx + A) is
f-nef and f-big for some d > 0. Then 0D is f-free for all 6 > 0.

It is predicted that the outcome of the MMP should be the following:
Conjecture 3.4 (Hard Dichotomy). Let (X, A) be a log canonical pair.

(1) If (X, Kx + A) > 0, then there is a birational map ¢: X --+»Y such that

Ky + A is nef; Y is a minimal model.



3.1. REVIEW OF THE MINIMAL MODEL PROGRAM 25

(2) If (X, Kx + A) = —o0, then there exist a birational map ¢: X --»Y and a
surjective contraction Y — W of an (Ky + p.A)-negative extremal ray to a

normal projective variety W with dimW < dimY; Y is a Mori fibre space.

Let me mention here that if X is a Mori fibre space, then x(X) = —oco and X
is uniruled, i.e. there exists a generically finite map ¥ x P! --» X with dimY =
dim X — 1 (or equivalently X is covered by rational curves), see [Mat02, Chapter
3]. The reverse implication is much harder to prove. The greatest contributions
in that direction are [BDPP04], which proves that if X is smooth and Ky is not
pseudoeffective, then X is uniruled, and [BCHMO6], which proves that if Kx + A is
klt and not pseudoeffective, then the MMP ends with a Mori fibre space.

Starting from Cone and Contraction Theorem, the standard recursive procedure
for the MMP of log canonical pairs goes as in [KM98, 3.31], see Figure 3.1. The

main obstacles to completing the programme are the following two conjectures.

Existence of Flips Conjecture. Let (X, A) be a Q-factorial log canonical pair
and let f: X — Z be a flipping contraction, i.e. assume f is small and projective
over Z, —(Kx + A) is an f-ample R-divisor, and p(X/Z) = 1.

Then there exists a small projective contraction f*: X+ — Z from a normal

pair (X, AT), called a flip of f, such that there is a commutative diagram

with AT = g, A, where Kx+ + AT is fT-ample.

Remark 3.5. By [KMMS87, Lemma 3-2-5], a map f: X — Z is a flipping contrac-
tion if and only if it is the contraction of an extremal ray, and f-numerical and

f-linear equivalence coincide.

Termination of Flips Conjecture. There does not exist an infinite sequence of

flips in the flowchart in Figure 3.1.
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Figure 3.1: Flowchart of the Minimal Model Program

3.2 Finite Generation and Flips

The following result gives a connection between finite generation problems and bi-
rational geometry, see [KM98, Proposition 3.37] and [KMMS&7, Proposition 5-1-11].

Theorem 3.6. Let (X, A) be a Q-factorial log canonical pair over a variety W and
let f: X — Z be a flipping contraction. The flip of f exists if and only if the relative

canonical ring
R(X/Z, Kx +A) = P f.O0x(|[n(Kx +A)))

n>0

is a finitely generated Oz-algebra. Moreover, in that case the flip is unique, X+ =
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Proj, R(X/Z,Kx + A), XT is Q-factorial and p(XT /W) = p(X/W).
We can consider a weaker version of the Finite Generation Conjecture.

Conjecture 3.7. Let (X,A) be a log smooth projective log canonical pair, where
Kx + A is big. Then the canonical ring R(X, Kx + A) is a finitely generated C-

algebra.

The following result shows that existence of flips is a consequence of the weaker

Finite Generation Conjecture.

Lemma 3.8. Let (X, A) be a Q-factorial log canonical pair and let f: X — Z be a
flipping contraction. Assume Congecture 3.7. Then the flip of f exists.

Proof. The proof is along the lines of [FujO7b, Lemma 2.5]. Since the problem is
local, we can assume Z is affine. By compactifying X and Z and by resolving
singularities, we can further assume that X and Z are projective, X is smooth, and
Supp A is a simple normal crossing divisor. Let A be a general sufficiently ample
divisor on Z and set A" = A + f*A. Then Kx + A’ is big, (X, A’) is log canonical,
and Kx + A and Kx + A’ are negative on the same curves, so it is enough to prove
the existence of the (Kx + A’)-flip. But this follows from Theorem 3.6 since the
ring R(X, Kx + A’) is finitely generated by Conjecture 3.7. O

In the case of klt singularities, it is enough to prove the weaker version of the finite
generation in order to obtain Finite Generation Conjecture, see Lemma 3.11 below.
First we recall the following notion. If R =
integral domain and if d is a positive integer, the algebra R@ = @D,.cn Ran is called

nen Itn 18 a graded algebra which is an
a truncation of R. The following basic result, which will be partially generalised in
Lemma 5.5(1), says that we can freely pass to truncations when dealing with finite

generation issues.

Lemma 3.9. Let R be a graded algebra which is an integral domain and let d be
a positive integer. Then R is finitely generated if and only if the truncation R is

finitely generated.

Proof. Fix a positive integer d. It is easy to see that there is an action of the cyclic

group Zg on R such that R is the ring of invariants of R under this action. Thus
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if R is finitely generated, so is R(? according to E. Noether’s theorem on the finite
generation of the ring of invariants by a finite group.

Now assume R? is finitely generated. Each f € R is integral over R? since it
is a zero of the polynomial T¢ — f? € RY[T]. Therefore R is finitely generated by

the theorem of E. Noether on finiteness of integral closures. m

The key result is the following theorem of Fujino and Mori [FM00, Theorem 5.2]

which is a consequence of their Canonical Bundle Formula.

Theorem 3.10. Let (X,A) be a proper kit pair with x(X,Kx + A) =1 > 0.
Then there exist a projective l-dimensional kit pair (X', A’) with X' smooth and
k(X' Kx + A") =1, and positive integers d,d' such that

R(X,Kx +A)9 ~ R(X' Kxi + A",

Now we can prove the result promised.

Lemma 3.11. Let (X, A) be a projective kit pair and assume Conjecture 3.7. Then
the canonical ring R(X, Kx + A) is finitely generated.

Proof. We can assume k(X, Kx + A) =1 > 0 since the finite generation is trivial
otherwise. By Theorem 3.10, there exist a pair (X', A’) with X’ smooth and K x/+A’
big, and positive integers d,d’ such that R(X, Kx + A)@ ~ R(X', Kx + A))@),
Let f: Y — X' be a log resolution of the pair (X', A’), and let I' = B(X', A')y.
Let k be a positive integer such that k(Kx + A’) is Cartier. Then Ky + I' is big
and R(X', Kx + AN*®) ~ R(Y, Ky +T')*)| and therefore R(X, Kx + A) is finitely
generated by Conjecture 3.7 and Lemma 3.9. O

3.3 Pl Flips

In this section I concentrate on the method that was used to prove the existence of
pl flips in [Sho03, HM07, HMO08]. Much of the presentation is taken from [HMOS].
The following theorem is [BCHMO06, Theorem F], and it establishes finite gen-
eration of the canonical ring and certain asymptotic properties of adjoint divisors
using the full force of the MMP. Granting it in dimension n — 1, we will prove finite

generation of certain algebras in dimension n.
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Theorem 3.12. Let m: X — Z be a projective morphism to a normal affine variety.
Let (X, A = A+ B) be a Q-factorial kit pair of dimension n, where A is an ample
Q-dwvisor and Kx + A is pseudo-effective.

(1) If Kx + A is Q-Cartier, then the canonical ring R(X,Kx + A) is finitely

generated.

(2) Let V. C WDiv(X)g be the vector space spanned by the components of B.
Then there is a constant 6 > 0 such that if B' € V', where Kx + A+ B’ is log
canonical and ||B" — BJ| < 0, then Fix(Kx + A) C Fix(Kx + A+ B').

(8) Let W C 'V be the smallest rational affine subspace of WDiv(X)g containing
B. Then there is a constant n > 0 and a positive integer r > 0 such that if

B’ € W is any divisor and k is any positive integer such that || B'— B|| < n and
k(Kx+A+DB")/r is Cartier, then Supp(Fix |k(Kx+ A+ B’)|) C Fix(Kx+A).

Let us recall the definition of the main object of this section.

Definition 3.13. Let (X, A) be a Q-factorial dlt pair and f: (X, A) — Z a flipping
contraction. We say f is a pre limiting (pl) flipping contraction if there is an f-

negative irreducible component S C |A].

The following result of Shokurov is fundamental in order to apply finite genera-

tion techniques. For an accessible proof see [Fuj07a, Theorem 4.2.1].

Theorem 3.14. Assume the MMP for Q-factorial dlt pairs in dimension n — 1.
If flips of pl flipping contractions exist in dimension n, then flips of kit flipping

contractions exist in dimension n.

Assumption on the MMP in dimension n — 1 can be relaxed, and that is a route
undertaken in [BCHMO06] to complete the proof of finite generation of the canonical
ring of klt pairs using a convoluted induction process heavily involving techniques
of the MMP.

Therefore, we can concentrate on proving the existence of pl flips. If f: (X, A) —
Z is a pl flipping contraction, where S C |A] is an f-negative component, then for
a small positive rational number ¢ the pair (X,S + (1 —¢)(A — 5)) is plt and
Kx+S+(1—¢)(A—29)is f-negative, so we can assume that (X, A) is plt and |A]



3.3. PL FLiprs 30

is irreducible. Since the question of existence of flips is local, we can assume that

the base is affine. In particular, we will prove

Theorem 3.15. Assume Theorem 3.12 in dimension n — 1. Let (X,A) be a plt
pair of dimension n, where S = |A] is a prime divisor, and consider a pl flipping
contraction f: X — Z with Z affine. Then the algebra R(X/Z, Kx + A) is finitely
generated. In particular, the flip of [ exists.

The rest of this section is devoted to proving Theorem 3.15.

Remark 3.16. For a Cartier divisor D and a prime Cartier divisor S on a variety
X, let 05 € H°(X,S) be a section such that divog = S. From the exact sequence

H(X,0x(D - 5)) 2% H(X,0x(D)) 223 H°(S,05(D))

we denote ress H*(X, Ox (D)) = Im(pp s).

Definition 3.17. Let (X, A) be a plt pair of dimension n, where S = |A| is a prime
divisor, and let f: X — Z be a projective morphism with Z affine. The restricted
algebra of R(X, Kx + A) is

Rs(X,Kx + A) = @Press HO(X, [n(Kx + A))).

n>0

The idea from the proof of the following result will serve as a model in the proof

given in Section 6.2.

Lemma 3.18. Let (X,A) be a plt pair of dimension n, where S = |A] is a
prime divisor, and let f: X — Z be a pl flipping contraction with Z affine. Then
R(X, Kx+A) is finitely generated if and only if Rs(X, Kx+A) is finitely generated.

Proof. We will concentrate on sufficiency, since necessity is obvious.
By Remark 3.5 numerical and linear equivalence over Z coincide. Since p(X/Z) =
1, and both S and Kx + A are f-negative, there exists a positive rational number r
such that S ~g ¢ r(Kx + A). By considering open subvarieties of Z we can assume
that S — r(Kx + A) is Q-linearly equivalent to a pullback of a principal divisor.
Therefore S ~g r(Kx + A), and since then R(X,S) and R(X, Kx + A) have
isomorphic truncations, it is enough to prove that R(X,.S) is finitely generated by
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Lemma 3.9. Since a truncation of resg R(X,S) is isomorphic to a truncation of
Rs(X, Kx + A), we have that resg R(X, S) is finitely generated. If o5 € H°(X,S)
is a section such that diveg = S and H is a finite set of generators of the finite
dimensional vector space @fil ress H°(X,4S), for some d, such that the set {sg :
s € H} generates resg R(X, S), it is easy to see that HU{og} is a set of generators of
R(X,S), since ker(prs.s) = H*(X, (k—1)S)-og for all k, in the notation of Remark
3.16. [

The following is the Hacon-M®Kernan extension theorem [HMO08, Theorem 6.3].

Theorem 3.19. Let m: X — Z be a projective morphism to an affine variety Z,
where (X, A = S+ A+ B) is a plt pair, S = |A] is irreducible, (X, S) is log smooth,
A is a general ample Q-divisor and (S,Q+ As) is canonical, where Q = (A = 5)s.
Assume S ¢ B(Kx + A), and let

F =liminf X Fix |m(Kx + A)|s.
m—r0o0
If € > 0 is any rational number such that e(Kx + A) + A is ample, and if ® is any
Q-divisor on S and k > 0 is any integer such that both kA and k® are Cartier and
QN1 —-5)F <@ <Q, then

k(Ks +Q — @)+ k® C |k(Kx + A)ls.

The next result is a crucial application of the extension of sections, and it will

also be used in Chapter 6.

Theorem 3.20. Assume Theorem 3.12 in dimension n — 1. Let m: X — Z be a
projective morphism to an affine variety, and let (X,A =S + A+ B) be a plt pair
of dimension n, S = |A] is irreducible, (X, S) is log smooth, A is a general ample
Q-divisor, B is a Q-divisor and (S, + Ajs) is canonical, where Q = (A — 5)s.
Assume S ¢ B(Kx + A), and let

F =liminf L Fix|m(Kx + A)|s.

m—o0
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Then © = Q — QA F is rational. In particular, if both kA and k© are Cartier then
[k(Ks +0)| + k(= 0) = [k(Kx + A)ls,

and

Rs(X, Kx + A)® ~ R(S, Kg + ©)®.

Proof. Suppose that © is not rational and let V' C Div(S)g be the vector space
spanned by the components of © — Ajg. Then there is a constant ¢ > 0 such that if
¢ € V is effective and [|[® + Ajg — O < I, then ® 4 Ajg has the same support as
© and Fix(Kg+ ©) C Fix(Kg+ ® + Ag) by Theorem 3.12(2). Pick I > 0 so that
[(Kx 4+ A) is Cartier, ©, = Q — QA F, € V and ||©, — O] < 0. Then

1(Kx +A)ls C [I(Ks +©)] + QA F),

hence Fix |[(Kg + ©;)| does not contain any components of 6,. It follows that no
component of O is in B(Kg + ©).

Let W C V be the smallest rational affine space which contains © — Ajg. By
Theorem 3.12(3), take a positive integer r > 0 and a positive constant n > 0 such
that if ® € W, k(®+A|g)/r is Cartier and ||®+A;s—0O|| < 7, then Supp(Fix [k(Ks+
¢+ Ajg)|) C Fix(Kg+ 0O).

Pick a rational number ¢ > 0 such that e(Kx +A)+ A is ample, and let f be the
smallest non-zero coefficient of F'. By Lemma 2.26, we may find an effective divisor
® € W, a prime divisor G on S and a positive integer & such that both k(®+ Ag)/r
and kA /r are Cartier, ||® + Ajg — O < min(0,n, fe/k), and multg & > mults ©.
Then it is easy to check that QA (1 — 7)F < Q — &, so Theorem 3.19 implies that

|k(Ks + )|+ k(Q— D) C |[k(Kx + A)ls.

Since multg ® > multg ©, we have that G is a component of Fix |k(Kg + @), and
therefore a component of Fix(Kg + ©) because ||® — ©| < 7, a contradiction.
Thus O is rational, and we are done by Theorem 3.19. [

Corollary 3.21. Assume Theorem 3.12 in dimension n — 1. Let m: X — Z be a
projective morphism to an affine variety Z, where (X, A =S+ A+ B) is a plt pair
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of dimension n, S = |A] is irreducible with S ¢ B(Kx + A), (X, S) is log smooth,
A is a general ample Q-divisor and B is a Q-divisor.

Then there exist a birational morphism g: T — S, a positive integer | and a kit
pair (T,0) such that Ky + © is Q-Cartier and

Rs(X,Kx +A)Y ~ R(T, Ky 4+ 0)Y.

Proof. By Lemma 2.7, there is a log resolution f: Y — X such that the components
of I — T are disjoint, where T'= f1S and I = B(X, A)y. In particular, the pair
(T, (I" = T')ir) is terminal and note that 7' ¢ B(Ky +1") as S ¢ B(Kx + A).
Since A is general, we have f*A = f7'A. Let H be a small effective f-exceptional
Q-divisor such that f*A — H is ample and (Y,IV + H) is plt. Let C' ~¢ f*A— H be
a general ample divisor, and set I' = 1" — f*A+ H +C and ¥ = (I' = T');r. Observe
that ' > 0, I' ~g IV and the pair (Y, I') is plt. Then for any k sufficiently divisible we
have R(X, Kx +A)® ~ R(Y, Ky +T)® and Rs(X, Kx +A)%) ~ Ry (Y, Ky +T)®).
Since (T, ¥ + Cjr) is terminal, we can apply Theorem 3.20 to (Y,I). ]

Finally we have:

Proof of Theorem 3.15. We may assume that Z is affine and it suffices to prove that
the restricted algebra is finitely generated by Lemma 3.18. Since S is mobile and
A — S is big over Z, we can write A — S ~g A + B, where A is a general ample
Q-divisor, B > 0 and S ¢ SuppB. Set A"’ = S+ (1 —¢)(A - S) + A+ B for
a sufficiently small positive rational number . Then the pair (X,A’) is plt and
Kx + A" ~g Kx + A, so we may replace A by A’ by Lemma 3.9. Therefore we can
assume that A =S+ A+ B, where A is a general ample Q-divisor and B > 0, and
the result follows from Corollary 3.21 and Theorem 3.12. O
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Chapter 4
Convex Geometry

In this chapter I build techniques in order to prove that superlinear functions sat-
isfying suitable conditions are piecewise linear. I exhibit general properties of such
maps, concentrating on the central role of Lipschitz continuity. The results ob-
tained below will be used in Chapters 5 and 6. I use without explicit mention basic

properties of closed cones, see [Deb01, Section 6.3].

4.1 Functions on Monoids and Cones

Firstly we recall a definition.

Definition 4.1. Let C be a cone in R” and let || - || be any norm on R". A function
f:C — R is locally Lipschitz if for every point x € intC there are a closed ball
B, C C centred at = and a constant A, such that |f(y) — f(2)| < A:|ly — 2] for all
Y,z € B,.

Every locally Lipschitz function is continuous on int C. Therefore if a function is
locally Lipschitz, we say it is locally Lipschitz continuous. The next result can be
found in [HUL93].

Proposition 4.2. Let C be a cone in R™ and let f: C — R be a concave function.
Then f is locally Lipschitz continuous on the topological interior of C with respect
to any norm || - || on R™.

In particular, let C be a rational polyhedral cone and assume a function g: Cg —

Q is Q-superadditive. Then g extends to a unique superlinear function on C.

35
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Proof. Since f is locally Lipschitz if and only if —f is locally Lipschitz, we can
assume f is convex. Fix = (21,...,2,) € intC, and let A = {(y1,...,9,) € R} :
>y < 1}. It is easy to check that translations of the domain do not affect the
result, so we may assume x € int A C intC.

Firstly let us prove that f is bounded above on A. Let {e;} be the standard
basis in R", y = (y1,...,¥n) € Aand let yo =1 — > y; > 0. Then

) = F( D wei+w0-0) < 3 wif (e + oS (0)
< max{f(0), f(e1),..., f(en)} =: M.

For each 7 > 0 denote B,(7) = {z € R" : ||z — z|| < v}. Choose ¢ such that
B,(25) C int A. Again by translating the domain and composing f with a linear
function we may assume that z =0 and f(0) = 0. Then for all y € By(26) we have

—fly) = —fy) +2f(0) < —f(y) + fy) + f(~y) = f(~y) < M,

so |f] < M on By(26).
Fix u,v € By(d). Set a = ||[v —u||/d and w = v+ a (v — u) € By(26) so that

v=Hw+ aLHu Then convexity of f gives
F0) = Flw) € 2 f(w) + — fu) — flw)
) U < o7 w P U U
(0%

2M
— 7 (f(w) = f()) <2Ma = ==|lv —u].

Similarly f(u) — f(v) < 2M|ju —v]||/d, giving
[f(v) = f(w)] < Lijv = u]]

for all u,v € By(d) and L = 2M /0.

For the second claim, it is enough to apply the proof of the first part of the
lemma with respect to the sup-norm || - ||; observe that || - || takes values in Q on
Co. Applied to the interior of C and to the relative interiors of the faces of C shows

g is locally Lipschitz, and therefore extends to a unique superlinear function on the
whole C. O
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I will use the following result, classically referred to as Gordan’s lemma, often

without explicit mention.

Lemma 4.3. Let S C N be a finitely generated monoid and let C C R" be a rational
polyhedral cone. Then the monoid S NC is finitely generated.

Proof. Assume first that dimC = r. Let ¢q,...,¢,, be linear functions on R" with
integral coefficients such that C = (2, {z € R" : {;(z) > 0} and define S, = S
and S; = S;.1N{z € R": {;(z) > 0} for i = 1,...,m; observe that SNC = S,,,.
Assuming by induction that S;_; is finitely generated, by [Swa92, Theorem 4.4] we
have that S; is finitely generated.

Now assume dimC < r and let H be a rational hyperplane containing C. Let ¢
be the linear function with rational coefficients such that H = ker(¢). From the first
part of the proof applied to the functions ¢ and —¢ we have that the monoid S N'H

is finitely generated. Now we proceed by descending induction on r. O

The following simple lemmas will turn out to be indispensable and they show
that in the context of our assumptions it is enough to check additivity (respectively

linearity) of the map at one point only.

Lemma 4.4. Let S = )" Ne; be a monoid and let f: S — G be a superadditive
map to a monoid G. Assume that there is a point s = Y s;e; € S with all s; > 0
such that f(so) = > sif(e;) and that f(kso) = kf(so) for every positive integer k.
Then the map f is additive.

Proof. Forp = > pie; € S, let kg be a big enough positive integer such that kgs; > p;

for all 7. Then we have
Z osif(e5) = rof (so) = Floso) = F(p) + Z F(kosi — pi)es)
> iﬂpiei) v if«mosi ~ e
> sz fle) + Z Kosi — pi) [ Znosz fle).

Therefore all inequalities are equalities and f(p) = > pif(e;). O
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Analogously we can prove a continuous counterpart of the previous result.

Lemma 4.5. Let C =" | Rye; be a cone in R and let f: C — V be a superlinear

map to a cone V. Assume that there is a point so = > s;e; € C with all s; > 0 such
that f(so) = sif(e;). Then the map f is linear.

4.2 Forcing Diophantine Approximation

In this section I will prove the following.

Theorem 4.6. Let S C N” be a finitely generated monoid and let f: Sg — R be
a superlinear map. Assume that there is a real number ¢ > 0 such that for every
s1,892 € S, either f(s1+ s2) = f(s1) + f(s2) or f(s1+ s2) > f(s1) + f(s2) +c. Let

C be a rational polyhedral cone in int Sg. Then fic is rationally piecewise linear.

Corollary 4.7. Let S C N” be a finitely generated monoid and let f: Sg — R be a
superlinear map such that f(S) C Z. Let C be a rational polyhedral cone in int Sg.

Then fc is rationally piecewise linear.

Remark 4.8. In Theorem 4.6 and Corollary 4.7, instead of § C N" we can assume
that § C Q" and that Sg is strongly convex.

Example 4.9. The condition f(S) C Z in Corollary 4.7 is crucial. Let S = N(0, 1)+
N(1,2) € R? and let f: [0,1] — R be a function given by f(z) = —2* + 2z + 1.
Let x,, = (%, f(%)) for positive integers n, set C, = Ryx, + Riz,11 and define
glax, + Br,i1) = af(%) + ﬁf(n%l) for o, 5 > 0. We obviously have ¢(S) C Q and

that g is superlinear and continuous, but it is not PL on the cone Sg.
The first step in the proof of Theorem 4.6 is the following.

Lemma 4.10. Let S = N and let f: Sg — R be a superlinear map. Assume
that there is a real number ¢ > 0 such that for every si,ss € S, either f(s1 + $2) =
f(s1) + f(s2) or f(s1+s2) > f(s1) + f(s2) +¢. Let x = (1,2q,...,2,) € int Sg and
let R be a ray in Sg not containing x.

Then there exists a ray R C Ryx + R not containing x such that the map

flrywtr is linear.
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Proof. By induction, I assume Theorem 4.6 when dim Sg = 7.

The proof consists of three parts. In Steps 2-8 I assume the components of x are
linearly independent over Q. In Step 9 I assume that x is a rational point while the
remaining case when x is a non-rational point which belongs to a rational hyperplane
is settled in Step 10.

Step 1: Let H be any 2-plane not contained in a rational hyperplane. Points of the
form (1,2y,...,2.), where 1, 21, ..., z are linearly independent over Q, are dense on
the line L = H N (zp = 1). Otherwise there would exist an open neighbourhood U
on L such that for each point z € U there is a rational hyperplane H, D Rz. But
the set of rational hyperplanes is countable.

On the other hand, fix a rational point ¢ € R™™\ H and observe rational hyper-
planes containing R, ¢. I claim that the set of points which are intersections of those
hyperplanes and the line L are dense on L. To see this, let y = (1,41,...,¥,) be a
point in H and let A = (ap2p + - - - + -z, = 0) be any hyperplane containing y and
t. H is given as a solution of a system of r — 1 linear equations in zy, ..., z,, thus y is
a solution of a system of r linear equations and the components of y are linear func-
tions in ap, . . ., a,, where «; are linearly dependent over Q (since ¢ € A). Therefore,
without loss of generality, wiggling «; for ¢ < r we can obtain a point 3’ € L arbi-
trarily close to y which belongs to a rational hyperplane A" = (ajzo+---+alz, = 0)
containing ¢. Furthermore, if H contains a rational point ¢y, then ' cannot belong
to a rational plane A of dimension < n — 1 since otherwise H would be contained

in a rational hyperplane generated by A and to.

Step 2: In Steps 2-8 I assume that the real numbers 1,x4,...,x, are linearly inde-
pendent over Q.

By Theorem 2.32, there are infinitely many positive integers ¢ such that
gzl < g7 (4.1)

for all . Fix such a ¢ big enough so that the ball of radius 1/q centred at z is

contained in int Sg and so that ¢'/” > r, and in particular 3" ||gz;|| < 1. Let p; be

positive integers with |qz; — p;| < ¢7'/".
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Let
N lgws] if p; = [qw;]
[qz;] if p; = |gzi].

Let eg, e, ..., e, be the standard basis of R"*!. Set

Uy = qeg + Zpiei and wu; = qey + Z#i pj€j + @ei

fori=1,...,7r. From (4.1) we have
lz = uo/qllee < g7 (4.2)
It is easy to see that uy, ..., u, are linearly independent and that

(1= llgzillJuo + > llgwillus = gz (4.3)

Assume that for every open cone U containing x the map f| is not linear. Then

in Steps 3-7 I will prove that for all ¢ > 0 satisfying (4.1) we have

P = (1= lawill) £ (uofa) + 3 lgzillf (wi/a) + o (44)

where e, > ¢(1 — > ||qz;||)/q. I will then derive a contradiction in Step 8.

Step 3 Let K =3 oRyu; and K; = Ryx + Z#i Riuj for i = 0,...,r; observe
that K = Ui20 K;. Define the sequences v, € N"*! and j, € N as follows: set vy =
Zz‘zo u;. If v, is defined then, since the components of x are linearly independent
over Q, there is a unique j, € {0,...,r} such that v, belongs to the interior of ;.

Set vp41 = vy, + u;,. Define the sequence of non-negative real numbers e, by

f(ns1) = f(un) + f(u;,) + en.

Step 4: In this step I assume that for all n > ng with j, = 0 we have e,, > ¢. Then

we have
,

Fa) =" al fu;) + ™, (4.5)

=0
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where o/ € Nand e™ > ¢(al” —ny). Observe that v, = 37 a{™u;, and therefore

from Lemma 4.11 we have

)

r (n
. Up et
gr = lim — = E lim ——u,.
n—oo 1 — n—oo N
e

Since w; are linearly independent, from (4.3) we obtain

ol
S = =12l

and

(n)
lim —— = ||gz;|] for i>0.
n—oo

Dividing (4.5) by n, taking a limit when n — oo and using continuity of f and

Lemma 4.11 we obtain

Flaw) = (1= llawill ) £ (o) + > llgasl| £ (s) +

where e, > ¢(1 — > ||qz;||). Dividing now by ¢ we get (4.4).

Step 5: In Steps 5-7 I assume there are infinitely many n with j, = 0 and e,, = 0.
Then by Lemma 4.5 the map f|r,v,+r,u, i linear for each such n (observe that
when r = 1 this finishes the proof since then z € int(R v, + Riup)). But then we

have

f(on/n+uo) = f(vn/n) + f(uo),

so letting n — oo and using Lemma 4.11 we get

flqz +uo) = f(gz) + f(uo),

thus the map f|r,z1r, «, is linear by Lemma 4.5.

Let us first prove that there is an (r + 1)-dimensional polyhedral cone C,,; such
that Ryz + Riug C Cry1, (Ryz + Ryug) NintCrpq # 0 and fic,,, is linear. Let
t € int S\ (Rx + Rug) be a rational point. By Step 1 there is a rational hyperplane



4.2. FORCING DIOPHANTINE APPROXIMATION 42

H > t such that there is a nonzero w € H Nrelint(R x4+ R uy), and there does not
exist a rational plane of dimension < n — 1 containing w. By Theorem 4.6 applied
to H N Sg there is an r-dimensional cone C, = Z:leJrhi C H N Sg such that
w € relintC, and fic, is linear. Set C,y1 = C, + Ryx + Riug. Now if w = > p;h;

with all u; > 0, since f is linear on C, we have

= f(x)+ fluo) + f(w) = f(2) + fluo) + Y _ mif (i),

so the map fic,,, is linear by Lemma 4.5.

Step 6: Let C = Ryg; + -+ + Ryg, be any (r + 1)-dimensional polyhedral cone
containing x such that fic is linear and let ¢ be the linear extension of fic to R™!.

Assume that for a point h € Sg we have f|g,» = {|r,». There are real numbers ),

such that
h = Z Aigi-

Then setting e := > (1 + |\i|)gi + h =D (1 + |\i| + Xi)gi € C we have

Fle) = (3o I+ A)g) = D21+ Al + A gy)
=Y (4 XDegs) + £(h) =Y (1 + [N F(g:) + F(h),

so f is linear on the cone C + R h by Lemma 4.5. Therefore the set C= {z €S

f(z) =4(2)} is an (r + 1)-dimensional closed cone.

Step 7. Since f is not linear in any open neighbourhood of z we have x ¢ intC.
Therefore there is a tangent hyperplane 7T to C containing z. Let W; and W5 be
the half-spaces such that Wy, N Wy = T, W, U Wy = R™! and CcC W;. Since
(R.z + Ryug) Nint C # 0 we must have (Rz + Rug) N Wa # 0.

By Step 1 applied to the 2-plane Rz + Ruy, for every non-negative € < ¢
max{||qzil|/q} let

—1-1/r _

re = (1, 2c1,...,2c,) € (Rx 4+ Rug) N Ws

be such that 0 < ||z — z.||oc < ¢ and the components of z. are linearly independent
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over Q. The ma R.ouniR.z 18 not linear since otherwise we would have f(x.) =
+uo+Rixe €

—1/r

l(xc). Observe that |qz.; — pi| < ¢ for every i. Then as in Step 4 we have

Flawe) = (1=3" llgzell) £ o) + D llawesll £ (us) + 2,

where e, > ¢(1 — > ||gze;||). Finally dividing by ¢ and letting ¢ — 0 we obtain
(4.4).

Step 8 Therefore for all ¢ > 0 satisfying (4.1) we have (4.4). Then since f is locally

Lipschitz around x there is a constant L > 0 such that

el =g < e(1= Y llgwil) Ja < e,
= @) = (1=Y llgaill) S (wo/a) = 3 llgail F(wi/g)
= (f(2) = Fluo/@)) + D llazil (f(uo/a) = f(ui/q)
< Lllz — uo/qlloe + Z lqzil| Llluo/q — ui/qll oo

< Lq—l—l/r + Zq—l/qu—l — L(T+ 1)q—1—1/7‘7

=1

where I used (4.1) and (4.2). Hence L > H%(ql/r —r) for ¢ > 0, a contradiction.
Thus if 1,24, ..., x, are linearly independent over (Q then there is an open cone

containing x where f is linear, so the lemma follows. In particular there are linearly

independent rational rays Ry, ..., R,y1 C int Sg such that R C int(Ry + -+ -+ Ry41)

and the map f|g,4.4r,., is linear.

Step 9. Assume now that x is a rational point. By induction I assume there does
not exist a rational hyperplane containing R,z and R. By clearing denominators I
can assume x = (K, Z1,...,%,) where k, z; € N.

Fix ¢ big enough so that the ball of radius 1/¢ centred at x is contained in int Sg

/7 > r. Fix a positive ¢ < ¢~ 1=V/7

and so that ¢ . By Step 1 there is a point
Te = (Ry Tty Tey) E R+ R

such that ||z — x||s < e and the components of z. are linearly independent over Q.
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Set ug = qx, define integers p; and p; with respect to x, as in Step 2 and set

u; = qreg + ijej + Die;
JF#i

forte=1,...,r. Then uy,...,u, are linearly independent and we have

(1= lawell Juo + > llgwelju = ga.

With respect to x. define the sequences v,, € N and (j,,¢e,) € N x R, as in Step
3. Assume that for all n > ny with j, = 0 we have e,, > ¢. Then as in Step 4 we

obtain

Flgr) = (1= laweil) fluo) + 3 llgzesl F(w:) + 2, (4.6)

where €, > c(1 — Y |lgzil). If (4.6) stands for every e < ¢!~/ then dividing
(4.6) by g and letting ¢ — 0 we get

f(z) = f(z) + e

where e, > ¢/q, a contradiction. Therefore there is a positive ¢ < ¢~'~1/" such that
there are infinitely many n with j, = 0 and e,, = 0. But then as in Step 5 we have

that the map f|g,s1r, 4. is linear and we are done.

Step 10: Assume finally that x is a non-rational point contained in a rational hy-
perplane; let H be a rational plane of the smallest dimension containing x and set
k=dimH. Let R =R,v.

By Theorem 4.6 there is a rational cone C = Zf:1R+g,~ C H with g; being
rational points such that fic is linear and z € relintC, or equivalently z = ) \;g;
with all A; > 0. Take a rational point y = Zle gi- Then by Step 9 there is a point

z' = ay + Pv with «, f > 0 such that the map f|g, +r, o is linear. Now we have

F(Dg+a) = Fly+a) = Fl) + F@) = 3 F(g) + f@),

so the map fleyr,, is linear by Lemma 4.5. Taking p = max{ﬁ} and setting
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0= px + v € relint(Ryz + R), it is easy to check that

0 =33 (A — §)gi + 52" € C+ Ry,
so the map f|r, z+r, o is linear. O

Lemma 4.11. Assume the notation from Lemma 4.10. Then

. Up
lim — = qx.
n—oo M

Proof. 1 work with the standard scalar product (-, -) and the induced Euclidean norm

Un

n+r41
= ¢) in R™"! I assume the ambient space is R”.

| - ||; denote w,, = . It is enough to prove lim,_,o w, = qx. By restricting to

the hyperplane (z

Ug ¢-

U2

Wi

Step 1: Let o denote the simplex with vertices wo, ..., u, and let d = /2 be the
diameter of 0. For each i, let o; be the simplex with vertices gz and u; for j # .

The points w,, belong to ¢ and

Wi = m((n—i—r—l—l)wn—l—ujn),
so we immediately get
d
L — W, G 4.7
100 = | < —— (4.7

Fora=1,..., (TJ;) let H, be all hyperplanes containing the faces of the simplices

0; which contain qz.



4.2. FORCING DIOPHANTINE APPROXIMATION 46
Step 2: Let us prove that for each « and for each n,
dist{wn41, Ho } < dist{w,, Hy} (4.8)

if the segment [w,,, w,,1] does not intersect H,, and otherwise

d

dist{wp41, Hy} < ———.
ist{twn } n+r+2

(4.9)
To this end, if H, contains u;,, then obviously dist{w,11, H,} < dist{w,, H,}. If
H, does not contain u;,, then u; and w, are on different sides of H,. Now if the

segment [wy, w,+1] does not intersect H, then (4.8) is obvious, whereas otherwise
(4.9) follows from (4.7).

Step 3 Now assume that for each «, there are infinitely many segments [w,,, Wy, 1]
intersecting H,. Then from (4.8) and (4.9) we get

lim dist{w,, H,} =0

n—oo

and thus the sequence w,, accumulates on each of the hyperplanes H,. But [, Ho =

x}, so lim w, = qx.
{qz}, q
n—oo

Step 4: Finally let ag be such that no segment [w,,, w, 1] intersects H,, for all n. > ny
and lim dist{w,, Ho,} = p > 0 (the sequence dist{w,, H,,} converges by (4.8)).
Therggg;e there is a hyperplane H, parallel to H,, such that dist{H,, H,,} = p and
the sequence w,, accumulates on H,; let W; and W, be the two half-spaces such that
WiUW, = R" and Wy NW, = H,. Relabelling we can assume uo, ..., u,—1,qx € W)
and wy,, u, € W for all n > ny; observe that then u;, € {uo,...,u,—1} for alln > n,.

By change of coordinates I may assume that H,, contains the origin. Fix a
nonzero vector a perpendicular to H,, such that Wy C {z € R" : (a,z) > 0}. Since

Wy N H,, = 0 the linear function (a,-) attains its minimum m > 0 on the compact
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set Wo N o. Then since (a,u;,) < 0 for n > ny we have

diSt{wn, Hao} - diSt{wn+17 Hao} = <a’

_ <a’7wn _u]n> m
Cn+r+2a| T (n+r+2)|al’

and therefore .

7"—}—2:

m
dlSt{wn 7Hoz } Z +OO)
o Hon} 2 07 2 5

a contradiction. O

Corollary 4.12. Let S C Nt be a finitely generated monoid and let f: Spg — R
be a superlinear map. Assume there is a real number ¢ > 0 such that for every
s1,82 € S, either f(s1+s2) = f(s1) + f(s2) or f(s1+ s2) > f(s1) + f(s2) +c. Let
C be a polyhedral cone in int Sg.

Then for every 2-plane H the map fienm is piecewise linear.

Proof. 1f C = |JC; is a finite subdivision of C into rational simplicial cones, then
fiecnm is PL if and only if fic,nx is PL for every 7, so I assume C is simplicial. Take
a basis g1,...,9,41 € S of C, set s:= > ¢; and let 0 < v < 1 be a rational number
such that ¢; + a(g; — s) € int Sg for all i. Take g} € SNR, (gz- + a(gi — S)) It is
easy to check that g, are linearly independent and that C C int Y R, g;. Therefore
I can assume S = N' 1,

By Lemma 4.10, for every ray R C C N H there is a polyhedral cone Cr with
R C Cr C CN H such that there is a polyhedral decomposition Cp = Cp1UCpgo with
ficr, and fic,, being linear maps, and if R C relint(C N H), then R C relint C.

Let || - || be the standard Euclidean norm and let S™ = {z € R"" : ||z|]| = 1} be
the unit sphere. Restricting to the compact set S" N C N H we can choose finitely
many polyhedral cones C; with C N H = (JC; such that each fj, is PL. But then
fiecnm is PL. O

Lemma 4.13. Let f be a superlinear function on a polyhedral cone C C R™ with
dimC = r + 1 such that for every 2-plane H the function ficng is piecewise linear.

Then f is piecewise linear.
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Proof. 1 will prove the lemma by induction on the dimension.

Step 1: Fix a ray R C C. In this step I prove that for any ray R’ C C there is an
(r +1)-dimensional cone C(,41) C C containing R such that the map fic, ,, is linear
and C41) N (R+ R') # R.

Let H, D (R + R') be any hyperplane. By induction there is an r-dimensional
polyhedral cone C,y = >°'_ Rie; C H, NC containing R such that fie(,, 1 linear
and C,y N (R+ R') # R. Set eg = €1 + --- + e,. Let Hy be a 2-plane such that
Hy N H, = Riep. Since fig,nc is PL, there is a point e,.; € Hy N C such that

flR eo+Rye,,, is linear. Set Cry1) = Ryeq + -+ -+ Rye,qq. Then we have

f(ZQ):f(€0+€r+1):f(€o)+f €rt1) Zf €i),

so the map fic,,,, is linear by Lemma 4.5. Observe that choosing e,,1 appropriately
we can ensure that the cone C, 1) is contained in either of the half-spaces into which
H, divides R"™!.

Step 2: Fix aray R C C and let C,41) be any (r + 1)-dimensional cone such that
fle, sy is linear. Let £ be the linear extension of fe,,, to R™'. Let C={zecC:
f(2) =£(z)}; it is a closed cone by Step 6 of the proof of Lemma 4.10.

I claim C is a locally polyhedral cone (and thus polyhedral). Otherwise, fix a
boundary ray R, and let H be any hyperplane containing R, such that H Nint C =+
(. Let R, be a sequence of boundary rays which converge to R, and they are all
on the same side of H.

Let T O R. be any hyperplane tangent to C. Fix an (r —1)-plane H,_y C T
containing R, and let H | be the unique 2-plane orthogonal to H, ;. For each
n consider a hyperplane Hr(n) generated by H, ; and R, (if R, C H,_; the we
can finish by induction on the dimension). Let || - || be the standard Euclidean
norm and let S = {z € R"™™ : ||z|| = 1} be the unit sphere. The set of points
Unen (ST NH: NH n)) has a limit P, on the circle SN H:- | and let H™ De the
hyperplane generated by H,_; and P,; without loss of generality I can assume all
R, are on the same side of H°,

Now by the construction in Step 1, there is an (r + 1)-dimensional cone C, such

that Co, N H is a face of C., ficw is linear and C., intersects hyperplanes amw
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for all n > 0. In particular R, C Co for all n > 0 and intCo NC # 0. Let
w € int Cq NC and let B C int Cs be a small ball centred at w. Then the cone B ne
is (r + 1)-dimensional (otherwise the cone C would be contained in a hyperplane)
and thus CoNC is an (r+1)-dimensional cone. Therefore the linear extension of fic_
coincides with £ and thus Co, C C. Since R, 7 int C we must have R, C Coo N Hr(oo),

and we finish by induction on the dimension.

Step 3. Again fix a ray R C C. By Steps 1 and 2 there is a collection of (r + 1)-
dimensional polyhedral cones {C, }aer, such that R C C, C C for every a € Ig, for
every ray R’ C C there is a € I such that C, N (R + R') # R and for every two
distinct o, 8 € Ig the linear extensions of fic, and fc, to R™! are not the same
function. I will prove that Iy is a finite set.

For each a € Iy let z, be a point in intC, and let H, = (R+ R,z,) U (—R +
R,z,). Let Ry, C H, be the unique ray orthogonal to R. Let R* be the hyperplane
orthogonal to R. For each a let S"N Rt N H, = {Q,}. If there are infinitely
many cones C,, then the set {Q, : @ € Ig} has an accumulation point (... Let
He = (R+RiQux) U (—R + RiQx), let H, be a sequence in the set {H,} such
that lim Q, = Q. where SN Rt N H, = {Q,}, and let C, be the corresponding
conesn;loo{Ca}.

By assumptions of the lemma there is a point y € H, such that f|gp g, is linear.
Let = be a point on R and let H be any hyperplane such that H N (Rx + Ry) =
R(z +y). By induction there are r-dimensional polyhedral cones Cy,...,Cy in HNC
such that x +y € C; for all 7, there is a small r-dimensional ball B,y C H centred at
& + gy such that B,y NC = B,y N(C;U---UC;) and the map fic, is linear for every
i. Fix i and let g;; be generators of C;. Then

P guroty) =3 Flo) + fa+y) =Y flog) + f(x) + ().

so f is linear on the cone C; = C; + R.z + R,y by Lemma 4.5. Therefore if we
denote C = Cy +- - - +Cj, +Riz+ Ry, then f|5 is PL and there is a small ball B, 1)
centred at x +y such that B,y NC = B4y NC.

Take a ball B. of radius ¢ < 1 centred at = + y such that x ¢ B, and B. NC =
B.NC. Since |Qn — Qxl| < € for n > 0, then considering the subspace generated by
R, @, and ()., we obtain that H,, intersects int B, for n > 0. Since C= UCN“ there
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is an index 7y such that 5@'0 N int B, intersects infinitely many H,. In particular,
éo Nint C,, # ) for infinitely many n and therefore 51’0 NC, is an (r + 1)-dimensional
cone as in Step 2. Thus for every such n the linear extensions of f\@-o and fic, to
R"*! are the same since they coincide with the linear extension of f‘@o c,» Which is

a contradiction and Iy is finite.

Step 4: Finally, we have that for every ray R C C the map f Uner, Ca is PL and there
is small ball Br centred at R N S” such that B NC = Br N UaeIR

finitely many open sets int Bg which cover the compact set S” N C and therefore we

C,. There are

can choose finitely many polyhedral cones C; with C = [JC; such that fi, is PL for
every i. Thus f is PL. m

Now I can prove the main result of this section.

Proof of Theorem 4.6. By Corollary 4.12 and Lemma 4.13 the map fi¢ is PL; in
other words we can choose finitely many polyhedral cones C; with C = | JC; such
that fic, is linear for each . We can assume the linear extensions of the maps fic,
and fic, to R" are not the same by Step 6 of the proof of Lemma 4.10.

Let H be a hyperplane which contains a common (r — 1)-dimensional face of
cones C; and C; and assume H is not rational. Then similarly as in Step 1 of the
proof of Lemma 4.10 there is a point x € C; N C; whose components are linearly
independent over Q. By the proof of Lemma 4.10 there is an r-dimensional cone C
such that z € int C and the map f‘g is linear. But then as in Step 2 of the proof of
Lemma 4.13 the cones CNC; and CNC; are r-dimensional and linear extensions of fic,
and fic, coincide since they are equal to the linear extension of f|C~, a contradiction.
Therefore all (r —1)-dimensional faces of the cones C; belong to rational hyperplanes
and thus C; are rational cones. Thus the map fc is Q-PL. O



Chapter 5

Higher Rank Algebras

In this chapter I develop the theory of higher rank divisorial and b-divisorial alge-
bras that will be useful in the approach to finite generation in Chapter 6. Mobile
b-divisors give useful criteria for assessing whether algebras in question are finitely
generated, and a relation to convex geometry techniques from Chapter 4 is estab-
lished. In the second part of the chapter I formulate natural conjectures that extend

rank 1 conjectures of Shokurov [Sho03], and I prove them on curves.

5.1 Algebras Attached to Monoids

I start with the following definitions.

Definition 5.1. Let X be a variety and let S be a finitely submonoid of N". If
p: S — WDiv(X)*2Y is an additive map, the algebra

R(X,u(S)) = @ H(X. Ox(u(s)))

SES

is called the divisorial S-graded algebra associated to pi. When § = @le Ne; is a
simplicial cone, the algebra R(X, u(S)) is called the Coz ring associated to p, and
is denoted also by R(X;u(er), ..., uler)).

Definition 5.2. Let X be a variety, S a finitely generated submonoid of N", and
m: S — Div(X) asuperadditive map. The system m(S) = {m(s)}scs (respectively

the map m) is bounded if the following two conditions are satisfied:

51
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e there is a reduced divisor F' on X such that Suppm(s)y C F for every s € S,

i.e. m has bounded support on X,

e for every s € S, the limit lim +tm(ks) exists in Div(X)g.
K—00

Let m: X — Z be a projective morphism of normal varieties and let m: S — Div(X)
be a bounded superadditive map such that Ox(m(s)) is a coherent sheaf for all
s € §. The algebra

R(X,m(8)) = P m.0x(m(s))

SES

is a b-divisorial S-graded Oz-algebra.

Remark 5.3. Divisorial algebras considered in this thesis are algebras of sections.

I will occasionally, and without explicit mention, view them as algebras of rational

functions, in particular to be able to write H°(X, D) ~ HY(X, Moh(D)) C k(X).
Assume now that X is smooth, D € Div(X) and that I" is a prime divisor on X.

If or is the global section of Ox (I") such that divor =T, from the exact sequence
0 — H°(X,0x(D —T)) =5 H(X,0x(D)) 225 H(I', Op(D))

we define resr HO(X’ OX(-D)) = IIH(IOD,F)- For o € I{O(){’7 OX(D))7 I denote O'|F —
ppr(o). Observe that

ker(ppr) = H'(X,0x(D —T) - or, (5.1)

and that resp H%(X,Ox(D)) = 0if I C Bs|D|. If D ~ D’ such that the restriction
D|’F is defined, then

resp H(X, Ox (D)) ~ resy H*(X, Ox(D')) ¢ H*(T, Op( )
The restriction of R(X, u(S)) to I' is defined as

resp R(X, u(S)) = @ resr HO(X, Ox (u(s))).

SES

This is an S-graded, not necessarily divisorial algebra.
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Remark 5.4. Under assumptions from Definition 5.1, define the map Mob,,: § —
Mob(X) by Mob,(s) = Mob(u(s)) for every s € S. Then we have the b-divisorial
algebra

R(X,Mob,(S)) ~ R(X, u(S)).

If S’ is a finitely generated submonoid of S, I use R(X, u(S’)) to denote the algebra
R(X, s (8")). If S is a submonoid of WDiv(X)*2? and ¢: S — S is the identity
map, [ use R(X,S) to denote R(X,(S)).

The following lemma summarises the basic properties of higher rank finite gen-

eration.

Lemma 5.5. Let S C N" be a finitely generated monoid and let R = @, s Rs be

an S-graded algebra.

seS

(1) Let 8’ be a truncation of S. If the S'-graded algebra R' = @, s R, is finitely

generated over Ry, then R is finitely generated over Ry.

(2) Assume furthermore that S is saturated and let S” C S be a finitely generated
saturated submonoid. If R is finitely generated over Ry, then the S8"-graded
algebra R" = @, g Rs is finitely generated over Ry.

(3) Let X be a variety and let m: S — Mob(X) be a superadditive map. If there
exists a rational polyhedral subdivision Sgp = Ule A; such that, for each i,
ma;ns 15 an additive map up to truncation, then the algebra R(X,m(S)) is

finitely generated.

Proof. For (1), let S = >"  Ne; and &’ = ) | Nk;e; for positive integers ;. It
is enough to observe that R is an integral extension of R": for any ¢ € R we have
prfrtn € R

For (3), let {e;; : j € I;} be a finite set of generators of A; NS by Lemma 4.3

and let k;; be positive integers such that m|zj61_ Nrije;; 15 additive for each . Set

€ij
k=[], ; ki and let &' = 7, . Nke;; be a truncation of S.
Let ¢ = Z” Aijke;; € A; NS for some \;; € N. Then Z” Aijei; € A;NS and

thus there are p; € N such that Zij Nij€ij = Zjeli pje;j. From here we have

é:/ig e € E Nke;;
jer, HI% jer; "
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and therefore A; NS" = 3", Nre;; is a truncation of )
mja,ns is additive for each .

I claim the algebra R(X,m(S’)) is finitely generated, and thus the algebra
R(X,m(S)) is finitely generated by part (1). To that end, let Y — X be a model
such that m(xe;;) descend to Y for all 7, j, and let my : &’ — WDiv(Y') be the map
given by my(s) = m(s)y. Let s = Zjeli vijke;; € A; NS for some ¢ and some
vi; € N. Then

jel; Nk;je;;; in particular
1

m(s) = Zje]- vijm(ke;;) = Zjel_ viym(ke;)y = Zje[_ viym(kei;)y = m(s)y,
K2 K2 7

and thus m(s) descends to Y and R(X, m(S’)) ~ R(Y, my(S’)). Fix i, and consider
the free monoid §1 = @jeh Nke;; and the natural projection : §l — A; NS, The
Cox ring R(Y, (my o m)(S;)) is finitely generated by [HK00, Lemma 2.8], thus the
algebra R(X, m(A; NS’)) is finitely generated for each i by projection. The set of
generators of R(X, m(A;NS")) for all i generates R(X, m(S’)) and the claim follows.

Finally, statement (2) is [ELM ™06, Lemma 4.8]. O

Following [Cor07, Lemma 2.3.53|, in the rank 1 case we have the converse of
Lemma 5.5(3).

Lemma 5.6. Let X be a variety and m: N — Mob(X) be a superadditive map.
The algebra R(X, m(N)) is finitely generated if and only if there exists an integer i
such that m(ik) = km(i) for all k > 0.

Proof. We only need to prove necessity as sufficiency was proved in Lemma 5.5(3).
Up to truncation, we may assume that R(X, m(N)) is generated by H°(X, m(1)).
For each j, take a resolution Y; — X such that both m(1) and m(j) descend to Y;.
Superadditivity and the finite generation imply

HO(Y,, jm(1)y,) € HO(Y, m(j)y,) = HO(Y, m(1)y, ) € H(Y;, jm(1)y,).

Therefore jm(1)y, = m(j)y, and thus jm(1) = m(j). H

Definition 5.7. Let S be a monoid and let f: § — G be a superadditive map to
a monoid G. For every s € S, the smallest positive integer ¢4, if it exists, such that

f(Negs) is an additive system is called the indez of s (otherwise we set t; = 00).
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The following result gives the connection to superlinear functions.

Lemma 5.8. Let X be a variety, S C N" a finitely generated monoid and let f: S —
G be a superadditive map to a monoid G which is a subset of WDiv(X) or Div(X),
such that for every s € S the index s is finite.

Then there is a unique superlinear function f*: Sg — Ggr such that for every
s € S there is a positive integer N\ with f(\ss) = f*(\ss). Furthermore, let C be
a rational polyhedral subcone of Sg. Then ficns is additive up to truncation if and
only if f‘ﬁc is linear.

If p: § — Div(X) is an additive map and m = Mob,, is such that for every

s € S there is a positive integer vy such that myy, , is an additive map, then we have

mi(s) = u(s) — 3 (ord [s)) . (5.2)
where the sum runs over all geometric valuations E on X.

Proof. The construction will show that f* is the unique function with the stated
properties. To start with, fix a point s € Sg and let x be a positive integer such

that ks € S. Set
figsks)

YA
i) o= Tt
This is well-defined: take another ' such that x's € §. Then by the definition of

the index we have
f(LHsLn’s’iH,S) - Lnslifam’s’fls) - Ln’sli,f(bnslis)’

SO f(trsks)/tusk = f(Lwrsk'S) [ twrsk' .
Now let s € Sgp, let £ be a positive rational number and let A be a sufficiently
divisible positive integer such that \{s € S. Then

F((bagsN)€s) gf((LA;ss)\if)S)

= — ¢t
Lxgs)\ [/)\§S>\§ éf (S>7

fi(es) =

so f* is positively homogeneous (with respect to rational scalars). It is also super-

additive: let s1,s2 € Sp and let k be a sufficiently divisible positive integer such
that f(ks1) = fﬂ("ﬂsl), f(ksy) = fﬁ(’%‘z) and f(’f(sl + 32)) = fﬁ(/f<31 + 32))- By
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superadditivity of f we have

f(rs1) + f(rs2) < f(K(s1+ 52)),

so dividing the inequality by s we obtain superadditivity of f*.

Let F be any divisor on X, respectively any geometric valuation E over X,
when G C WDiv(X), respectively G C Div(X). Consider the function fﬁ; given by
fi(s) = multp f4(s). Proposition 4.2 applied to each f shows that f* extends to a
superlinear function on the whole Sg.

For the statement on cones, necessity is clear. Assume f*|¢ is linear, and by

Lemma 4.3 let eq, ..., e, be generators of CNS. For sg =e; + - -+ + e, we have

fi(s0) = filer) + - + fi(en). (5-3)

Let p be a positive integer such that f(uso) = f*(uso) and f(ue;) = f*(ue;) for all

i. From (5.3) we obtain

f(uso) = flper) + -+ f(pen),

and Lemma 4.4 implies that f* is additive on the truncation S = > Npe; of CNS.

Equation (5.2) is a restatement of the definition given above. O]

Definition 5.9. In the context of Lemma 5.8, the function f* is called the straight-
ening of f.

Remark 5.10. In the context of the assumptions of Lemma 5.8, let s € S and let
A be a positive integer such that f¥(As) = f(As). Then for every positive integer u

we have

F(urs) > nf(hs) = pffNs) = fi(urs) > F(us),
so f(uAs) = pf(As). Therefore the index ¢y is the smallest integer A such that
FHAs) = f(As).

To conclude this section, I prove a result that will be crucial in the constructions
in Chapter 6.
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Proposition 5.11. Let X be a variety, S C N" a finitely generated saturated monoid
and j1: S — WDiv(X)"2% an additive map. Let L be a finitely generated submonoid
of S and assume R(X, u(S)) is finitely generated. Then R(X, u(L)) is finitely gen-
erated. Moreover, the map m = Mob,,¢ is piecewise additive up to truncation. In
particular, there is a positive integer p such that Mob,,(ips) = i Mob,,(ps) for every
1 € N and every s € L.

Proof. Denote M = Lx NN". By Lemma 5.5(2), R(X, u(M)) is finitely generated,
and by the proof of [ELM*06, Theorem 4.1], there is a finite rational polyhedral
subdivision Mg = | JA; such that for every geometric valuation £ on X, the map
ordg || - || is Q-additive on A; N My for every i. Since for every saturated rank 1
submonoid R C M the algebra R(X, 1(R)) is finitely generated by Lemma 5.5(2),
the map mgn, is additive up to truncation by Lemma 5.6 and thus there is the well-
defined straightening m*: L5 — Mob(X)g since Mg = Lg. Then (5.2) implies
that the map m’f AinLo is Q-additive for every ¢, hence by Lemma 5.8 the map m is
piecewise additive up to truncation, and therefore R(X, ;(L)) is finitely generated
by Lemma 5.5(3). O

5.2 Shokurov Algebras on Curves

In this section I define higher rank analogues of algebras defined in [Sho03, Cor07],

and I prove a possibly surprising finite generation result on curves.

Definition 5.12. Let X be a variety, let S be a monoid and let m: & — Mob(X)
be a superadditive map. Let F be a b-divisor on X with [F] > 0.

We say the system m(S) is F-saturated (or that it satisfies the saturation condi-
tion with respect to F) if for all s,sy,...,s, € S such that s = & 51+ -+ + &,s, for
some non-negative rational numbers §;, there is a model Y, . — X such that

for all models Y — Y, . we have
Mob[&m(sy)y + -+ -+ §m(s,)y + Fy | <m(s)y.

If the models Y 4,

uniformly F-saturated.

s, do not depend on s, s1,...,s,, we say the system m(S) is

,,,,,
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Remark 5.13. It is important to understand that the numbers &; in the previous
definition are rational, and that s is not merely an integral combination of s;. This

fact is crucial in proofs.

Lemma 5.14. Let X be a variety, let S be a monoid and let m: & — Mob(X) be
a superadditive map. Let F be a b-divisor on X with [F| > 0. The system m(S) is
F-saturated if and only if for all s € S and all positive integers A\ and pu, there is a
model Y, — X such that for all models Y — Y 5, we have

Mob Em(,us)y +Fy| <m(\s)y.

Proof. Necessity is clear. For sufficiency, fix s,s1,...,s, € § and fix non-negative
rational numbers &; such that s = &s1+ -+ &,5,. Let A be a positive integer such
that A& € N for all . Then on all models Y higher than Y;; \ we have

Mob [ > ~¢&m(s;)y + Fy| = Mob [1 >~ Agm(s;)y + Fy ]
< Mob [sm(As)y + Fy] < m(s)y.

Therefore we can take Y g, = Y51 O

-----

Definition 5.15. Let (X, A) be a relative weak Fano klt pair projective over an
affine variety Z where Kx + A is Q-Cartier, and let S C N” be a finitely generated
monoid. A Shokurov algebra on X is the b-divisorial algebra R(X, m(S)), where
m: § — Mob(X) is a superadditive map such that the system m(S) is bounded
and A (X, A)-saturated.

The next result says that saturation is preserved under restriction.

Lemma 5.16. Let (X,A) be a relative weak Fano pair projective over an affine
variety Z and let S be a prime component in A. Let S be a finitely generated
monoid and assume the system of mobile b-divisors {M,}scs on X is (A(X, A)+5)-
saturated. Assume S ¢ Supp M,x for any s € S. Then the system {Mys}ses on S
is A(S, Diff (A — 5))-saturated.

Proof. This is analogous to [Cor07, Lemma 2.3.43, Lemma 2.4.3]. Denote A =
A(X,A) and A® = A(S,Diff (A — S)). The claim follows as soon as we have the
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surjectivity of the restriction map

HO(Y, [Z&'Msﬂ + (A +38)y]) = H(Sy, [ZfiMSiYﬁy + A%YW)

for all §; € Q4 and all s; € S, on log resolutions f: Y =Y, o — X where M,y

.....

is free for every 7. The obstruction to surjectivity is the group
HI(Y7 ’—Z&Msiy + AY-‘) = HI(Y, Ky + [— ff(Kx +A)+ Z&MSZY-‘)

But this group vanishes by Kawamata-Viehweg vanishing since —(Kx + A) is nef

and big and all M,y are nef. O

Definition 5.17. Let 7: X — Z be a projective morphism of varieties, let S C N”
be a finitely generated monoid and let §: S — N be an additive map. Assume
{Bs}ses is a system of effective Q-b-divisors on X such that

(1) the system {0(s)Bg}ses is superadditive and bounded,

(2) for each s € S there is a divisor A; on X such that Kx + A is klt and
lim %anX S Asa

K—00

(3) for each s € S there is a model Y; over X and a mobile b-divisor M such that
Msy = Mob (5<S)<KY + Bsy))

for every model Y over Y.

Let m: & — Mob(X) be the superadditive map given by m(s) = M; for all s € S.
If the system m(S) is F-saturated for a b-divisor F with [F] > 0, we say the system
m(S) is adjoint and that the algebra R(X, m(S)) is an adjoint algebra on X.

I pose the following two natural conjectures.

Conjecture A. Let (X, A) be a relative weak Fano kit pair projective over a normal
affine variety Z, where Kx + A is Q-Cartier. Let S C N” be a finitely generated
monoid and let m: S — Mob(X) be a superadditive map such that the system m(S)
is bounded and A(X,A)-saturated. Let C be a rational polyhedral cone in int Sg.
Then the Shokurov algebra R(X, m(C NS)) is a finitely generated O z-algebra.
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Conjecture B. Let m: X — Z be a projective morphism between normal varieties,
let S C N” be a finitely generated monoid and let m: S — Mob(X) be a superaddi-
tive map such that the system m(S) is adjoint. Let C be a rational polyhedral cone in
int Sg. Then the adjoint algebra R(X, m(CNS)) is a finitely generated O z-algebra.

Ideally we would like the conjectures to extend to the whole cone Sg, however

this is in general not possible, see Remark 5.18.

Remark 5.18. The formulations of Conjectures A and B are in general the best
possible, that is we cannot extend the results to the boundary of the cone Sg. For
let X be a variety, let S = N? and assume m: & — Mob(X) is a superadditive map
such that the system m(S) is bounded and F-saturated. Let n: S — Mob(X) be
the superadditive map given by

m(s), s¢€ Sg)\intSg,
n(s) =
m(2s), s € intSg.

Since saturation is the property of rays by Lemma 5.14, the system n(S) is again
F-saturated. However the algebra R(X,n(S)) is not finitely generated since the

map n’ is not continuous on the whole Sg.
I will confirm Conjectures A and B on an affine curve.

Theorem 5.19. Let X be an affine curve, let S be a finitely generated submonoid
of N" and let m: & — Mob(X) be a superadditive map such that the system m(S)
is bounded and F-saturated. Let C be a rational polyhedral cone in int Sg.

Then the algebra R(X,m(C NS)) is finitely generated.

Remark 5.20. Observe that on a curve b-divisors are just the usual divisors. Also
all divisors move in the corresponding linear systems, so the saturation condition
reads

Em(vs) + F] < mps)

for every s € S and all positive integers p and v. By boundedness, for every

s € S the limit lim im(us) exists, and therefore the map myy, is additive up to
U—>00

truncation by Lemma 5.21 below. Thus there exists the well-defined straightening
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m?. Furthermore the map m*|¢ is Q-PL if and only if for every prime divisor E in
the support of m(S) the function m¥ ¢ is Q-PL, see the proof of Lemma 5.8. Also
the saturation condition on a curve is a component-wise condition, so from now on

I assume the system m(S) is supported at a point.

Lemma 5.21. Let X be an affine curve and let m: N — Mob(X) be a bounded
superadditive map such that the system m(N) is supported at a point P and F-

saturated. Then m s additive up to truncation.

Proof. Let F = —fP with 0 < f < 1, and let m(v) = m,P > 0 for every v € N.

Denote d, = m,, /v and d = lim d,. The saturation condition when v — oo becomes
V—00

[ud — f1 < pd,

for all p > 0. If d ¢ Q, then there exists p € N such that {ud} > f and therefore
pdy, < pd < fud — f1 < pd,,

a contradiction. Thus for every x € N such that kd € Z we have
kd, < kd = [kd — [ < Kkd,,

and so d = d,, and m,y is additive for any such . O

Lemma 5.22. Let X be an affine curve, let S be a finitely generated monoid and
let m: § — Mob(X) be a superadditive map such that the system m(S) is bounded,
supported at a point P and F-saturated. Let m' be the straightening of m, see
Remark 5.20.

Then there ezists a constant 0 < b < 1/2 with the following property: for each
s € S either m*(s) = m(s) or m¥(s) = m(s) +e,P for some e; with b < e, < 1—b.

Proof. Let F = —fP with f < 1. Fix s € S and assume m*(s) # m(s). Then there
is the smallest positive integer A such that m((A+1)s) # (A4 1)m(s); in particular

m(Xs) = Am(s) and m((A+1)s) = (A + 1)m(s) + e\ P
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for some e, > 1. From the saturation condition we have

[Z25m((A +1)s) — fP] <m(Xs),

that is
[m(Xs) + 25exP — fP] <m()s).

This implies 175 +1 < f,and so 75 +1 > 1 — f. Therefore

m’(s) > /\Lﬂm(()\ +1)s) =m(s) + /\Lﬂe,\sP >m(s)+ (1 — f)P.

On the other hand, let k be a positive integer such that m?(xs) = m(xs). Then

saturation gives
[ zm(rs) — fP] <m(s),
i.e. [mf(s) — fP] < m(s). Hence

m?(s) — m(s) < fP.

In particular if f < 1/2 then m*(s) = m(s) for every s € S. Set b := min{l —
£.1/2}. O

Lemma 5.23. Let X be an affine curve, let S be a finitely generated monoid and
let m: S — Mob(X) be a superadditive map such that the system m(S) is bounded,
supported at a point P and F-saturated. Let b be the constant from Lemma 5.22.
Then for each s € S we have 15 < 1/b.

Proof. By Lemma 5.21 and Remark 5.20, there exists a well-defined straightening
m* of m. Observe that Lemma 5.22 implies that m(s) = |m¥(s)] for each s € S,
and this in turn implies that the index ¢, is the smallest integer A such that m*(\s)
is an integral divisor (cf. Remark 5.10).

Now fix s € S, assume ¢, > 1 and let m*(1,5) = m(s,s) = pusP. Notice that ¢,
and ps must be coprime: otherwise assume p is a prime dividing both s and .
Then

mﬁ(%s) =kp

p

is an integral divisor and so ¢4 is not the index of s, a contradiction. Therefore there
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is an integer 1 < k <ty — 1 such that kus =1 (mod ¢), and therefore

m’(ks) = feP o and m(ks) = sl p

ls

Combining this with Lemma 5.22 we obtain

bP < mf(ks) — m(ks) = L P,

Ls

and finally ¢, < 1/b. O
Finally we have

Proof of Theorem 5.19. By Lemma 4.3 the monoid &' = C N S is finitely generated
and let ey, ..., e, be its generators. We have S = C and m* is continuous on Sf.
Setting x := |1/b]! for b as in Lemma 5.22; and taking the truncation S = > Nre;
of &', we have that m*(s) = m(s) for every s € S by Lemma 5.23 and Sk = Sk. By
Remark 5.20, I assume the system m(S) is supported at a point.

By Corollary 4.7 applied to the monoid S the map m’| 5, 1s Q-PL and thus the
algebra R(X, m(S")) is finitely generated by Lemmas 5.8 and 5.5(3). O
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Chapter 6

Finite Generation of

the Canonical Ring

In this Chapter I establish the first step in a project to prove finite generation of

the canonical ring without the Minimal Model Program. I prove:

Theorem 6.1. Let (X, A) be a projective kit pair and assume Property LS in di-
mensions < dim X. Then the canonical ring R(X, Kx + A) is finitely generated.

As explained in Chapter 1, there are several issues when trying to prove the
finite generation by induction on the dimension. The main conceptual problem is
the finite generation of the kernel of the restriction map. Note that the “kernel
issue” did not exist in the case of pl flips, since the relative Picard number = 1
ensured that the kernel was a principal ideal, at least after shrinking the base and
passing to a truncation. However, the proof of Lemma 3.18 models the general lines
of the proof in Section 6.2.

It is natural to try and restrict to a component of A, the issue of course being
that (X, A) does not have log canonical centres. Therefore I allow restrictions to
components of some effective divisor D ~gp Kx+A, and a tie-breaking-like technique
allows to create log canonical centres. Algebras encountered this way are, in effect,
plt algebras, and proving their restriction is finitely generated is technically the most
involved part of the proof, see Section 6.1.

Since the algebras I consider are of higher rank, not all divisors will have the same

log canonical centres. I therefore restrict to available centres, and lift generators from

65
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algebras that live on different divisors. Since the restrictions will also be algebras of
higher rank, the induction process must start from them.

Thus, the main technical result of this chapter is the following.

Theorem 6.2. Let X be a smooth projective variety, and fori=1,...,¢ let D; =
ki(Kx 4+ A;+ A), where A is an ample Q-divisor and (X, A;+ A) is a log smooth log
canonical pair with |D;| # 0. Assume Property LS in dimensions < dim X. Then
the Coz ring R(X; Dy, ..., Dy) is finitely generated.

Property £§ in the statement of Theorems 6.1 and 6.2 describes the convex
geometry of the set of log canonical pairs with big boundaries in terms of divisorial

components of the stable base loci. More precisely:

Property L£G. Let X be a smooth variety projective over an affine variety Z, B
a simple normal crossings divisor on X and A a general ample Q-divisor. Let
V C Div(X)gr be the vector space spanned by the components of B and let Ly =
{© € V : (X,0) is log canonical}; this is a rational polytope in V. Then for any
component G of B, the set

LE={PcLy GZB(Kx+d+A)}

s a rational polytope.

As a demonstration, I show how results of [BCHMO06] imply Property £§. Of

course, a hope is that this will be proved without Mori theory.
Proposition 6.3. Property LG follows from the MMP.

Proof. Let Kx be a divisor with Ox(Kx) ~ wx and Supp A ¢ Supp Kx, and let
A be the monoid in Div(X) generated by the components of Ky, B and A. Let
t: A — A be the identity map, and denote S = R, (Kx + A+ Ly) N A. Since Ly is
a rational polytope, S is a finitely generated monoid and let D; be generators of S.
By [BCHMO06, Corollary 1.1.9], the Cox ring R(X; Dy, ..., Dy) is finitely generated,
thus so is the algebra R(X,S) by projection. The set M ={D € §: |D|gp # 0} is
a convex cone, and therefore finitely generated since R(X,S) is finitely generated,

so I can assume M = S. By Proposition 5.11, the map Mob, is piecewise additive
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up to truncation, which proves that the closure C of the set (£%)g is a rational
polytope, and I claim it equals £§. Otherwise there exists ® € £§\C, and therefore
the convex hull of the set C U {®}, which is by convexity a subset of LG, contains a
rational point ® € £§\C, a contradiction. O

6.1 Restricting Plt Algebras

In this section I establish one of the technically most difficult steps in the proof
of Theorem 6.2. Crucial results and techniques will be those used to prove Non-
vanishing theorem in [Hac08] using methods developed in [HMO8], and the tech-
niques of Chapter 4.

The key result is Theorem 3.19, which also immediately implies:

Corollary 6.4. Let m: X — Z be a projective morphism to a normal affine variety
Z, where (X, A =S+ A+ B) is a purely log terminal pair, S = |A] is irreducible,
(X, S) is log smooth, A is a general ample Q-divisor and (S,Q + Ajs) is canonical,
where Q = (A—S)s. Assume S ¢ B(Kx+A), and let ®,, = QAL Fix |m(Kx+A)|s

for every m such that mA is Cartier. Then
Im(Ks +Q— &) + m®,, = |m(Kx + A)|s.

The following lemma shows that finite generation implies certain boundedness
on the convex geometry of boundaries, and it will be used in the proof of Theorem
6.6 below.

Lemma 6.5. Let (X,A = B+ A) be a log smooth kit pair, where A is a general
ample Q-divisor, B is an effective R-divisor, and assume that no component of B
is in B(Kx + A). Assume Property LS and Theorem 6.2 in dimension dim X . Let
V' C Div(X)g be the vector space spanned by the components of B and W C V
the smallest rational affine subspace containing B. Then there is a constant n > 0
and a positive integer r such that if ® € W and k is a positive integer such that
|® — Bl < n and k(Kx + ® + A)/r is Cartier, then no component of B is in
Fix |k(Kx + ® + A)|.
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Proof. Let Kx be a divisor such that Ox(Ky) ~ wx and Supp A ¢ Supp K, and
let A C Div(X) be the monoid spanned by components of Kx, B and A. Let G be
a components of B. By Property £§ there is a rational polytope P C W such that
A e€relint P and G ¢ B(Kx+®+ A) for every & € P. Let Dy, ..., Dy be generators
of Ry (Kx + A+ P)NA. By Theorem 6.2 the Cox ring R(X; D1, ..., D,) is finitely
generated, and thus so is the algebra R(X,A) by projection. By Proposition 5.11
there is a rational polyhedral cone C C Ag such that A € C and the map Mome AP
is additive for some positive integer r, where t: A — A is the identity map. In
particular, if ® € CNP and k(K x+P+A)/r is Cartier, then G ¢ Fix |k(Kx+P+A)|.
Pick n such that ® € CNP whenever ® € W and ||® — A|| < 7. We can take n and

r to work for all components of B, and we are done. n
The rest of this section is devoted to proving the following main technical result.

Theorem 6.6. Let X be a smooth variety, S a smooth prime divisor and A a
very general ample Q-divisor on X. Fori =1,... 0 let D; = k;(Kx + A;), where
(X,A; =S+ B;+ A) is a log smooth plt pair with |A;| =S and |D;| # 0. Assume
Property LG in dimensions < dim X and Theorem 6.2 in dimension dim X — 1.
Then the algebra ress R(X; D1, ..., Dy) is finitely generated.

Proof. Step 1. 1 first show that we can assume S ¢ Fix|D;| for all 1.

To prove this, let Ky be a divisor with Ox(Kx) ~ wx and Supp A ¢ Supp Kx,
and let A be the monoid in Div(X) generated by the components of Kx and all A;.
Denote Cs = {P € Ag : S ¢ B(P)}. By Property £§, the set A= >R, D; NCs is
a rational polyhedral cone.

The monoid Ele Ry D; N A is finitely generated and let Py, ..., P, be its gener-
ators with P; = D; for i = 1,...,¢. Let pn: @}, Ne; — Div(X) be an additive map
from a simplicial monoid such that u(e;) = P;. Therefore S = u=t(ANA) ﬂ@le Ne;
is a finitely generated monoid and let hq,..., h,, be generators of S, and observe
that p(h;) is a multiple of an adjoint bundle for every 1.

Since resg H(X, u(s)) = 0 for every s € (@le Ne;)\S, we have that the algebra
resg R(X, u(@D_, Ne;)) = resg R(X; Dy, ..., Dy) is finitely generated if and only if
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ress R(X, u(S)) is. Since we have the diagram

R(X;,u(hl)a"' 7U(hm)) R(XJJ(S))

ressg R(X; pu(hy), ..., w(hm))

resg R(X, u(S))

where the horizontal maps are natural projections and the vertical maps are re-
strictions to S, it is enough to prove that the algebra resg R(X; p(h1), ..., w(hm))
is finitely generated. By passing to a truncation, I can assume further that S ¢

Fix |pu(h;)| for i =1,...,m.

Step 2. Therefore I can assume S = @:_, Ne; and pu(e;) = D; for every i. For s =
Zle tie; € Sg and ty = Zle t;k;, denote A, = Zle tikiAi/ts and Qg = (As—9))s.
Observe that
R(X;Di,...,D)) = @ HO X, t(Kx + A,)).
ses
In this step I show that we can assume that (S5, 4+ A|g) is terminal for every
s € Sp.

Let Y F, = U, Supp B;, and denote B; = B(X,A;) and B =B(X,S+v ), Fi+
A), where v = max; y{multp, B;}. By Lemma 2.7 there is a log resolution f: Y — X
such that the components of {By } do not intersect, and denote D} = k;( Ky + B,y ).
Observe that

R(X;Dy,....D;) ~R(Y;D,,..., D). (6.1)

Since B; < v)_, F}, by comparing discrepancies we see that the components of
{Biy} do not intersect for every i, and notice that f*A = 1A < B;y for every
i since A is very general. For s = Zle tie; € Sg and t, = Zle tik;, denote
Al = Zle t;k;Biy /ts. Let H be a small effective f-exceptional Q-divisor such that
A" ~qg f*A — H is a general ample Q-divisor, and let T = f;1S. Then, setting
Uy =A - f*fA-T+H >0 and € = Uyr + A, the pair (T, + Aj;) is terminal
and Ky +T+WV,+ A" ~g Ky +Al. Now replace X by Y, Sby T', Ay by T+ ¥, + A’
and (2 by .

Step 3. For every s € S, denote F; = iFix|tS(KX + Ay)|s and F¥ = liminf F,,,.

m—0o0
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Define the maps ©: S — Div(S)g and ©%: § — Div(S)g by

O(s) =Q, — Q. ANF,,  O%s)=Q, —Q,AF
Then, denoting O, = O(s) and ©% = 6F(s), we have

ress R(X; Dy,..., Dy) ~ @ H(S, (K + ©,)) (6.2)

seS

by Corollary 6.4. Furthermore, for s € S let € > 0 be a rational number such that
e(Kx + Ag) + A is ample. Then by Theorem 3.19 we have

|ks(Ks + Qs — @) | + k@, C ks (Kx + Ay)ls

for any @, and kg such that kA, k@, € Div(X) and Q5 A (1 — kis)FS <P, < Q.
Then similarly as in the proof of Theorem 3.20, by Lemma 6.5 we have that Q, A F?
is rational and

ress R(X, Kx + A)®) ~ R(S, Kg + 0F) () (6.3)

where k0% and kA, are both Cartier. Note also, by the same proof, that G ¢

B(Ks + ©%) for every component G of ©%. In particular, Optps = Opt, = ©* for
every p € N.

Define maps A\: S — Div(S)g and A*: § — Div(S)g by
As) =t(Ks+0,),  A(s) =t,(Kg+ 0f).

Then M extends to a function on Sg, and by Theorem 6.9 below, there is a finite
rational polyhedral subdivision Sg = | JC; such that the map ) is linear on each C;.
In particular, there is a sufficiently divisible positive integer & such that k\(s) is
Cartier for every s € S, and thus k\*(s) = A\(ks) for every s € S. Therefore the re-
striction of A to 8 is additive, where S; = SNC;. If si, ..., st are generators of S\,
then the Cox ring R(S;A(s%),...,A(s))) is finitely generated by Theorem 6.2, and
so is the algebra R(S, A(SZ(”))) by projection. Hence the algebra @, s H°(S, A(s))
is finitely generated, and this together with (6.2) finishes the proof. O

It remains to prove that the map A* is rationally piecewise linear. Firstly we
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have the following result, which can be viewed as a global version of Lemma 6.5.
Recall that S = @;_, Ne;.

Lemma 6.7. There is a positive integer r such that the following stands. If ¥ &€
Div(S)q is such that Supp ¥ C |Ji_, Supp(Qe, — Ajs) and no component of W is in
B(Kg+ W + Ajs), then no component of ¥ is in Fix |k(Kg + ¥ + Ajg)| for every k
with k(¥ + Ajs)/r Cartier.

Proof. Let 371, G; = Ule Supp(e, — Ajs), and for each j let Pg, = {2 €
>-;[0,1)G; : G; ¢ B(Ks + E+ Ajs)}. Each Pg; is a rational polytope by Property
LS. Let Kg be a divisor such that Og(Ks) ~ ws and Supp A ¢ Supp Ky, let P be
the convex hull of all rational polytopes Ks+ Ajs+Pg,, and set C = R, P. Observe
that Kg+ W+ Ajg € C. Let Ggy1, ..., Gy be the components of K¢+ Ajs not equal
to G for j = 1,...,q, and let A = @;”:1 NG;. Then by Theorem 6.2 in dimen-
sion dim S the algebra R(S,C N A) is finitely generated and the map Mob, ¢y is
piecewise additive for some r by Proposition 5.11, where t: A — A is the identity
map. In particular, if G; ¢ B(Kg + ¥ + Ajg) and k(¥ + Ajg)/r is Cartier, then
G; ¢ Fix |k(Ks+ ¥ + Aig)|. O

Theorem 6.8. For any s,t € Sg we have

lim ©°

<10 s+e(t—s

— of
) — @S-
Proof. Step 1. First we will prove that ©7 = ©%, where

07 = Qs — Qs AN, || Kx + Aglls,

s

cf. Remark 2.24. T am closely following the proof of [Hac08, Theorem 7.16]. Let r be
a positive integer as in Lemma 6.7, let ¢ < 1 be the smallest positive coefficient of
Qs —0O7 if it exists, and set ¢ = 1 otherwise. Let V' C Div(X)g and W C Div(S)g be
the smallest rational affine spaces containing Ay and ©7 respectively. Let 0 < n < 1
be a rational number such that n(Kx + A,) + 1A is ample, and if A’ € V with
A" = Agl| < n, then A=A, + 3 A is ample. Then by Lemma 2.27 there are rational
points (A;,0;) € V x W and integers k; > 0 such that:

(1) we may write Ay = > r;A; and ©7 = > 7;,0;, where r; > 0 and Y r; = 1,
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(2) k;A;/r are integral and ||As — Ay|| < ¢n/2k;,

(3) k;©;/ks are integral, ||©7 — ©;|| < ¢n/2k; and observe that ©; < €, since
k’i > 0 and (Az, @z) eV xW.

Step 2. Set A; = A/k; and Q; = (A; — 5)js. In this step I prove that for any
component P € Supp €2, and for any [ > 0 sufficiently divisible, we have

If =1, (6.4) follows immediately from Lemma 2.25. Now assume 0 < ¢ < 1. Since
192 — || < ¢n/2k; and ||©7 — ©;]| < ¢n/2k;, it suffices to show that

multp(Q A § Fix [[(Kx + A; + A;)]s) < (1— ) multp(€2s — ©7).
Let 6 > n/k; be a rational number such that 6(Kx + A;) + %Ai is ample. Since
Ky + A+ A= (1= 0)(Kx + A+ 3A4) + (6(Kx + A) + 124)),

we have
OI‘dP ||KX + Az + AzHS S (]_ — 5) Ol"dp ||KX + Az -+ %AZHS)

and thus
multp%Fixﬂ(KX + Az + Az)|S S (1 — ,%)O'PHKX + Asz

for [ sufficiently divisible, cf. Lemma 2.25.

Step 3. In this step we prove that there exists an effective divisor H' on X not

containing S such that for all sufficiently divisible positive integers m we have

First observe that since S ¢ B(Kx + A;), we have S ¢ Bs|m(Kx + A; + 4;)]| for
m sufficiently divisible. Assume further that m is divisible by [, for [ as in Step 2.
Let f: Y — X be a log resolution of (X, A; + A4;) and of [m(Kx + A; + A;)|. Let
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I'= B(X, AZ + Al)y and F = Ky + I — f*(KX + AZ + Al), and define
E:F—F/\%Fix|m(Ky+F)|.

We have that m(Ky + =) is Cartier, Fix |m(Ky +Z)| AZ = 0 and Mob(m/(Ky +Z))
is free. Since Fix |m(Ky + =Z)| + = has simple normal crossings support, it follows
that B(Ky + Z) contains no log canonical centres of (Y, [Z]). Let T = ;15,7 =

(I' =T)ir and Z¢ = (E = T')r, and consider a section
o € H(T, Or(m(Kr + E7))) = HYT, Fj(xr+z0)) (MK + E1))).

(cf. Lemma 2.15). By Theorem 2.18, there is an ample divisor H on Y such that if
7€ HYT,Or(H)), then o - 7 is in the image of the homomorphism

HY, Oy (m(Ky + Z) + H)) = H(T, Or(m(Ky + Z) + H)).
Therefore

We claim that
Qi+ Aijs 2> (fir)«=r =2 0 + Ays (6.7)

and so, as (5,€; + A;|s) is canonical, we have
Im(Ks + 0;)| + m((fir)«Er — ©;) C [m(Ks + (fir)«Zr)| = (fir)«|m(Kr + Er)].

Pushing forward the inclusion (6.6), we obtain (6.5) for H' = f,H.

We will now prove the inequality (6.7) claimed above. We have Zp < I'r and
(fir)«I'r = Q; + Ajs and so the first inequality follows.

In order to prove the second inequality, let P be any prime divisor on .S and let
P' = (fir);'P. Assume that P C Supp;, and thus P’ C SuppI'r. Then there is a

component () of the support of I' such that

mult pr Fix |m(Ky + I')|r = multg Fix |m(Ky + T)|
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and multp I'r = multg I'. Therefore
multp Zr = multp 'y — min{multp 'y, mult p/ % Fix |m(Ky +T')|r}.
Notice that multp I'y = multp(€2; + A;s) and since Ejp is exceptional, we have that
multp Fix |m(Ky + I')|r = multp Fix |m(Kx + A; + A;)|s.

Therefore (fir).2r = Qi + Ajs — % A % Fix |m(Kx + A; + A;)|s. The inequality

now follows from Step 2.

Step 4. In this step we prove
|ki(Ks + 0;)| + ki( — 6;) C |ki(Kx + A))ls. (6.8)

For any ¥ € |k;(Kg + ©;)| and any m > 0 sufficiently divisible, we may choose a
divisor G € |m(Kx+A;)+mA;+H| such that G|s = 2X+m(Q;—0;)+(mA;+H),s.
If we define A = 521G+ A; — S — A, then

ki(Kx + A;) ~g Kx + S+ A+ A; — 5LH

m

where A; — %H is ample as m > 0. By Lemma 2.12, we have a surjective

homomorphism
HY(X, Tsn(ki( Kx + A))) — H(S, Tns (ki(Kx + A))).

Ogs.

Since (S, €2;) is canonical, (S, ;+%=1 H|g) is klt as m > 0, and so th-'FEH‘S =

Since

AN = (X + k(2 —6y)) = ki,;lG\S +Q —Ag— (E+k(—-06,) <Q + kiw_llH\S,
then by Lemma 2.10(3) we have Iy, 0;-0,) C Jag, and so
Y4+ ki(Q —6;) € |ki(Kx +A)ls,

which proves (6.8).
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Step 5. There are ample divisors A, with Supp A, C Supp(As; — S) such that
|An]] — 0 and Ay + A, are Q-divisors. Observe that ©7 = lim ©7 with

n—oo
07 =Q, — Q0 ANL||Kx + Ayls,
where A, = Ay + A, and Q,, = (A, — 5)s. Note that

NI Kx + Anlls = ordp | Kx + A, ||s - P

for all prime divisors P on S for all n, cf. Remark 2.24. But then as in Step 3 of the
proof of Theorem 6.6, no component of ©7 is in B(Kg+ ©7), and thus, by Property
LS and since ©7 > ©7 for every n, no component of ©7 is in B(Kg+ ©7). Since k;
is divisible by r and ©; € W, by (6.8) we have

and so @§ > ©;, where
Of = Q; — Q; Aliminf L Fix |m(Kx + A,)]s.
m—0o0

Let P be a prime divisor on S. If multp ©7 = 0, then multp ©% = 0 since 7 > O
by Lemma 2.25. Otherwise multp ©; > 0 for all 7 and thus multp @? > 0. Therefore

by concavity we have
multp @g > Z r; mult p @g > Z r;multp ©; = multp ©F,

proving the claim from Step 1.

Step 6. Now let C' be an ample Q-divisor such that A; — A, + C is ample. Then by
the claim from Step 1 and by Lemma 2.25,

Qs—eg:QSAligl(Zordp\|KX+As+g(At—AS+C)\|S.P)

< i — . < e
_Qs/\la%l(Zordp | Kx + As + (A — AY)|ls - P) < Q, — ©F

where the last inequality follows from convexity. Therefore that inequality is an
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equality, and this completes the proof. n

Now, let Z be a prime divisor on S and let £z be the closure in Sg of the set
{s € Sg : mult;©% > 0}. Then Ly is a closed cone. Let )\ﬁZ: Srg — R be the
function given by A% (s) = multy M (s), and similarly for 67,

Theorem 6.9. For every prime divisor Z on S, the map )\ﬁZ 15 rationally piecewise

linear. Therefore, \* is rationally piecewise linear.

Proof. Let Gy,...,G, be prime divisors on X not equal to S and Supp A such
that Supp(As; — S — A) C Y. G, for every s € S. Let v = max{multg, A : s €
S,i=1,...,w} < 1, and let 0 < n < 1 — v be a rational number such that
A—nd> G;is ample. Let A’ ~g A —n>_ G, be a general ample Q-divisor. Define
A=A, —A+ndY. G+ A >0, and observe that A, ~g A,, |[AL] = S and
(S, (A, = 85)s) is terminal.

Define the map x: & — Div(X) by x(s) = wts(Kx + AY), for x sufficiently
divisible. Then as before, we can construct maps ©%: Sgp — Div(9)g, M Sy —
Div(S)g and A\,: Sz — R associated to y. By construction, ordg |A/kt,||g =
ordg || \f/t,]|s, and thus mult, (:)"jg = mult; ©% + 7 for every s € L. Let L, be the
closure in Sk of the set {s € Sg : multy ég > 0}, and thus Ly is the closure in
Sk of the set {s € Sg : multy C:)g > n}. Note that multy C:)g > n for every s € Ly
by Theorem 6.8. Now for every face F of Sg, either F N £, C relint(F N L) or
I(FNLL)NI(FNLy) C F. Therefore by compactness there is a rational polyhedral
cone M such that £, C M, C L, and so the map :\ﬁz’Mz is superlinear.

By Theorem 6.11 below, for any 2-plane H C R the map Xﬁz\ MynH 1S plecewise
linear, and thus Xﬁz| M, 1s piecewise linear by Lemma 4.13.

To prove that S\ﬁZ| M, 1s rationally piecewise linear, let £ = dim My and let
Mz = JC,, be a finite polyhedral decomposition such that S\uz|cm is linear for every
m. Let H be a hyperplane which contains a common (k — 1)-dimensional face of
cones C; and C; and assume H is not rational. By Step 1 of the proof of Lemma 4.10
there is a point s € C; N C; such that the minimal affine rational space containing
s has dimension k£ — 1. Then as in Step 1 of the proof of Theorem 6.11 there is
an k-dimensional cone C such that s € intC and the map S\ﬁZ|C~ is linear. But then
the cones C N C; and C N C; are k-dimensional and linear extensions of 5\ﬁz|c and

S\ﬁz\cj coincide since they are equal to the linear extension of S\ﬁZ]g, a contradiction.
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Therefore all (k—1)-dimensional faces of the cones C; belong to rational hyperplanes
and thus C; are rational cones.

Therefore the map 5\ti2| M, 1s rationally piecewise linear, and since Lz is the
closure of the set {s € Sg : mult,; ©% > 5}, we have that £ is a rational polyhedral
cone, the map S\ﬁZ] ¢, 1s rationally piecewise linear, and therefore so is )\ﬁZ. Now it is

trivial that A* is a rationally piecewise linear map. O]

Thus it remains to prove that )\ﬁZ] MynH 1S piecewise linear for every 2-plane
H C R% Asin Step 1 of the proof of Theorem 6.6, by replacing Sg by M and )\ﬁZ
by S\ﬁz, it is enough to assume, and I will until the end of the section, that )\liZ is a
superlinear function on Sy for a fixed prime divisor Z on S.

Let C, be a local Lipschitz constant of ©f around s € Sg in the smallest rational

affine space containing s. For every s € &, let ¢ be the smallest coeflicient of
Q, — 6.

Theorem 6.10. Fiz s € Sg and let U C R’ be the smallest rational affine subspace
containing s. If o5 > 0, let 0 < 6 < 1 be a rational number such that ¢, > 0 for
uwe U with |lu—s|| <9, set ¢ =min{¢p, :u € U,|lu—s| <} and let 0 < e < §
be a rational number such that (Cs/¢ + 1)e(Kx + As) + A is ample. If ¢ps =0 and
Supp Ag = > F;, let 0 < e < 1 be a rational number such that . fiF; + A is ample
for any f; € (—e,¢), and set ¢ = 1. Lett € U NSy and k; > 0 be an integer such
that ||t — s|| < €/ks, ktA¢/7 is Cartier for v as in Lemma 6.7 and S ¢ B(Kx + Ay).
Then for any divisor © on S such that © < Q, ||© — O] < ¢e/k; and k,O/r is

Cartier we have
|ki(Ks + O)| + k(% — O) C |ki(Kx + Ay)ls-

Proof. Set A; = A/k;. 1 first prove that for any component P € Supp €2, and for
any [ > 0 sufficiently divisible, we have

multp( A §Fix [[(Kx + Ay + Ay)]s) < multp(Q, — ). (6.9)

Assume first that ¢, = 0. Then in particular ordp || Kx + Ag|ls = 0 and A, — A+ A,
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is ample since ||A; — Aql| < €/ky, so

OrdP ”KX + At + AtHS = OrdP HKX + AS + (At — As + At)HS
< Ordp HKX -+ ASHS =0.

Since for [ sufficiently divisible we have
multp 7 Fix [[(Kx + A+ Ay)|s = ordp | Kx + A+ Adls (6.10)

as in Step 3 of the proof of Theorem 6.6, we obtain (6.9).
Now assume that ¢; # 0 and set C' = C/¢. By Lipschitz continuity we have
|©F — 0! < C¢e/ky, so ||©F —O|| < (C+1)¢e/k,. Therefore it suffices to show that

multp(Q A+ Fix [[(Kyx + A+ Ag)ls) < (1 — SHe) multp(Q — ©F).

Since k; > 0, we can choose a rational number n > (C' + 1)e/k, such that n(Kx +
Ay) + A; is ample. From

KX + At + At = (1 — n)(KX + At) + (n(KX + At) + At)7

we have
Ordp ||KX + At + AtHS S (1 — 7]) OI‘dp ||KX + At||S7

and thus by (6.10),
multp 7 Fix |I(Kx + A+ Ay)|s < (1 - Ck—tla‘) ordp || Kx + A¢|s

for [ sufficiently divisible.
Now the theorem follows as in Steps 3 and 4 of the proof of Theorem 6.8. O]

Finally, we have

Theorem 6.11. Fiz s € Sg and let R be a ray in Sg not containing s. Then there
exists a ray R C Rys + R not containing s such that the map AﬁZ|R+S+R/ 15 linear.

In particular, for every 2-plane H C RY, the map )\ﬁZ\SRmH 18 precewise linear.
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Proof. Step 1. Let U C R’ be the smallest rational affine space containing s. In this
step I prove that the map ©F is linear in a neighbourhood of s contained in U.

Let ¢ and ¢ be as in Theorem 6.10. Let W C R and V C Div(S)g be the
smallest rational affine spaces containing s and ©% respectively, and let r be as in
Lemma 6.7. By Lemma 2.27, there exist rational points (t;,0}) € W x V and
integers k;, > 0 such that:

(1) we may write s = Y ry,t;, Ay = Y. r,Ay, and ©F = 31y, , where ry, > 0
and > ry, =1,

(2) ki Ay, /r are integral and ||s — t;|| < e/ky,,

(3) k,©;, /r are integral, [|©f — O, || < ¢e/k;, and note that © < Q, since k, > 0
and (t;,0;) € W x V.

Observe that S ¢ B(Kx + A;,) since t; € W for every i and ¢ < 1 by Property LS.
By Theorem 6.10 we have that

|kti(KS + @;Z)‘ + kti(Qtz‘ - @:5) C |ktz(KX + Atz)

S-

Since ©}, € V and k,;,©; /r is Cartier, no component of ©; is in Fix [k, (Ks + O} )]

for every ¢ by Lemma 6.7. In particular,
Qti - @;, > Qti A # Fix |kti(KX + Ati)|5 > Qti - @gu

and so

o] >e;.

But by assumption (1) and since the map @ﬁz is concave, we have

0L (s) > Zm@ﬁz(ti) > Z?}i mult; ©) = Q% (s),

which proves the statement by Lemma 4.5.

Step 2. Now assume s € Sg, ¢ = 0 and fix v € R such that s and u belong to
a rational affine subspace P of RY. Let A: @le Re; — Div(X)r be a linear map
given by A(p;) = A, for linearly independent points py,...,p, € PN Sp, and then
extended linearly. Observe that A(p) = A, for every p € P N Sg.
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Let W be the smallest rational affine subspace containing s and u. If there is a
sequence s, € (s,u| such that lim, ,. s, = s and ¢, = 0, then A is linear on the
cone R;s + R,s; by Lemma 4.5.

Therefore we can assume that there are rational numbers 0 < €,7 < 1 such that
for all v € [s,u] with 0 < ||[v — s|| < 2¢ we have ¢, > 0, that for every prime divisor
P on S, we have either multp Q, > multp ©f or multp Q, = multp ©F and either
multp ©f = 0 or multp ©% > 0 for all such v, and that A, — A, +Z + A is ample
for all such v and for any divisor = such that Supp= C Supp A, U Supp A, and
1= <n.

Pick ¢ € (s,u] such that ||s — t|| < £/ks, kss is integral and the smallest rational
affine subspace containing ¢ is precisely W. Let 0 < § < 1 be a rational number
such that ¢, > 0 for v € W with ||v —t|| < 6, set ¢ = min{¢p, : v € W, ||v —t|| < 6}
and let 0 < £ < min{d, ¢} be a rational number such that (C;/p+1)E(Kx +A:)+ A
is ample. Denote by V' C Div(S)g the smallest rational affine space containing
0! = Q, and ©!, and let r be as in Lemma 6.7. Then by Lemma 2.28 there exist
rational points (t;,©;) € W x V and integers k;, > 0 such that:

1) we may write t = » ri.t;, Ay = > 1,y and e = r:.©, , where r;, > 0
y 7 7 7 t 7 t; 7
and Y 1y, =1,

(2) ti=s, 0, =0} =0, k, =k,
(3) ki, Ay, /r are integral and ||t — t;|| < /Ky, fori=2,...,n—1,

(4) ©f, <y, kO /r are integral, |ef — o1 |l < ¢&/k;, and (1;, ©},) belong to the

smallest rational affine space containing (¢, @2) fori=2,...,n—1,

k -
(5) A, = mAtl + ktﬁ—’;%Atn + W, where k;, Ay, /r is integral, ||t —t,,|| < &/ks,

and || V|| < n/(ke, + kt,),

(6) ©F = ktl’ztrlkm o) + ktlkj‘nktn O, + @, where ©; < €, k0O, /r is integral,
167 = 61,1l < &/ki, and [|B]] < n/ (ke + k).

Observe also that Supp ¥ C Supp A; and Supp ® C Supp @f by Remarks 2.29 and
2.30 applied to the linear map A defined at the beginning of Step 2. Then by
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Theorem 6.10,

‘kti(KS + @;z)‘ + kti(Qti - @;1) - ’kti<KX + Atz)

S

for i =2,...,n— 1. Let P be a component in Supp §2; and denote A;, = A/k;,. |

claim that
multp(€, A % Fix [[(Kx + Ay, + Ag,)|s) < multp(€, — @Qn) (6.11)

for [ > 0 sufficiently divisible. Assume first that multp @2 = 0. Then multp ©f =0
by the choice of ¢, and thus multp ©; = 0 since ©; € V. Therefore

multp (€2, A %Fix (Kx + Ay, + At,)|s) < multp Q, = multp(Q, — O ).
Now assume that multp 62 > 0. Then for [ sufficiently divisible we have

IIlllltp % Fix ’l(KX + Atn + Atn>|S = OI‘dP ||KX + Atn + Atn”S

as in Step 3 of the proof of Theorem 6.6, and since A; — Ay, — ktll:rﬂ\lf + A is ample

t1

by the choice of 7,

HlultP(Qtn N %FIX ‘Z(KX + Atn + Atn)ls) S OrdP HKX + Atn + AthS

:ordp “KX—FAt‘i‘%(At _At1 - %\I’—i_A)HS

< ordp | Kx + Aylls = multp(€, — ©F).
Combining assumptions (5) and (6) above we have

Q — O] < — O] + {1 (% - 0f - %(qf‘s —®)) =Q, — 6,
and (6.11) is proved. Furthermore, we can choose ¢ < 1 and k;, > 0 such that
S ¢ B(Kx + Ay,). Otherwise, if we denote @ = {p € Sg : S ¢ B(Kx + A,)}, Q
is a rational polyhedral cone by Property £, and t € 9Q for every t € [s,u] with
0 < ||t —s|| <1, and thus s € Q. But then for 0 < ||t — s|]| < 1, s and t belong

to the same face of Q, and so does t,,, a contradiction. Therefore as in the proof of



6.1. RESTRICTING PLT ALGEBRAS 82

Theorem 6.8 we have
|ktn(KS + @;n)‘ + k‘tn(Qtn — @;n) C |k’tn(KX + Atn)‘s.

Denote » G = Supp(2s — Ajs) U Supp(Q, — Ajs), and let Q@' = {= € >_,[0,1]G; :
Z ¢ B(Ks+ E+ Ag)}. Then by Property £§, Q' is a rational polytope and
@f, € @ for every p € Sg. Therefore as above and by Theorem 6.8, if ¢ < 1 then
Z ¢ B(Ks+0©; ), and as in Step 1 we have that AL is linear on the cone Yo Ryt

and in particular on the cone R s+ R, t.

Step 3. Assume now that s € Sg, ¢s > 0 and fix u € R. Let again W be the smallest
rational affine space containing s and u. Let 0 < £ < 1 be a rational number such
that ¢, > 0 for v € [s,u] with ||[v — s|| < 2¢, that for every prime divisor P on S
we have either multp 2, > multp @fﬁ or multp 2, = multp @f} for all such v, and let
¢ =min{¢, : v € [s,u], ||[v —s|| < 2¢}.

Let ks be a positive integer such that ksA;/r and kSQE, /r are integral, where r is
as in Lemma 6.7. Let us first show that there is a real number 0 < ¢ < £ such that
(Ci/od + De(Kx + A,) + A is ample for all v € Sg such that |Jv — s|| < 2, where
|t —s|| = €/k,. If © is locally Lipschitz around s this is straightforward. Otherwise,
assume OF is not locally Lipschitz around s and assume we cannot find such . But
then there is a sequence s,, € (s, u] such that nh_>n010 sp = sand Cy, ||sp,—s|| > M, where
M is a constant and C, — oco. Since a local Lipschitz constant is the maximum of

local slopes of the concave function @ﬁhs,u], we have that

o1 — e

N o
s = s

Therefore
0 —0'>C, |lsy—s|>M

Sn

for all n € N, which contradicts Theorem 6.8.

Increase € a bit, and pick ¢t € (s,u] such that ||s — t|| < £/ks, the smallest
rational subspace containing ¢ is precisely W and (C;/¢ + 1)e(Kx + A,) + A is
ample for all v € Sk such that ||[v — s|| < 2e. In particular, ©% is locally Lipschitz
in a neighbourhood of ¢t contained in W. Furthermore, by changing ¢ slightly I can
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assume that ¢ < min{¢, : v € W, ||v — t|| < 1}. Denote by V' the smallest rational
affine space containing ©% and @5, and let r be as in Lemma 6.7. Then by Lemma
2.28 there exist rational points (¢;,©;) € W x V and integers k;, > 0 such that:

(1) we may write t = S rti, Ay = Sor. A, and ©F = Sy, ©;,, where r;, > 0
and > ry, =1,

(2) t = s, @21 = (—)517 ktl = ksa
(3) ki, Ay, /r are integral and ||t — t;|| < €/ky, for all i,
(4) ©) <, k0, /7 are integral and |0} — O} || < ¢e/k,.

Observe that similarly as in Step 2 we have S ¢ B(Kx + Ay,) for all 4, and therefore
by Theorem 6.10,

|kti(KS + @;ZN + kti(Qti - @;1) C |ktz(KX + Ati)|5

for all . Then we finish as in Step 2.

Step 4. Assume in this step that s € Sk is a non-rational point and fix u € R.
By Step 1 there is a rational cone C = Zle R, g; with g, € Sg and k£ > 1 such
that )\ﬁZ is linear on C and s = Y «a;g; with all a; > 0. Consider the rational point
g = Zle gi- Then by Step 2 there is a point s’ = ag + fu with «, f > 0 such that

the map /\ﬂZ is linear on the cone R g+ R,s’. Now we have
N (Do gi+ ') = Nylg+ ) = Nylg) + N () = D Nolgn) + N(s),

so the map A z‘CHR s is linear by Lemma 4.5. Taking p = max{ } and taking a

point 4 = pus + w in the relative interior of R, s + R, it is easy to Check that
U= Z(,u()zZ — i+ %8/ e C+R,is,

so the map AﬁZ|R+S+R+ﬁ is linear.

Step 5. Finally, let H be any 2-plane in R®. Then by the previous steps, for every
ray R C Sg N H there is a polyhedral cone Cr with R C Cg C Sg N H such that
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there is a polyhedral decomposition Cr = Cr1 U Cro with /\ﬂz|cR,1 and )\ﬁZ|CR,2 being
linear maps, and if R C relint(Sg N H), then R C relint Cg.
Let S*~! be the unit sphere. Restricting to the compact set S NSg N H we

see that A\ |s,~y is piecewise linear. O

6.2 Proof of the Main Result

Proof of Theorem 6.2.

Step 1. 1 first show that it is enough to prove the theorem in the case when A is a
general ample Q-divisor and (X, A; + A) is a log smooth klt pair for every i.

Let p and k be sufficiently divisible positive integers such that all divisors k(A; 4+
pA) are very ample and (p + 1)kA is very ample. Let (p + 1)kA; be a general
section of |k(A; + pA)| and let (p + 1)kA’ be a general section of |(p + 1)kA|. Set
A} = 25 A; + A;. Then the pairs (X, A} + A') are kit and

(p+Dk(Kx +A; +A) ~ (p+ DEk(Kx + A+ A") = D

for all i. Then a truncation of R(X; Dy,..., D) is isomorphic to R(X; D}, ..., D}),

so it is enough to prove the latter algebra is finitely generated.

Step 2. Therefore I can assume that A; = Zj\;l 0;;F; with 60;; € [0,1). Write
Kx + A+ A ~q Z;VZI ;i > 0, where Fy # A since A is general. By blowing
up, and by possibly replacing the pair (X, A;) by (Y, Al) for some model ¥ — X
as in Step 2 of the proof of Theorem 6.6, I can assume that the divisor Zjvzl F; has

simple normal crossings. Thus for every 1,
N
Kx ~q —A+ ijl Jij Fjs

where fi; = fi; — di; > —1.

Let A = @jvzl NF; C Div(X) be a simplicial monoid and set T = {(t1,...,t) :
t; > 0,5 t; = 1} C R For each 7 = (t1,...,t;) € T, denote &,; = >_.1;0;; and
fr;j = > . tifij, and observe that Kx ~r —A + Zj f=;Fj. Denote B, = ijzl[éTj +
fris 1+ f+]F; € Ag and let B = |J, .+ B;. It is easy to see that B is a rational

polytope: every point in B is a barycentric combination of the vertices of B,,, ..., B;,,



6.2. PROOF OF THE MAIN RESULT 85

where 7; are the standard basis vectors of R*. Thus C = R, is a rational polyhedral
cone.

For each j = 1,...,N fix a section o; € H°(X, F;) such that dive; = F}.
Consider the A-graded algebra R = @, R, C R(X; Fi,..., Fy) generated by the
elements of R(X,CNA) and all o;; observe that Ry = H°(X, s) for every s € CNA.
I claim that it is enough to show that fR is finitely generated.

To see this, assume R is finitely generated and denote
w; = rk; 0;i + i) Fs € A
Zj( J f J) J

for r sufficiently divisible and i = 1,...,¢. Set G = >, R w; N A and observe that
w; ~ rD;. Then by Lemma 5.5(2) the algebra R(X,C N A) is finitely generated,
and therefore by Proposition 5.11 there is a finite rational polyhedral subdivision
Gr = U, Gk such that the map Mob, g, is additive up to truncation for every k,
where ¢: A — A is the identity map.

Let wj,...,w; be generators of G such that w; = w; for ¢« = 1,...,¢, and let
m: @7, Nw; — G be the natural projection. Then the map Mob,,-1(g,nx) is addi-
tive up to truncation for every k, and thus R(X, 7(7_; Nwj)) is finitely generated
by Lemma 5.5(3). Therefore R(X, 7(_, Nw;)) ~ R(X;rDy,...,rDy) is finitely
generated by Lemma 5.5(2), thus R(X; D1, ..., D) is finitely generated by Lemma
5.5(1).

Step 3. Therefore it suffices to prove that (R is finitely generated. Take a point
> (frj +bs5) Fy € B\{0}; in particular b-; € [d5, 1]. Setting

T._|_b7_. , T4_|_b7_.
{M} and B, = —fr; + L’

r, = max
= f‘rj +1

T

we have

Zj(frj + b)) Fy =17 Z (frj + b)) E; (6.12)
Observe that 7, € (0,1], b.; € [b;;,1] and there exists jo such that b, = 1. For
every j =1,..., N, let

‘F (1+fT]F+Z Tkt+f7’]€71+ka]Fk?7
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and set F; = |J, . Fr;, which is a rational polytope. Then C; = R F; is a rational
polyhedral cone, and (6.12) shows that C = Uj C;. Furthermore, since ) j( Jrj +
brj)Fj ~r Kx + Zj br;F; + Afor 7 € T, for every j and for every s € C; N A there
is ry € Q4 such that s ~q rs(Kx + F; + Ays + A) where Supp A; C Zk# F}, and the
pair (X, Fj; + Ay + A) is log canonical.

Step 4. Assume that the restricted algebra resp, R(X,C; N A) is finitely generated
for every j. I will show that then fR is finitely generated.

Let V = ZyleFj ~ RY and let | - || be the Euclidean norm on V. By
compactness there is a constant C' such that every F; C V is contained in the closed
ball centred at the origin with radius C. Let deg denote the total degree function
on A, ie. deg(Z:;.V:1 a;F;) = Zjvzl a;; it induces the degree function on elements of
R. Let M be a positive integer such that, for each j, resp, R(X,C; N A) is generated
by {ojp, : 0 € R(X,C; N A),dego < M}, and such that M > C’Nl/Qn}z}x{ L1

175“
By Hélder’s inequality we have ||s|| > N='/2deg s for all s € C N A, and thus

Is1/0 > max { =5~}

for all s € CN A with degs > M. Let H be a finite set of generators of the finite
dimensional vector space
P HXs)

seECNA,deg s<M

such that for every j, the set {or, : ¢ € H} generates resp; R(X,C; N A). I claim
that R is generated by {o1,...,on} UM, with o; as in Step 2.

To that end, take any section o € R with dego > M. By definition, possibly
by considering monomial parts of o and dividing o by a suitable product of sections
0;, I can assume that 0 € R(X,C N A). Furthermore, by Step 3 there exists w €
{1,...,N} such that ¢ € R(X,C, N A), thus there is 7 € 7 N Q° such that ¢ €
H(X,r, Zj(ij + b;;)F;) with b;, = 1. Observe that r, > rrzz;x{ﬁ} since
1 >2;(frj + b)) 3]l < €, and in particular % > 0y for every T € T

Therefore by assumption there are elements 61, ...,0, € H and a polynomial ¢ €
C[Xy,...,X.] such that o, = @(bhjp,,.-.,0.F,). Therefore by (5.1) in Remark
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5.3,
(0= @b, ...,0.)) /00 € H(X,15 > (frj +br)Fj — F).

J

Since

To Z(ij + b))y — Fy = TU((fTw + %)Fw + Z(ij + ij)Fj>7
J JFw
we have 7, Z;( fri +b:5)F; — F, € CNA. We finish by descending induction on
dego.

Step 5. Therefore it remains to show that for each j, the algebra resp, R(X,C;NA)
is finitely generated.

To that end, choose a rational 0 < ¢ < 1 such that e) ., F; + A is ample
for every I C {1,...,N}, and let A; ~g > ,; Fr + A be a very general ample
Q-divisor. Fix j, and for I C {1,..., N}\{j} let

FL= (U4 f)F+> M=+ fa 1+ fal Bt Y [Oon+ frn 1 — e+ fril Fi
kel k¢TU{j}

Set F] = U,e7 F1;; these are rational polytopes such that F; = Urcq. avng F,
and therefore C]I = R+.7-"j[ are rational polyhedral cones such that C; = UCJI .
Furthermore, for every s € C/ N A we have s ~g 7(Kx + F; + A, + A) ~q
rs(Kx + F; + AL+ Ap), where A, = Ay —e) ", Fi, > 0and | F; + AL + A;] = Fj.

Therefore it is enough to prove that resg, R(X, Cf N A) is finitely generated for
every I. Fix I and let hq,..., h,, be generators of CJI N A. Similarly as in Step
1 of the proof of Theorem 6.6, it is enough to prove that the restricted algebra
resp, R(X; hi, ..., hy) is finitely generated. For p sufficiently divisible, by the argu-
ment above we have ph, ~ p,(Kx + F; + B, + A;) =: H,, where [B,] C Zk# Fy,
|B,] =0, p, € Nand A is a very general ample Q-divisor. Therefore it is enough
to show that resp, R(X; Hi,..., Hy,) is finitely generated by Lemma 5.5(1). But

this follows from Theorem 6.6 and the proof is complete. O]

Proof of Theorem 6.1. By Theorem 3.10 and by induction on dim X, we may assume
Kx+Aisbig. Write Kx+A ~qg B+C with B effective and C ample. Let f: Y — X
be a log resolution of (X, A+ B+ (') and let H be an effective f-exceptional divisor
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such that f*C' — H is ample. Then writing Ky + ' = f*(Kx + A) + E, where
I' = B(X,A)y, we have that R(Y, Ky + I') and R(X, Kx + A) have isomorphic
truncations. Since Ky +I' ~q (f*B+H + E)+ (f*C — H), we may assume from the
start that Supp(A + B + C) has simple normal crossings. Let ¢ be a small positive
rational number and set A" = (A +¢eB)+¢eC. Then Kx + A’ ~q (e + 1)(Kx + A),
and R(X, Kx + A) and R(X, Kx + A’) have isomorphic truncations, so the result

follows from Theorem 6.2. O
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