Mass transport and structural relaxation in metallic melts: benefits from scattering techniques and experiments under microgravity

Fan Yang

Institute of Materials Physics in Space, German Aerospace Center (DLR), Cologne, Germany

We study mass transport and structural relaxation in metallic glass-forming melts, in order to understand how microscopic mechanisms and processes control the properties of these melts. This requires accurate experimental data on e.g. self-diffusion coefficients and liquid viscosity over large temperature ranges, particularly in the metastable, undercooled state, which become only accessible employing containerless processing techniques combined with large-scale facilities at synchrotron and neutron sources, as well as experiments under microgravity conditions.

Using these data, we show that in these alloy melts the self-diffusion coefficients and the liquid viscosity exhibit very similar temperature dependencies, despite different chemical short-range orders of the alloys, indicating that the dynamic properties of the melt are governed by a single structural relaxation timescale. However, concerning their temperature dependence, a mismatch between the high and low temperature melt dynamics can be found in the undercooled liquid region, commonly known as a strong-fragile transition. The timescale of the transition is on the order of tens of seconds, which points to a mechanism requiring long range mass transport, distinct from that reported in the oxides, water or other liquids.