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1. Introduction

This paper is dedicated to support data modelling in the ESPRIT project CAPISCE (Computer
Architecture for Production Information Systems in a Competitive Enviroment). The
CAPISCE project aims at developing a system architecture and information tools to support
and integrate company operations at strategic, tactical and operational levels in the process
industries. A main task in this project is the development of general purpose data structures

for the architecture mentioned above.

This paper should help to get a common understanding on data modelling methods to use for
the practical work. It describes how to use the method Entity Relationship Model (ERM),
gives comments on special modelling questions and describes how data structures can be

transformed into a relational data base using the SQL language.

2. The ERM Concepts

The foundations of the Entity Relationship Model can be traced back to 1976 (Chen 76). 1t is
one of the most popular methods for data modelling. However, the ERM has since then been
extended and refined by several authors. A survey is given in (Loos 92a) and (Hars et al. 91).
Below, the key concepts of ERM are introduced.

2.1 Basic Concepts

The ERM distinguishes between the basic concepts entities, attributes, and relationships.

(N Entities are real or abstract things which are relevant to an enterprise, e.g., customers,
articles, orders. Entites can be described by properties. If entities can be described by
the same kind of properties, they are regarded as sets and referred to as entity types,
their individual instances being the entities. Entity types are represented in the diagram

of the ERM by using rectangles (cf. figure 1).

a Relationships are logical connections between two or more entities. Although entities
can exist in their own right, relationships can only be defined in combination with the
relevant entities. Therefore relationships can be regarded as aggregations of entities. A

set of relationships connecting entities of the same entity type is called relationship

type.

P. Loos: Representation of Data Structures Using the Entity Relationship Model and the Transformation in Relational Databases 1




Between the same entity types several different relationship types can exist. A

relationship type is graphically represented by a diamond, which is connected to the

relevant entity types with single lines. A relationship type must have at least two

connection lines.

(I Attributes are the properties of entities or relationships, e.g. customer number, name or

address. An attribute is assigned to a particular domain, e.g. a certain data type. Both

entity types and relationship types can carry attributes. Attributes are usually listed in a

circle or an oval which is connected to the relevant entity type or relationship type.

Some attributes of an entity type or of a relationship type are grouped together forming

a key. A key (or identifier or primary key) is the identifier for all entities, or

relationships of a type. One key instance is assigned to at most one entity (relationship)

of a type. Key attributes are underlined in an ERM.

CNo,CName,
Address

customer

g
Com >

Fig. 1: Simple entity relationship diagram

PNo,PName

product

Beside the aboved mentioned graphical representations sometimes other symbols are used.
The method NIAM, for instance, (Verheijen/VanBekkum 82) uses circles for entity types
(called non-lexical object types), dotted circles for attributes (called lexical object types) and
rectangles for relationships (called facts), the method SAM* (Su 85) represents both entity
types and relationship types by circles.

Figure 4 shows the graphical representations of the methods ERM (Chen 76) ARIS-ERM
(Scheer 92) and PERM (Loos 92a), SERM (Sinz 87), NJAM (Verheijen/VanBekkum 82), the
methods of the CASE tools ADW and Teamwork and further variations.
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2.2 Specifying Relationships

When describing data structures one of the main tasks is to model the relations and
connections between the entity types. Therefore relationship types can be further specified.

The most common classification criteria are the degree of the relationship and its cardinality.

2.2.1 Degrees of Relationships

The degree of a relationship determines how many entities are aggregated within the
relationship type, which is shown by the number of connection lines of this relationship type.

All relationships of one relationship type have the same degree.

Some methods only allow to use relationships with two connection lines, so-called binary
relationship models. Examples are the early versions of NIAM or the method used in the
CASE tool ADW. So-called n-ary relationship models have no fixed limits of connection lines
per relationship type, e.g. ARIS-ERM, PERM or ECRM (Elmasri et al. 85). Figure 2 a shows
a ternary relationship condition where the condition depends on the customer, the product and

the month.
(a) customer @ product
month
subordinate
organization org.
(b) g unit hierarchy
superior

Fig. 2: Ternary relationship (a) and recursive binary relationship (b)

Although relationship types mostly connect to several different entity types, they can also
connect more than once the same entity type. These relationships are called recursive
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relationships. The significance of these relationships is to connect two or more entities of the
same entity type, even the connection of an entity with itself is possible. A typical example of
this kind of relationship is the organizational hierarchy between organizational units. To
distinguish the connection lines between the same entity type and relationship type it is

reasonable to assign role names (cf. figure 2 b).

2.2.2 Cardinalities of Relationships

Relationship types can be distinguished by the number of possible relationships a particular
entity can have concerning the regarded relationship type. This range of numbers is called
cardinality. In most methods the minimum and maximum number of relationships can be
specified. Typically, a lower boundary of zero or one and an upper boundary of one or many

are distinguished. If the lower boundary is zero, the relationship is optional.

Cardinalities are normally denoted at the connection lines. Thus, a relationship type has a
number of cardinalities according to its degree. In the various methods cardinalities are
expressed by numerous different variations of notations. One usual notation is the (min,max)-
notation, in which the minimum and maximum values express the boundaries, e.g. (2,15)
mean that each entity must have at least two relationships, but can have at most 15
relationships. While the (min,max)-notation allows any number as boundaries, the (1,c,m)-
notation allows only the four boundaries mentioned above. Many CASE tools use the (1,c,m)-
notation or variations of it. Figure 3 compares the (min,max)-notation with the (1,c,m)-

notation and the variations used in the CASE tool Teamwork.

(min,max)- (1,c,m)- Teamwork-
notation notation notation
0,1 c 0<=N<=1
1,1 1 1

o,n cm 0<=N

1,n m N

Fig. 3: Comparison of (min,max)-notation and (1,c,m)-notation

In some variations of the (1,c,m)-notation graphical symbols are used, e.g. upper boundaries
of "many" are depicted as "crowfeet", as half shadowed diamonds (Teorey et al. 86), as small
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boxes (SERM) or as double arrows (CASE tool ADW). Figure 4 shows some examples of

different notations.

ERM 1 n
(early version) A @ B
ARIS-ERM 0,n 1,1
and PERM A @ B

SERM A B B
<>

NIAM () 1 B )
ADW A | 0> B

Teamwork A 1 O<=N B

ERM with

1,¢,m- A @ ! B

notation

ERM with

"crowfoot" A B

nhotation

ERM with ——
diamonds

Fig. 4: Examples of notations of cardinality

Unfortunately, the side of the relationship type at which the cardinality is denoted is not
consistent between the different notations (cf. figure 4, in which all notations are representing

the same facts).
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While in the early version of ERM, in ADW or in Teamwork the cardinality has to be read as
"an entity of A can have n instances of B assigned to", in ARIS-ERM, in PERM or in ERM
with (1,c,m)-notation it has to be read "an entity of A can have n assignments concerning the
relationship type AB". The second kind is more unequivocal, especially for n-ary

relationships.

The binary relationship types can be differentiated into 10 distinctive kinds, when cardinalities

with a lower boundary of zero or one and those with an upper boundary of one or "n" are

considered!. Figure 5 gives an overview. These representations correspond to the (1,c,m)-

notation.

As far as recursive binary relationships are concerned, only seven different types can be
distinguished. Three out of the ten theoretical combinations cannot have valid instances with a
limited number of entities, namely (0,1) and (1,1), (0,1) and (1,n) as well as (1,1) and (1,n).
The possible combinations are shown in figure 6.

ARIS-ERM
and PERM SERM NIAM ADW Teamwork

0, 0<=N<=1

g
-
é

AB

=gty

:

(1)
01
11

(12)

D>

1,

0,1
on 0<=N
1.1 1

=]
E]

o
El

(A e
A e
=)

* additional constraints necessary

%.

(15)

o0,n
o,n

(16)

1.n
in

5l Bl

ERERE
i

(17)

A

-
El

Fig. 6: Recursive binary relationship types

1y The possible number is a combination with repetition of 4 element of the order of 2, Cr4(2) =10.

~
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2.2.3 Properties of Relationships

As stated before, usually both entity types and relationship types methods can have attributes
for their description. However, some methods do not allow attributes at relationship types,
especially some binary relationship models, where relationship types have no own graphical
representation, so that the two aggregated entity types are directly connected by a single line,
e.g. the method of ADW (cf. figure 4). In that case, attributes concerning the relationships
have to be assigned to one of the aggregated entity types or a new entity type has to be
introduced (for more detailed information refer to chapter '4.1 Attributes of Relationships').

2.3 Reinterpretation of Relationships

Relationship types result from an aggregation of one or several entity types. In the subsequent
process of modelling the relationship type can be used as a component for additional
relationship types. In order to provide the reuse of relationship types in relationships their
reinterpretation as an entity type has been introduced (Schlageter/Stucky 83) and included into
the ERM-diagram as a diamond surrounded by a rectangle (Webre 83). Scheer stresses the
necessity to reveal the modelling process behind the reinterpreted relationship type (Scheer
89). Therefore, the connecting lines coming from the aggregated entity types should touch the
diamond, whereas the connecting lines coming from the reinterpreted relationship type should
start from the edges of the rectangle (cf. figure 7 a). The same fact is represented by a
rectangle also surrounding the entity types (Briand et al. 88, Put 88) as shown in figure 7 b.
By circuling a fact NIAM uses the same concepts for reinterpretation as ARIS-ERM and
PERM do (cf. figure 7 c). In the method for reinterpretation provided by Teamwork a new
entity type has to be introduced (cf. figure 7 d).

2.4 Generalization

Generalization serves for uniting several sets of different classes (which can be described by
some common attributes) into a superset. Smith/Smith defined the generalization as: "A
generalization is an abstraction which enables a class of individual objects to be thought of
generically as a single named object" (Smith/Smith 77, p.107). An example for a
generalization is the aggregation of the two entity types customer and supplier to the new
entity type business partner. In that example, business partner is called the generic type or the
super-class entity type, whereas the entity types customer and supplier are called sub-class

entity types or subtypes.
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a - !
( ) ARIS ERM resource o,n ass;gne o,n operaﬁon
PERM class to
o,n
o,n
resource
element
(b) ERM \ l_ — re:ou}c: 7 ;),n_ _ WasAsig_ne o ; N '- — 7
according to | class 0 operation |
Put i

resource
element

¢) N resource S > ,
( ) IAM class capability operation
procuded | procude element
d resource .
( ) Teamwork class operation

assigned_to_e

o>

resource
element

Fig. 7: Graphical representations from reinterpretations

P. Loos: Representation of Data Structures Using the Entity Relationship Model and the Transformation in Relational Databases




Generalization is used for the purpose of:

(I Common attributes: The sub-class entity type may have the same attributes. In this
case these attributes can be defined in the super-class entity type. The sub-class entity
types inherit all attributes of the super-class. In the above mentioned example this
might be all attributes which are of interest for both customer and supplier, e.g.
company name, address, contact person, etc., while supplier and customer specific

attributes are assigned to the sub-classes.

(I Common relationships: The sub-class entity types may have the same relationships to
other entity types. In that case the relationships are assigned to the super-class entity
type. All sub-class entity types inherit these relationships. In the example above the
relationship to an entity type bank account should be assigned to business partner,

because both customer and supplier have bank accounts.

Smith and Smith had already pointed out that the generalization can take different forms.
Characteristics are the disjunction of the participating sets and the completeness of the

generalization. Figure 8 shows the different characteristics.

characteristics disjunctive non-disjunctive
of generalization s N8 =BVije g3 NSy #@3i,je (L,2.np Ai#]
(L2.n} Al #]
subset intersection
Si © 54 S; \ 83D A
S+ \ 85 # %]
complete
G=8USU...U S, (1) (3a) (3b)
non-complete
GOS8 USU...US, (2) (4a) (4b)

G: set of super-class, S: set of sub-class

Fig. 8: Characteristics of generalization

In disjunctive subsets of a generalization all "n" subsets have to be disjunctive when compared
in pairs (mutually exclusive). If only one pair is non-disjunctive, then one set can be a subset
of the other or be overlapping it partially. A subclass being a complete subset of another can
be considered to be a generalization within the generalization. By means of this hierarchical
approach the originally non-disjunctive generalization can be gradually transformed to be
disjunctive in pairs. As a rule, all entities of the super-class of a complete generalization have
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to occur in at least one of its subclasses, whereas this has not to be the case in a non-complete
generalization. It has to be observed that every entity of a subtype exists as an entity of the

super-class regardless of the kind of generalization.

ARIS-ERM PERM
business business
partner partner
1sa /yk
customer supplier customer supplier
SERM Teamwork
customer business
partner
business | N
partner 3
supplier ! !
customer supplier
NIAM

partner
business

Fig. 9: Examples for notations of generalization

Generalizations are mostly represented in the ERM by a triangle connecting the generic type
and the subtypes, some methods use diamonds, hexagons or arcs. Figure 9 shows the example
of business partners mentioned above. In some methods, notations of the characteristics of
generalizations are introduced. In PERM the specification is located within the triangle, using
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a notation similar to the cardinality of relationships. The lower boundary expresses the
completeness, where it has to be read as "an entity of the generic type must occur 0 (non-
complete) or 1 (complete) times in a subtype". The upper boundary expresses the
disjunctiveness, where it has to be read as: "an entity of the generic type must occur 1 time
(disjunctive) or n times (non-disjunctive) in a subtype". This leads to the following notations
(cf. figure 8):

(W type (1) = (1,1)
a type (2) = (0,1)
a type (3) = (1,n)
(W type (4) = (O,n)
In Teamwork an analogous notation can be used to denote the characteristics at the arc coming
from the generic type (type (1): 1, type (2): 0<=N<=1, type (3): N, type (4): 0<=N). A triangle
with a double line connection is used in SERM to represent a complete, non-disjunctive

generalization.

The view of the abstraction from another perspective, i.e. from the generic entity type down to

the subtypes, is called specialization (Scheer 89).

3. Transformation into SQL

3.1 Concepts of Representation within SQL-Databases

Relational database systems, data description languages and data manipulation languages
which follow the ISO-SQL-standard? (ISO 89 and ISO 91) offer five concepts to describe
integrity constraints (Loos 91). Concepts having an impact on single tables are designated as
intra-relational constraints, whereas concepts referring to several tables are called inter-

relational constraints.

(1) Data Type Integrity
According to the schema definition, data type integrity means that an attribute can take
only one value from the domain of a data type. These constraints refer to declarations

of data types well-known from any higher programming language. Alphanumeric types

2) SQL from 1989 is currently the international standard. SQL2 is so far only a draft (ISO 91). The release to a
international standard is soon expected.
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)

(CHARACTER), exact numeric types (NUMERIC, DECIMAL, INTEGER) and
approximate-numerical types (FLOAT, REAL, DOUBLE PRECISION) are provided
by the ISO-standard according to ISO 89. Furthermore, SQL2 introduced data types
like DATE, TIME, TIMESTAMP, INTERVAL, VARCHAR and BIT. Within some
database management systems additional types like BOOLEAN, MONEY or BLOB

(binary large oject) are implemented.

Example:

CREATE TABLE rell (fieldl NUMERIC, field2 CHAR(20), ...)

The domain of a data field can be more restricted in SQL2. For that a DOMAIN can be
defined which can be used like original data types in further table definitions.

Example:

CREATE DOMAIN fieldl_ type as NUMERIC(5),
DEFAULT NULL,
CONSTRAINT fieldl_type check (CHECK ( VALUE >= 10000))

CREATE TABLE rell (fieldl fieldl_type, field2 CHAR(20), ...)

NULL Values

As initial value or as a value for an unknown instance, NULL values (cf. Wedekind 88)
in SQL-databases represent the characterization of an undefined value. NULL values
differ from the numerical zero or empty strings. By means of the NOT NULL
quotation within the schema definition, it can be excluded that a data record takes an
undefined value regarding the characterized attribute. Since an undefined value can

occur, a three-valued logic has to be introduced (cf. figure 10).

AND | t n £ OR | t n £ NOT |
t | tnf t |ttt t | £
n|lnnf n|tnn n | n
£ | ££¢£ f |l tnf £ |t

t: true, n: undefined/NULL, f: false

Fig. 10: Three-valued logic
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3)

“4)

Example:

CREATE TABLE rell (fieldl NUMERIC NOT NULL, ...)

UNIQUE- and PRIMARY KEY-Constraint

With the help of UNIQUE-constraints an attribute or a combination of attributes can
be defined as single-valued within a relation, 1. e. each instance may exist only once
within the relation. The UNIQUE-constraint implicitly contains the NOT NULL
quotation, so that a defined instance of the attribute (or combination of attributes) is
imperative, Due to that single-valuedness UNIQUE-attributes possess primary key
properties; they are also called key candidates.

Several UNIQUE-constraints can be defined within a table. An attribute can also occur
in several UNIQUE-attribute combinations. A UNIQUE-constraint can be defined as
PRIMARY KEY. Unlike the UNIQUE-constraint a PRIMARY KEY can be defined
only once in each table. In SQL2 only the PRIMARY KEY has the NOT NULL-

implication (Loos 92b).

Example:

CREATE TABLE rell (fieldl INT, field2 INT, field3 INT, field4 INT, ...
PRIMARY KEY (fieldl), UNIQUE (field2, field3),
UNIQUE (field3, field4), ...)

CHECK-Constraint

Additional integrity constraints can be introduced using the CHECK-statement.
CHECK-constraints can be defined for all attributes of a table. In analogy to the
SELECT-statement they may contain search arguments. Sub-queries and set-functions,
however, are not permitted. Only SQL2 will also allow subqueries (Loos 92b). Thus,
in SQL acccording to ISO 89 the sphere of activity of the integrity constraint is
restricted to the table in which it has been specified, as well as to the respective data
record. Typical applications of the CHECK-constraint are the definition of the value

area of an attribute or the comparison of attributes.

Example:

CREATE TABLE rell (fieldl INT, field2 INT, field3 INT, field4 INT, ...
CHECK (field2 BETWEEN 2000 AND 5000),
CHECK (field3 < field4d) ...)

Independently from a CREATE TABLE statement in SQL2 CHECK-constraints can
be defined with the CREATE ASSERTION statement.
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Example:

CREATE ASSERTION check_1 CHECK (
( SELECT fieldl, field2 FROM rell) IN
( SELECT field3, field4 FROM rel2) )

®)) FOREIGN KEY-Constraint

With the help of the FOREIGN KEY-statement referential integrity can be guaranteed.
Here, the instance of an attribute or a combination of attributes is dependent on the
existance of the same instance within another table. For example, in the machine
master data record that cost unit can be noted, the machine is assigned to. But it is also
demanded that the given cost unit is actually defined within the cost unit master data.
However, by defining a FOREIGN KEY-statement only attributes or combinations of
them from foreign tables can be referenced which have been defined as UNIQUE and
whose data types correspond to those of the attributes of the referencing tables.

Example:

CREATE TABLE cost_unit (CostNo INT,
PRIMARY KEY (CostNo), ...)

CREATE TABLE Machine (MNo INT, Cost_unit INT,
PRIMARY KEY (MNo),
FOREIGN KEY (Cost_unit) REFERENCES Cost_unit (CostNo), ...)

While in SQL according to ISO 89 the CHECK-constraint (concept 4) is an intra-relational

constraint because of the subquery permission it can also be an inter-relational constraint in
SQL2.

3.2 Entity types and Relationships

While treating the transformation into tables, the subject of segmentation of data structures
which takes place in the course of normalization of the entity-relationship-model (Codd 70;
Date 81; Kent 83) shall not be gone too deeply into. If only single-valued or scalar attributes
are accepted in the process of modelling, then each object is in first normal form (INF). Due
to the attributation of object types their segmentation into smaller ones can be necessary in
order to eliminate dependencies on partial keys (second normal form, 2NF) or transitive

dependencies (third normal form, 3NF).
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An entity type can directly be transformed into a table. Its columns represent the describing
attributes of the entity type. The identifying attribute of the entity type forms the primary key
of the table. In principle, each entity type is transformed into a table, although in particular
cases several entity types can form a single table due to the kind of the linking relationship

type (for transformation of ERM into relational data bases see also Wong/Katz 80; Teorey et
al. 86; Markowitz/Shoshani 89; Scheer 89; Batra et al. 90; Loos 92a).

Relationship types are also transformed to tables. Depending on the kind of the relationship

type, creation of own tables or the combination with a table of an entity type takes place.
Consequently, tables can have the quality of a relationship type or of an entity type. In the
course of the transformation the following rules have to be taken into account:

a

The table receives the attribute(s) (or combination of attributes, respectively) as

primary key which corresponds to the identifying attribute(s) of the relationship.

All attributes which are inherited from tables of the linked entity types are foreign keys
and have references to the primary keys of the tables by means of referential

constraints.

Different types (i.e. entity types and relationship types) may be comprised in a table if
they bear the same primary key.

In case of the inclusion of different types in a table all attributes of all types have to be

included.

When transforming a relationship type into an individual table, each row of the table
has to reference all of the involved entity types. This is ensured by the implicit NOT
NULL condition for the primary key or the UNIQUE condition for foreign keys in the
table of the relationship type.

If an entity type is transformed into a table and has connections to relationship types
where the lower boundary of the cardinality is greater zero (non-optional relationship),
then the primary key of the table is also the foreign key. Since a foreign key can only
reference primary keys or UNIQUE attributes, the feasibility of the representation

depends on the referenced table.
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Q

If a table results from the integration of an entity type and a relationship type, and the

relationship is optional (i.e. the lower boundary of the cardinality is equal zero), then

the foreign key referencing the other table can carry the NULL value.

Consequence of the above mentioned rules is that relationship types resulting from binary
relations can only be directly transformed into a table when the cardinalities of both

connections bear an upper-boundary-value of greater than one. In all other cases the
relationship type may be represented in the table of an entity type. Below, the different kinds
of relationships (as shown in figure 5 and figure 6) are represented as tables3. If an entity type
or relationship type is not represented by an own table, another table containing the describing

attributes is mentioned.

(1)

CREATE TABLE A( a, ...,
PRIMARY KEY (a))

CREATE TABLE B( b, ...,
PRIMARY KEY (b))

CREATE TABLE AB( a, b UNIQUE, ...,
PRIMARY KEY (a), FOREIGN KEY (a) REFERENCES A(a),
FOREIGN KEY (b) REFERENCES B (b))

CREATE TABLE A( a, ...,
PRIMARY KEY (a))

CREATE TABLE B( b, a UNIQUE, ..., AB-attributes...,
PRIMARY KEY (b), FOREIGN KEY (a) REFERENCES A({a))

CREATE TABLE A( a, b UNIQUE, ..., B-attributes..., AB-attributes. ..

PRIMARY KEY (a))

CREATE TABLE A( a, ...,
PRIMARY KEY (a))

CREATE TABLE B( b, ...,
PRIMARY KEY (b))

CREATE TABLE AB( b, a NOT NULL, ...,
PRIMARY KEY (b), FOREIGN KEY (a) REFERENCES A(a),
FOREIGN KEY (b) REFERENCES B(b})

or, especially if AB has no attributes:

CREATE TABLE A( a, ...,
PRIMARY KEY (a))

CREATE TABLE B( b, a, ..., AB-attributes...,
PRIMARY KEY (b), FOREIGN KEY (a) REFERENCES A(a))

3) The CREATE-statements confirm to ISO-SQL, but data types are not indicated.
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(6)

(7)

(9)

CREATE TABLE A( a, ...,
PRIMARY KEY (a))

CREATE TABLE B( b, a NOT NULL, ..., AB-attributes...,
PRIMARY KEY (b), FOREIGN KEY (a) REFERENCES A(a))

Exact transformation not possible, best transformed as in (4). Only in SQL2:
CREATE TABLE A( a, ...,
PRIMARY KEY (a)

CHECK a IN (SELECT a FROM AB))

CREATE TABLE B( b, ...,
PRIMARY KEY (b))

CREATE TABLE AB( b, a NOT NULL, ...,

PRIMARY KEY (b), FOREIGN KEY (a) REFERENCES A(a),
FOREIGN KEY (b) REFERENCES B (b))

Exact transformation not possible, best transformed as in (5). Only in SQL2:
CREATE TABLE A( a, ...,

PRIMARY KEY (a)

CHECK a IN (SELECT a FROM B))

CREATE TABLE B{ b, a NOT NULL, ..., AB-attributes...,
PRIMARY KEY (b), FOREIGN KEY (a) REFERENCES A(a))

CREATE TABLE A( a, ...,
PRIMARY KEY (a))

CREATE TABLE B( b, ...,
PRIMARY KEY (b))

CREATE TABLE AB( a, b, ...,
PRIMARY KEY (a,b), FOREIGN KEY (a) REFERENCES A(a),
FOREIGN KEY (b) REFERENCES B (b))

Exact transformation not possible, best transformed as in (8). Only in SQL2:

CREATE TABLE A( a, ...,
PRIMARY KEY (a), CHECK a IN (SELECT a FROM AB))

CREATE TABLE B( b, ...,
PRIMARY KEY (b))

CREATE TABLE AB( a, b, ...,
PRIMARY KEY (a,b), FOREIGN KEY (a) REFERENCES A(a),
FOREIGN KEY (b) REFERENCES B(b))

Exact transformation not possible, best transformed as in (8). Only in SQL2:

CREATE TABLE A( a, ...,
PRIMARY KEY (a), CHECK a IN (SELECT a FROM AB))

CREATE TABLE B( b, ...,

P. Loos: Representation of Data Structures Using the Entity Relationship Model and the Transformation in Relational Databases

18




(11)

(12)

(13)

(14)

(15)

(16)

PRIMARY KEY (b), CHECK b IN (SELECT b FROM AB))

CREATE TABLE AB( a, b, ...,
PRIMARY KEY (a,b), FOREIGN KEY (a) REFERENCES A(a),
FOREIGN KEY (b) REFERENCES B (b))

CREATE TABLE A( a, ...,
PRIMARY KEY (a))

CREATE TABLE AB( al, a2 UNIQUE, ...,
PRIMARY KEY (al), FOREIGN KEY (al) REFERENCES A(a),
FOREIGN KEY (a2) REFERENCES A(a))

Since NULL values in UNIQUE-attributes are allowed in SQL2, the following transformation is also

possible, especially if AB has no attributes:

CREATE TABLE A( al, a2 UNIQUE, ..., AB-attributes...,
PRIMARY KEY (al), FOREIGN KEY (a2) REFERENCES A{al))

CREATE TABLE A{ al, a2 UNIQUE, ..., AB-attributes...,
PRIMARY KEY (al), FOREIGN KEY (a2) REFERENCES A(al))

CREATE TABLE A( a, ...,
PRIMARY KEY (a))

CREATE TABLE AB( al, a2, ...,
PRIMARY KEY (al), FOREIGN KEY (al) REFERENCES A(a),
FOREIGN KEY (a2) REFERENCES A(a))

or, especially if AB has no attributes:

CREATE TABLE A( al, a2, ..., AB-attributes...,
PRIMARY KEY (al), FOREIGN KEY (a2) REFERENCES A(al))

CREATE TABLE A( a,
PRIMARY KEY (a), FOREIGN KEY (a) REFERENCES AB(al))

CREATE TABLE AB( al, a2, ...,
PRIMARY KEY (al), FOREIGN KEY (al) REFERENCES A(a),
FOREIGN KEY (a2) REFERENCES A(a))

CREATE TABLE A( a, ...,
PRIMARY KEY (a))

CREATE TABLE AB( al, a2, ...,
PRIMARY KEY (al,a2), FOREIGN KEY (al) REFERENCES A(a),
FOREIGN KEY (a2) REFERENCES A(a})

Exact transformation not possible, best transformed as in (15). Only in SQL2:

CREATE TABLE A( a, ...,
PRIMARY KEY (a), CHECK a IN (SELECT a FROM AB))

CREATE TABLE AB( al, a2, ...,
PRIMARY KEY (al,a2), FOREIGN KEY (al) REFERENCES A(a),
FOREIGN KEY (a2) REFERENCES A(a))
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(17)  Exact transformation not possible, best transformed as in (15). Only in SQL2:

CREATE TABLE A( a, ...,
PRIMARY KEY (a), CHECK a IN (SELECT a FROM AB),
CHECK a IN (SELECT b FROM AB))

CREATE TABLE AB( al, a2, ...,
PRIMARY KEY (al,a2), FOREIGN KEY (al) REFERENCES A(a),
FOREIGN KEY (a2) REFERENCES A(a))

In some recursive binary relationships the foreign key constraint has to point to its own table
since both the relationship type and the entity type are represented in one table (cf. type (12)
and (13)).

Types (6) and (7) cannot be transformed by using SQL according to ISO 89 because the lower
boundary values of one of the cardinalities require foreign key relations from the entity type
tables to the tables of the unified entity types and relationship types. These foreign key
relations cannot be represented since the corresponding attribute a in the tables B can exist
more than once. The types (9), (10), (16), (17) are not transformable as a consequence of
attribute b (and al, respectively) which do not independently form a primary key for table AB
but only in combination with the attribute a (and a2, respectively). Using SQL2 all types can

be transformed.

Alternative representations of the types (4), (11) and (13) can be useful if the relationship type
has no attributes. If the alternative representation is chosen anyway, despite of own attributes,
it has to be guaranteed that within the table of the entity type the relationship attributes have

NULL values for entities which form no relationships.

3.3 Generalization

Both the generic entity type and the entity types of the subtypes can be transformed into tables
when dealing with generalization. The operator for the generalization (which is represented in
ERM diagrams by a triangle) is not transformed into a table. Assuming that two entity types
NC-machine and bottleneck-machine are generalized to the entity type machine, the following

tables would result for the transformation:

a CREATE TABLE Machine( MNo, ...,
PRIMARY KEY (MNo))

o CREATE TABLE NC-machine( MNo, ...,

PRIMARY KEY (MNo),
FOREIGN KEY (MNo) REFERENCES Machine (MNo))
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[} CREATE TABLE Bottleneck-machine( MNo, ...,
PRIMARY KEY (MNo),
FOREIGN KEY (MNo) REFERENCES Machine (MNo) )

All tables bear the same primary key MNo. Furthermore, a referential constraint for the
primary keys of the subtype tables to the primary key of the generic entity type table is
established. In this way it can be ensured that every row of the subclass tables corresponds to
an equivalent row in the generic structure. This link is also called semi-referential integrity
(cf. Steinbauer/Wedekind 85).

The mentioned referential constraints can neither guarantee that for every row in the generic
type table there exists a row in a subtype table, nor prevent that a row of a generic type table is
contained in several subtype tables. Hence, this transformation represents a non-complete,

non-disjunctive generalization of the type (4).

The complete generalization would require a referential constraint from the generic type to the
subtypes whilst connecting the references to the subtypes by means of an exclusive OR. Such

a referential constraint is not provided by the relational model.

The disjunctive generalization would require a "negative" reference of every subtype to all
other subtypes which prevent the coexistance of equal rows in two subtype tables. That kind
of constraint cannot be formulated in SQL according to ISO 89. Summing up, it may be said
that SQL only allows the type (4) of generalization but not the types (1), (2) and (3) of
figure 8.

Generalizations which cannot be represented directly in SQL according to ISO 89 can be

realized by means of auxiliary constructs:

a When dealing with disjunctive generalizations it is recommendable to include an
attribute subtype into the generic type tables, which contains the name of the subtype
table:

CREATE TABLE Machine( MNo, subtype, ...,

PRIMARY KEY (MNo),
CHECK Subtype IN ('NC-machine', 'Bottleneck-machine'))

The correct subtype can be determined if several rows exist in subtype tables
accidently due to the missing integrity constraint. A CHECK-constraint ensures that

the attribute subtype cannot contain anything else but the subtype names.
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a In disjunctive, complete generalizations the attribute subtype can also be defined as
NOT NULL:
CREATE TABLE Machine( MNo, subtype NOT NULL, ...,

PRIMARY KEY (MNo),
CHECK Subtype IN ('NC-machine', 'Bottleneck-machine'))

U If the generic type does not have any other attributes than the primary key, and if the
primary key is only required as a foreign key by the subtype tables (i.e. the generic
type does not have connections to relationship types), then the generic type does not
have to be represented as an individual table. The complete set of entities (i.e. the set
of rows of the subtype tables) can be gathered by an outer join (cf. Codd 79) which can
be stored as a VIEW with the name of the generic type.

u The representation of a non-disjunctive, complete generalization can be supported by
the inclusion of attributes, the task of which is to flag whether a row of the generic
type table corresponds to a row in the subtype table. The attributes contain the names
of the subtypes and are defined as logical variables by means of a CHECK constraint
assigning the numerical value zero for "present" or one for "not present”. An additional
constraint guarantees the completeness in that the sum of all such defined attributes
has to be greater or equal to one:

CREATE TABLE Machine( MNo, NC-machine NOT NULL,
Bottleneck-machine NOT NULL, ...,

PRIMARY KEY (MNo), CHECK NC-machine 1IN (0,1),

CHECK Bottleneck-machine IN (0,1),

CHECK (NC-machine + Bottleneck-machine >= 1 ))

In SQL2, these types of generalizations can be represented by using the inter-relational

capability of the CHECK constraint statement:

(. Disjunctive generalizations are representable by "negative" references in each subtype:

CREATE TABLE NC-machine( MNo, ...,

PRIMARY KEY (MNo),

FOREIGN KEY (MNo) REFERENCES Machine (MNo),

CHECK (MNo NOT IN (SELECT MNo FROM Bottleneck-machine)))

CREATE TABLE Bottleneck-machine( MNo, ...,
PRIMARY KEY (MNo),

FOREIGN KEY (MNo) REFERENCES Machine (MNo),
CHECK (MNo NOT IN (SELECT MNo FROM NC-machine)))
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(] Complete generalizations are representable by "alternative” references in each subtype:

CREATE TABLE Machine( MNo, ...,

PRIMARY KEY (MNo),

CHECK (MNo IN (SELECT MNo FROM Bottleneck-machine) OR
MNo IN (SELECT MNo FROM NC-machine)) )

u A disjunctive, complete generalization (type (1)) can be represented by a combination
of both.

4. Comments on the Application of Data Modelling

Basing on the above made explanations, some comments shall be made concerning frequently

encountered problems and the general approach to data modelling.

4.1 Attributes of Relationships

As mentioned earlier (cf. chapter "2.2.3 Properties of Relationships"), not all methods for
modelling allow for attributes in relationships. The product-customer example from figure 1
shows that the attribute discount can only be integrated within the relationship type condition.
Since every entity of the two entity types can have many relationships and the attribute
discount would therefore constitute a repeat group (assuming a relationship type (8)), its
integration into one of the entity types is not possible. This kind of relationship can
consequently not be modelled in the CASE-tool ADW. Such a kind of relationship has to be
decomposed into one-to-many relationships (cf. chapter 4.2 "Modelling binary, many-to-many

Relationships").

However, the dependency of attributes on relationships also arises in one-to-many
relationships. The following example of a personnel-team relationship is to demonstrate this
(cf. figure 11). One person participates in at most one team, whereas one team can consist of
an arbitrary number of persons. This is realized by means of the relationship works_in
(relationship type (4)). A person has attributes as pid, name, etc. The attributes role and
member_since only make sense for persons who are assigned to a team. This would not be
evident if the attributes were included in the entity type person. Only the inclusion in the
relationship type works_in assures the validity of the membership status. A transformation to

SQL produces the following tables:
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CREATE TABLE Team( TId, ...,
PRIMARY KEY (TId))

CREATE TABLE Person( PId, Pname, ...,
PRIMARY KEY (PId))

CREATE TABLE works_in( PId, TId NOT NULL,
member_since NOT NULL, role, ...,
PRIMARY KEY (PId, TId),

FOREIGN KEY (PId) REFERENCES Person(PId),
FORGEIGN KEY (TId) REFERENCES Team(TId))

person

Role, Membership_since

Fig. 11: Attributes depending on relationships

Only when an instance of an entity type is directly dependent on an instance of a relationship
type (i.e. has a cardinality of (1,1), e.g. relationship types (2), (3), (5), (12) and (14)) the
relationship attributes can be assigned to the entity type without any information loss.

4.2 Modelling Binary, Many-to-Many Relationships

The question whether to decompose binary many-to-many relationship (e.g. relationship types
(8) to (10)) into two one-to-many relationships or not, is one often encountered (cf. chapter
"4.1 Attributes of Relationships"). This arises from the fact that some methods (e.g.
Bachmann notation) are incapable to model many-to-many relationships on the one hand, and
from the property of SQL's foreign key references to represent only one-to-many relationships
on the other hand. Decomposition of such relationships will cause a damage to semantic

content if not combined with additional constraints.

Figure 12 a picks up the example of figure 1 adding three entities per entity type as well as
three relationships corresponding to the respective cardinalities. The relationship provides the
assignment of several products to a particular customer and vice versa, but a specific product

can be assigned to a specific customer only once.
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Figure 12 b shows a decomposition into two one-to-many relationships. An additional
relationship of the type condition has been introduced at the instance level in order to
demonstrate that a particular customer can be linked more than once to a specific product
through several conditions. This does not obviously conform to the desired semantics.

This might be prevented by the formulation of further constraints like the adoption of primary
keys?.

(a) customer —" @ 2 product
oo

c1 (co) p1
) p2
c3p3

N 14
(b) customer condition ! = product

2 —GoD pt

c2 02 p2
c3 p3

(o

Fig. 12: Comparing many-to-many and one-to-many relationships

4.3 Sequencing Instances

Entity types, relationship types as well as tables represent sets of instances without any
inherent fixed order. A sequence of instances has therefore to be declared explicitly. Figure 13
gives examples for the ordering of entities, both in ERM notation and at the level of instances.
Part a depicts an entity type the entities of which form lists. Figure 13 b shows the hierarchy

4’) The same applies to SERM concerning the relationship types (8) to (10) and (15) to (17) as mentioned in
figure 0 and figure 0.
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within an entity type, as it is usual within organizational units, for example (cf. Figure 2). A
net-like order is represented in Figure 13 c. Bills of materials are a typical example. It has to
be taken into account that recursive relationships which have an edge with the cardinality of
(1,x) (e. g. types (12), (14), (16), (17)) cause recursions at the entity level (cf. Figure 13 d).

0,1

0,1

0,1
subordinate '
(b) A AB

supetriot

o,n

0,n
subordinate

() A AB

supetior
o,n

1,n
subordinate

(d) A AB

superior

0,n

Fig. 13: Sequencing entities
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Sequences within relationships refer to the corresponding relationships of one entity type's
entity. These sequences can also be represented like before. Hereto, the relationships have to

be reinterpreted in order to be able to form sequence relationships. Figure 14 a represents an
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example of orders to which n-many articles can be assigned. For sorting the order part of an

order the relationship sequence is introduced>.

A simpler way to achieve these facts is to introduce the entity type position number (cf. figure
14 b). The resulting relationship position with its primary key order_no and pos_no forms a
relationship with the type article. The entity type pos_no is virtual and does not have to be
materialized as table. Unlike the previous solution a specific article can be assigned to a

specific order several times.

>

(a) order = °p’§ﬁ = article

0,1 0,1

(b) order = \W " pos_no

Fig. 14: Sequencing relationships

4.4 Temporal Aspects

On the one hand, the temporal dimension can be represented by attributes with the data types
date or time. On the other hand, time can be integrated within the data model as an
independent entity type, and serves for modelling order-related data. The entity type time is
the basis for relationships and transmits the attribute time_id as a foreign key to the
relationships. This might be especially helpful when relationships need a temporal dimension

for their description. Figure 15 shows a schedule in which an operation of an equipment unit

5) By additional integrity constraints it has to be ensured that only order parts of the same order are connected.
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is assigned to a specific time period. The entity type time has two edges to the relationship
type scheduled_on, one for the start date, one for the end date. This data structures
automatically ensures that an operation can only be planned for an equipment unit if start and
end dates are simultaneously defined. A transformation into SQL can produce the following
tables©:

CREATE TABLE scheduled_on (op_id, equi_unit,

start_date, end_date,

PRIMARY KEY (op_id),

FOREIGN KEY (op_id) REFERENCES operation (op_id),

FOREIGN KEY (equi_unit) REFERENCES equiment_unit (equi_unit),
CHECK (start_date <= end_date))

on

, start
equipment| on schedule time
unit on end
on
0,1
operation

Fig. 15: Entity type time for temporal aspects
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