
RESEARCH REPORT

Homogeneity of Item Material Boosts the List Length Effect in
Recognition Memory: A Global Matching Perspective
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Kinnell and Dennis (2012) showed that the list length effect in recognition memory is only observed for
homogeneous stimulus material. On the basis of the global matching model MINERVA 2 (Hintzman,
1986, 1988), we offer a theoretical explanation for this finding. According to our analysis, homogeneous
material immunizes against the disruptive influence of preexperimental items, which might mask the
intralist interference predicted by global matching models for familiar heterogeneous material. We tested
our approach in three experiments. In Experiment 1, we found list length effects for homogeneous
photographs of flowers and landscapes. In Experiment 2 and 3, we presented heterogeneous photographs
of scenes (Experiment 2) and faces (Experiment 3). List length effects were only found if these
photographs were homogenized by the use of image-processing filters. We further show that our
explanation is also in line with the results of Dennis and Chapman (2010) who found an inverse list length
effect. Overall, our results provide evidence for a global matching account of familiarity.
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Memory performance decreases with the length of the study list.
Although this so-called list length effect, first documented by
Strong (1912), has been demonstrated repeatedly (e.g., Brandt,
2007; Cary & Reder, 2003; Gillund & Shiffrin, 1984; Gronlund &
Elam, 1994; Yonelinas, 1994), there is an ongoing debate on the
underlying mechanisms in a list length study. A promising way to
address these processes is the application of formal models of
human memory. One class of formal models claims that every item
stored in long-term memory contributes to the memory signal
elicited by a test item. These models are referred to as global
memory models, global matching models, or item noise models.
Prominent members of this class are SAM (Gillund & Shiffrin,
1984), MINERVA 2 (Hintzman, 1986, 1988), TODAM2 (Mur-
dock, 1993, 1997), the Matrix model (Humphreys, Bain, & Pike,
1989), and REM (Shiffrin & Steyvers, 1997). At the core of all
these models lies the assumption that a greater number of items in
memory increases the noise in the memory signal of test items and,
therefore, memory performance declines with the number of items
studied (Clark & Gronlund, 1996).

In contrast to item noise models, context noise models such as
the BCDMEM (Dennis & Humphreys, 2001) claim that item
information is represented orthogonally and the only source of
interference is the information about the episodic context in which
the item was presented. Consequently, increasing the number of
items in a study list should not change the memory signal for a test
item and, hence, no list length effect is predicted. Indeed, although
there is notable empirical support for the list length effect, there are
also numerous studies showing a null list length effect (e.g.,
Buratto & Lamberts, 2008; Dennis & Humphreys, 2001; Kinnell &
Dennis, 2012).
Having two model classes with different predictions on the list

length effect seems to be the ideal situation for deciding between
these conflicting models empirically. Unfortunately, this turns out
to be quite complicated. Kinnell and Dennis (2011) showed that
there are many potential confounds in the design of list length
studies that could lead to inconsistent findings. Following their
argumentation, an observed list length effect cannot necessarily be
attributed to interference processes (as assumed by item noise
models) but might occur because of certain specifics of the exper-
imental design and the data-collection procedure. For example, in
list length studies it naturally takes longer to study the long list
compared to the short list. Consequently, if the duration of the
retention interval is not controlled for, items in a short list will on
average have a shorter retention interval than items in a long list.
In this case, a list length effect might occur even without any
additional interference processes, simply due to the longer reten-
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tion interval for items studied in the long list. On the other hand,
observing a null list length effect might always be associated with
low statistical power because the effect size of the list length effect
is generally small (e.g., Annis, Lenes, Westfall, Criss, & Malm-
berg, 2015). We will show that this is especially the case if the list
length effect is studied in a within-subjects design. Moreover,
there is a methodological controversy on how to analyze data from
a list length experiment. Applying a Bayesian analysis to their
experiments, Dennis, Lee, and Kinnell (2008) favor the context
noise model for recognition experiments. This conclusion was
challenged by Annis et al. (2015) who showed that the data of
Dennis et al. (2008) do not allow for discriminating between the
models.
Considering all these complications, the list length effect seems

to be of little theoretical importance. However, there is a puzzling
finding that might shed some new light on the controversy: Kinnell
and Dennis (2012) studied the list length effect for different
materials controlling for all potential confounds outlined by Kin-
nell and Dennis (2011). The authors found a small list length effect
for pictures of faces and fractals, whereas no list length effect
could be observed for word pairs and photographs of scenes.
Discussing these results, Kinnell and Dennis (2012) admit that
“item interference can play a role in episodic recognition, but that
this role is minor and confined to items that are quite similar to
each other” (p. 324). Thus, interitem similarity seems to be a
necessary condition for the list length effect to occur. The BCD-
MEM (Dennis & Humphreys, 2001) would be compatible with
these results if item representations were allowed not to be strictly
local. In this case, the model could explain some interference on
the level of item information because item representations would
partly be overlapping. Pure item noise models, on the other hand,
have to explain why there is no list length effect for verbal material
and photographs of scenes and why the observed list length effect
is rather small for faces and fractals. While Kinnell and Dennis
(2012) do not offer such an explanation, we will provide one,
based on the global matching model MINERVA 2 (Hintzman,
1986, 1988) as an example for an item noise model. We argue that
our explanation of the findings of Kinnell and Dennis (2012) will
give rise to some new insights concerning the conflicting results in
the list length effect research in general.
We will first introduce the basic mechanisms of the MINERVA

2 model and elaborate on how the list length effect can be ex-
plained within this framework. We will then analyze what happens
when study items are similar to each other, that is, stimulus
material becomes more homogeneous. In a last step, we will
demonstrate the effect of extralist items on heterogeneous and
homogeneous item material, respectively. Based on these analyses,
we will provide an explanation for the results of Kinnell and
Dennis (2012) and we will test this new approach within a series
of three experiments.

MINERVA 2: The Basic Model

In MINERVA 2, every item T is represented as a vector of M
features with every feature Tj � ��1, 0, 1�, j � 1 . . . M (Hintz-
man, 1986, 1988). According to Brandt (2007), we can further
simplify the model assuming that Tj � ��1, 1�, which allows for
the introduction of a probability parameter s defining the similarity
of two items T and U by giving the probability that two features in

the same position of the item representations are identical, that is,
P(Tj � Uj)� s. In the model, long term memory is conceptualized
as a matrix M with N rows representing single episodes and M
features representing the attributes in the item vector of a single
episode. A new item T is learned by copying the attributes of the
item into a new row i in the memory matrix M with the following
rules: P�Mi,j � Tj �Tj � 0� � L, P�Mi,j � 0 �Tj � 0� �
1 � L, P�Mi,j � � Tj �Tj � 0� � 0, and P(Mi,j � 0 |Tj �
0) � 1. The parameter L is usually referred to as a learning
parameter. In memory retrieval, the memory matrix M is probed
with a test item T and two memory signals arise: In the echo-
intensity process, the test item T activates every memory repre-
sentation (i.e., every row in M) in parallel and the amount of
activation is a function of the similarity of the test item to the
memory representation:

Ai(T)� � 1M�
j�1

M

(Tj ·Mi,j)�3 (1)

Most important and central to the model is the assumption that
these local activations Ai(T) are added up to a global response to
the retrieval cue:

A(T)� �
i�1

N

Ai(T) (2)

A(T) is referred to as echo intensity and in recognition tests it is
usually interpreted as memory strength or a feeling of familiarity.
In old/new recognition tests, a decision rule borrowed from signal
detection theory is applied (e.g., Macmillan & Creelman, 2008): A
response criterion c is postulated. If A(T) � c, an “old” response
is given, otherwise participants respond with “new” to the test item
T. In a two-alternative forced choice test, two items T and U are
presented and participants are asked to select the item that was
presented in a preceding study phase. In this case, no response
criterion is necessary. If A(T) � A(U), participants select item T,
otherwise they select item U.
In addition to the echo-intensity process, there is a second

retrieval process in MINERVA 2. When memory is probed with an
item T, this so-called echo-content process results in a recon-
structed vector C defined as the sum over all attributes of all items
represented in memory, weighted with the local activations of the
memory representations as defined in equation (1):

Cj(T)� �
i�1

N

Mi,j ·Ai(T). (3)

In applications of MINERVA 2 to recognition experiments, it is
usually assumed that only the echo-intensity process is relevant.
Nevertheless, one should keep in mind that MINERVA 2 is not a
single-process model, as the echo-content process could easily be
integrated when it comes to the modeling of recognition experi-
ments. For example, it would be possible to differentiate between
item- and context-specific features of an item (e.g., the REM.4
model in Shiffrin & Steyvers, 1997). If memory is probed only
with item-specific attributes, the echo-content process may be used
to retrieve the context-specific attributes of the study phase. This
approach would resemble the context-retrieval process assumed in
the BCDMEM (Dennis & Humphreys, 2001). Despite the possi-
bility to integrate a second process when modeling recognition
experiments with MINERVA 2, in this paper we keep with the
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common assumption that only the echo-intensity process is in-
volved in recognition.

List Length Effect in the Basic Model

To model list length experiments, some simplifying assump-
tions need to be made. We start with the basic model as it is usually
applied to list length experiments in recognition memory (e.g.,
Clark & Gronlund, 1996; Gronlund & Elam, 1994; Hintzman,
1988) and add some elaborations of the basic model in the fol-
lowing sections.
Let us assume that there are N1 items to be learned in the short

list and N2 items to be learned in the long list, each of which has
M attributes that are drawn randomly and independently from
{�1, 1}. Note that this is equivalent to the assumption that for any
two items T and U the similarity parameter equals s � .5. We
further assume that all these items are learned with a fixed learning
parameter L.
Furthermore, we assume that the memory matrix M is empty

before the study phase. Consequently, after the study phase, M
contains exactly N1 or N2 memory representations, depending on
which list was learned. In the test phase, we either probe memory
with a learned item (i.e., a target item) or a new randomly and
independently drawn item (i.e., a distractor). Brandt (2007) pre-
sented closed-form equations for E[A(T)] and Var[A(T)] such that
it is easy to compute the memory performance predicted by the
model, given the parameters L, N1, N2, and M. Typically, the
number of attributes M is fixed to a sufficiently large value, which
will be 40 throughout this paper. Because it is assumed that only
items from the study phase are entered into the memory matrix M,
memory performance is solely determined by the learning param-
eter L and the number of items in the study phase, that is, N1 and
N2, respectively. For any given length N of a study list, the
expected value of the echo-intensity distribution of a target item
T is

E[A(T)]� �
i�1

N

E[Ai(T)]�E[A(T |s� 1)]� (N� 1)E[A(T |s� .5)]

(4)

where E[A(T |s � 1)] is the expected value of the local activation
of the target item’s memory representation (cf., equation 1) and
E[A(T |s � .5)] is the expected value of the local activation of any
noncorresponding memory representation. Because E	A�T �s �
.5�
 � 0, E	A�T�
 only depends on the local activation of the
memory representation of the target item which is an increasing
function of L. On the other hand, the expected value of the
echo-intensity distribution of distractors is always 0, as there are
no corresponding memory representations for distractor items.
Consequently, expected values of both the target and the distractor
distributions are independent of the length of the study list.
The variance of the echo-intensity distribution for an item T is

defined as:

VAR[A(T)]� �
i,j�1

N

COV[Ai(T),Aj(T)] (5)

Because for independent items (i.e., s � .5) all covariances in
equation (5) are 0 for i � j, the variance of the echo intensity is
simply the sum of the variances of all local activations. For

nontrivial cases (i.e., L � 0 or L � 1) these variances are positive.
Hence, the variances of the echo-intensity distributions for both
target and distractor items increase with the number of items in the
study list. As a consequence, we have constant expected values
and increasing variances as a function of the number of studied
items. Thus, both distributions increasingly overlap with increas-
ing list length, and memory performance decreases (see Gronlund
& Elam, 1994, for a numeric example). In other words, MIN-
ERVA 2 predicts a list length effect in this situation.

Homogeneity of the Stimulus Material

Kinnell and Dennis (2012) found the list length effect only for
relatively homogeneous material, so it is important to look at the
predictions derived from MINERVA 2 for homogeneous material.
Homogeneous study lists can be modeled in the same fashion as
word lists in a DRM paradigm (e.g., Roediger & McDermott,
1995) are constructed: We start by drawing a prototype itemQ that
will not be part of the study list. In the next step, we draw N items
R with the restriction

P(Qj �Rj)� h for all j � M (6)

where Qj and Rj represent corresponding attributes in the two
items. The parameter h defines the similarity of an item to the
prototype and therefore is a measure of homogeneity of the study
list. The basic model is a special case with h � .5, that is, all items
are independent. Note that the similarity of two specific items R1
and R2 is given by s � h2 � (1 � h)2. Homogenizing the list
influences both the expected values and variances in a list length
paradigm. The expected value of the echo-intensity distribution for
targets is defined as:

E[A(T)]�E[A(T |s� 1)]� (N� 1)E[A(T |s� h2� (1� h)2)]

(7)

Because E	A�T �s � h2 � �1 � h�2�
 is greater than 0 for s � .5,
it is clear that the overall expected value of a target distribution
increases with N. The same is true for the distractor distribution.
Nevertheless, the difference between the expected values of the
target and the distractor distribution is independent of the
number of items in the study list: It is always E	A�T �s � 1�
 �
E	A�T �s � h2 � �1 � h�2�
 and thus remains independent of list
length.
The variances of both target and distractor distributions are also

heavily influenced by the parameter h. Not only the variances of
local activations increase with h, but also their covariances now
become positive (for h � .5). These covariances additionally
increase the variances of the echo-intensity distributions of targets
and distractors. With respect to the list length paradigm, the basic
mechanism remains the same: The differences between the ex-
pected values of target and distractor distributions are constant for
different lengths of study lists, but longer lists lead to greater
variances. In short, the basic mechanism for the list length effect is
independent of the homogeneity of the stimulus material. How-
ever, the effect can be slightly more pronounced because there are
now N · (N � 1) covariances of local activations that add to the
variances of the echo-intensity distributions of both targets and
distractors (cf., equation 5). Nevertheless, this small additional
increase in the overlap of the distributions cannot explain why
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Kinnell and Dennis (2012) found the list length effect only for
homogeneous material.

Influence of Extralist Items

In the basic model, we assumed that only items of the current
study list are represented in memory. This somewhat naive as-
sumption might be justified, considering that an episode is not only
composed of item information but also of the episodic context the
item is presented in. If the learning context is different from all
other previous contexts and it is available as a retrieval cue, the
features of the learning context can effectively reduce the influ-
ence of previously encountered episodes (Hintzman, 1986). On the
other hand, in a typical memory experiment, both the items studied
(e.g., single words or pictures of objects) as well as the context
(e.g., item presentation on a computer screen) are not really
unique, especially if several lists are learned in a within-subjects
design. Nevertheless, list discrimination experiments show that the
context even slightly changes if several lists are learned in one
session (e.g., Hintzman & Waters, 1970). On the other hand, if the
learning context is very special (as e.g. in the famous underwater
learning experiments by Godden & Baddeley, 1975), preexperi-
mental episodes can probably be ignored because they do not
match this special learning context. Nevertheless, in many exper-
iments it seems plausible to assume that similar episodes prior to
the study list contribute to the retrieved memory signal in global
memory models. This extension of the basic model has been
discussed under the label continuous memory (e.g., Murdock &
Kahana, 1993), the influence of extralist items (e.g., Gronlund &
Elam, 1994), or recently, background noise (Osth & Dennis,
2015). Modeling the list length paradigm in MINERVA 2, the
influence of extralist items can easily be implemented by adding
Ne independent items to the memory matrix M. Because these
extralist items were studied earlier, it seems reasonable to assume
that some attributes might have been forgotten. In the model, this
is equivalent to assuming a smaller learning parameter (Lextra) for
extralist items.
Note that taking into account extralist items is similar to the

concept of context noise in the BCDMEM (Dennis & Humphreys,
2001). This model also assumes that targets have been presented in
different contexts before the learning episode. After learning, it is
assumed that participants try to retrieve the learning context given
the item under study as a retrieval cue to compare it with the
reinstated context for a recognition decision. The retrieved context
is a composite of the preexperimental contexts and the actual
learning context. In that sense, previously encountered items add
noise to the retrieved context because they might have been
learned in different contexts. In MINERVA 2, the memory signal
is also distorted by the previous targets learned in different con-
texts. But additionally, the memory signal for a test item is also
influenced by other items presented in the same context.
Given that extralist items are independent of the items in the

study list and that the item material is heterogeneous (i.e., h � .5),
the effect of taking into account extralist items is straightforward:
Every single extralist item adds a small amount to the variances of
both the target and the distractor distributions without affecting the
corresponding expected values. Thus, extralist items impair the
discriminability of targets and distractors and, more importantly,
dramatically reduce the list length effect in MINERVA 2. To

illustrate the latter, remember that in MINERVA 2 the list length
effect is considered a result of a greater increase of variances of the
echo-intensity distributions in the long-list condition compared to
the short-list condition. If the number of extralist items is suffi-
ciently high, this difference between the variances vanishes. In
other words: Without extralist items, additional items in the long-
list condition have a relatively great impact on the variances of the
underlying distributions. But with an increase in the number of
extralist items, the impact of a relatively small number of addi-
tional items in the longer study list is negligible and no list length
effect is predicted.
Let us have a look at the impact of extralist items on homoge-

neous stimulus material. At a first glance, the effect seems iden-
tical to the case of heterogeneous material: Every single extralist
item adds a small amount to the variances of echo-intensity dis-
tributions. But this impact is much smaller compared to the impact
on heterogeneous material because both the target and the distrac-
tor distributions have much greater variances even without the
effect of extralist items due to the influence of covariances. To be
precise, given these greater variances, the relative impact of ex-
tralist items is much smaller. Thus, assuming a reasonable amount
of extralist items, the list length effect is still predicted for homo-
geneous material, as illustrated in Figure 1.
In short, using homogeneous item material immunizes the model

predictions against the disturbing influence of extralist items. How-
ever, note that as the number of extralist items becomes very large,
MINERVA 2 no longer predicts a list length effect even for homo-
geneous material. Also, the prediction only holds if extralist items are
unrelated to the study items. If homogeneous item material is used in
the study list, extralist items from the same category nevertheless have
a great impact on the variances of the underlying echo-intensity
distributions. This scenario might be quite common in within-subjects
designs. If all items stem from a common category, items from
previously studied lists might interfere with the current list.
In summary, there are three sources of interference in a global

matching model. First, there is interference caused by items in the
actual study list, which may be labeled intralist interference. Second,
we may also consider interference caused by items from lists previ-
ously presented in the experiment, which may be referred to as
interlist interference. This source of interference is only important in
within-subjects designs where all items stem from the same homoge-
neous category. Third, extralist items, that is, items from all previ-
ously encountered episodes, might inflate the variances of the under-
lying distributions and, hence, mask the list length effect. As we have
outlined above, the influence of this extralist interference can be
reduced by using homogeneous item material.
Given these three sources of interference, we can now offer an

explanation for the effect of the stimulus material reported by
Kinnell and Dennis (2012) from a global matching perspective:
Both word pairs (Exp. 1) and photographs of scenes (Exp. 4) are
very familiar material and thus should be prone to the influence of
preexperimental encounters.1 Therefore, the null list length effect

1 Note that only individual words can be assumed to be familiar, whereas
word pairs might have never been learned in common context and the
associative information might even be unique. It is an open question how
the preexperimental frequency of individual words influences associative
recognition in a list length paradigm. We thank Amy H. Criss for this
remark.
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for this type of material could eventually be attributed to the strong
influence of extralist interference. In Experiment 2, Kinnell and
Dennis (2012) used pictures of faces which is also very familiar
material and should therefore lead to problems with extralist
interference. However, contrary to the word and scene material,
pictures of faces are relatively homogeneous, such that the impact
of extralist items is reduced and a list length effect is expected, just
as it was observed. In Experiment 3, fractals were used and a
strong list length effect emerged, because fractals are unfamiliar
objects one certainly does not come across very often outside an
experimental context. Moreover, because fractals are highly ho-
mogeneous, no disturbing influence of extralist interference is
expected. Therefore, a list length effect for fractals is also expected
from a global matching perspective.
An aspect that remains critical for the global matching approach

is that the observed effects (Exp. 2 and 3) are relatively small
compared with predictions from model simulations. We argue,
however, that the small impact of list length on recognition per-
formance is attributable to interlist interference. Because Kinnell
and Dennis (2012) always used a within-subjects design, that is,
presenting participants with a long and a short study list in a first
and a second test block, respectively, performance in the second
block might be influenced by length of the study list in the first
block. Note that for homogeneous material, the influence of ex-
tralist items in the first block should be negligible. This is not true,

however, for the second block because participants already studied
items from the same homogeneous category in the first block.
Studying a short list in the second block implies that participants
have studied a long list in the first block, and vice versa. Thus, if
the short-list condition is in the second block, there is a stronger
impact of interlist interference compared with the long-list condi-
tion. As a consequence, only a small or even a null effect is to be
expected in the second block. By analyzing the within-subjects
design, we average over a large (dependent on the concrete number
of studied items) effect in the first block and a small or even
nonexisting effect in the second block. This results in an overall
smaller effect size compared to between-subjects designs, which
are usually used in simulations. Thus, from a global matching
perspective, a relatively small effect size for homogeneous item
material would be expected in a within-subjects design. However,
we predict a large effect when only the first block is analyzed in
the sense of a between-subjects design and a small or a null effect
when analyzing only the second block in a between-subjects
manner. Note that this specific prediction is bound to the assump-
tion of a global matching perspective. In the BCDMEM (Dennis &
Humphreys, 2001), neither extralist items nor interlist items should
interfere with the items. Thus, the separate analysis of the first and
the second block is a further differential test of both types of
models.
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Figure 1. Influence of extralist items on the list length effect on heterogeneous (top graph) and homogeneous
(lower graph) material in MINERVA 2. Note that with homogeneous material (a) performance decreases, (b) the
list length effect is more pronounced, and (c) the influence of extra list items is reduced. Model parameters are:
M � 40, L � .3, N(short list) � 20, N(long list) � 80, h(heterogeneous) � .5, h(homogeneous) � .8. Extralist
items are assumed to be heterogeneous, independent from the list items, and learned with Lextra � .1.
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In three experiments, we will test these theoretical explanations
for the findings of Kinnell and Dennis (2012). In Experiment 1, we
use pictures as stimulus material. But unlike Kinnell and Dennis
(2012, Exp. 4), we specifically use homogeneous pictures (i.e.,
pictures of certain landscapes and flowers, respectively). We ex-
pect a small list length effect that is mainly driven by performance
in the first block. In the second experiment, we use the same
material for both conditions but directly manipulate the degree of
homogeneity. In one condition, we use heterogeneous pictures of
scenes and expect no list length effect. In the other condition, we
use exactly the same pictures but homogenize them by applying
special image-processing filters, therefore expecting a list length
effect to occur. In Experiment 3, we use photographs of faces. For
this material, Kinnell and Dennis (2012) found a list length effect.
In contrast to them, however, we use very heterogeneous faces
(i.e., different gender, emotional expressions, ages, races, etc.),
which is why we expect no list length effect for this material.
Applying the same image-processing filters as in Experiment 2, we
again homogenize the pictures and, in turn, expect a list length
effect.

Experiment 1

In Experiment 1, we refer to Experiment 4 reported by Kinnell
and Dennis (2012). The authors found no list length effect for
photographs of everyday scenes. Because these photographs were
rather heterogeneous (the authors list a classroom, a library, and a
beach), we wanted to investigate whether the list length effect can
be found with more homogeneous pictures. To do so, we used two
stimulus types, that is, photographs of landscapes and photographs
of flowers. Both types of stimuli are not exactly pictures of scenes
but they clearly are homogeneous, such that a list length effect
should emerge for this type of material.

Method

Participants. In total, 50 people participated in Experiment 1,
of which 88% were female. The mean age of participants was
21.84 years, ranging from 18 to 56 years. Almost all participants
were students of psychology at the University of Mannheim and
received course credit in return for their participation.

Materials. Overall, participants were presented with 170 pho-
tographs of landscapes and 170 photographs of flowers. All land-
scape photographs showed a horizon, but no clearly distinguish-
able, concrete objects, such as people, animals, or buildings, were
depicted. The pictures of flowers did not show the whole plants but
single blossoms on a rather monochrome background instead.
Figure 2 shows examples of both stimulus types. Pictures in the
learning phase were presented in 400 � 400 pixels size. In the
two-alternative forced choice test, pictures were scaled down to
300 � 300 pixels.

Design. We used a 2 � 2 � 2 � 2 � 2 factorial design with
the factors List Length (short vs. long), Material (landscape vs.
flower), Order Material (landscape-flower vs. flower-landscape),
Order Landscapes (short-long vs. long-short), and Order Flowers
(short-long vs. long-short). The factors List Length and Material
were manipulated within subjects. Dependent variables were the
proportion of correct answers in a two-alternative forced choice
recognition test and the respective response latencies. All factor
levels were randomly assigned to participants.

Procedure. To make participants familiar with the tasks of the
experiment, they passed a short practice session at the beginning.
For the practice memory task, we used 20 close-up photographs of
everyday objects (e.g., a bottle) to minimize interference with the
photographs of landscapes and flowers. In the practice session,
participants studied 10 photographs. After learning, a perceptual
discrimination task was implemented as a filler task. This task was
the same as in the actual experiment. Finally, recognition perfor-
mance was tested using a two-alternative forced choice task. For
every trial, a photograph of a learned item was paired with a
photograph of a distractor item. Both items were shown side by
side and subjects indicated with the arrow keys which item was
studied in the learning phase. Positions of the target and distractor
items were determined randomly for every trial. Participants could
repeat the practice session until they were familiar with the pro-
cedure.
After the practice session, participants worked through four

blocks, each consisting of a study phase, the perceptual discrimi-
nation filler task, and the two-alternative forced choice recognition
task. Participants were always presented with one type of material
in the first two blocks (i.e., either pictures of blossoms or land-
scapes) and the other one in the last two blocks. Within one type
of material, the order of list lengths was randomly determined.
Short lists consisted of 20 and long lists of 80 photographs. In the
study phase, items were presented with a 200-ms interstimulus
interval for 900 ms, during which the screen was left blank. The
filler task following long study lists lasted at least 30 seconds.
After short study lists, the filler task lasted at least 90 seconds in
order to compensate for the enlarged study phase for long lists. In
the two-alternative forced choice recognition task, the first 20
items of each study list were tested in random order. For long lists,
we tested 10 randomly selected additional items from the study list
after testing the first 20 items. This was done to mask the fact that
the last items in the long study list were not of interest, and avoid
confounding effects. These 10 additional items were not included
in the analysis.
Participants worked through the recognition task at their own

pace. After each block, there was a break without any filler activity
for one minute.

Figure 2. Example of the material used in Experiment 1. Stimuli were
either photographs of landscapes (A) or photographs of blossoms (B). See
the online article for the color version of this figure.
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Results

Analyzing the full five-factorial design we found that land-
scapes (M � .80) were better remembered than flowers (M � .76),
F(1, 42) � 10.52, p � .01, 	p

2 � .20. This difference in perfor-
mance presumably reflects the fact that pictures of blossoms are
more homogeneous and therefore harder to differentiate. The main
effect of Order Material was not significant, F(1, 42) � 3.65, p �
.05. Because all interactions of the factors Material and Order
Material with the critical independent variable List Length were
not significant, we decided to analyze the different types of ma-
terial separately.

Landscapes.
Within-subjects analysis. We first analyzed the subset of data

with the within-subjects factor Length and the between-subjects
factor Order. Overall recognition performance was slightly better
in short lists (M � .82) compared to long lists (M � .78), F(1,
48) � 7.81, p � .01, 	p

2 � .14. The main effect of Order Land-
scapes was not significant, F(1,48) � 1.75, p � .19. Importantly,
the interaction Length � Order Landscapes was significant, F(1,
48) � 12.87, p � .01, 	p

2 � .21. This interaction is not surprising
if the role of interlist interference is taken into account: Let us first
look at the condition where the short list is learned first. Here, we
expect small intralist interference and no interlist interference, as
there is no preceding study list. For the long list, which is learned
afterward, we expect small interlist interference and large intralist
interference. Thus, in this condition the interlist interference adds
to the intralist interference and the list length effect should be
strong. If the long list is learned first, there is large intralist
interference for the long list and, again, no interlist interference.
For the short list, however, there is small intralist interference but
large interlist interference because the long list was studied be-
forehand. Accordingly, the interlist interference in this condition
might mask differences in intralist interference between short and
long lists, and the list length effect should be at least reduced. As
can be seen from Table 1, this is exactly the pattern observed in
Experiment 1 (see also Figure 3, for a graphical representation).
There is a rather huge list length effect if the short list is studied
first, t(44) � 3.30, p � .01, d � 0.97, and no list length effect if
the long list is studied first, t(52) � �0.54.

Between-subjects analysis. As noted before, in a within-
subjects analysis there is no unbiased test for the critical effect of

intralist interference. Therefore, we followed Kinnell and Dennis
(2012) and also analyzed the data in two separate between-subjects
analyses for the first and the second block, respectively. Because
there is no interlist interference in the first block, only extralist
interference and intralist interference should affect performance.
Moreover, because—according to MINERVA 2—homogeneous
material should minimize the influence of extralist variance, we
expect a list length effect due to intralist variance in the first block.
In the second block, however, interlist interference works against
the list length effect, that is, for short lists, intralist interference is
low and interlist interference is high, while the reverse pattern
applies for long lists. Beginning the recognition test in Block 2, the
number of previously studied items (i.e., in both blocks) is iden-
tical for both list length conditions within a block. Therefore, we
expect no list length effect in the second block. Looking at Table
1, this means comparing data from Columns 1 and 4 for the first
block and Columns 2 and 3 for the second block, respectively (see
also Figure 3). As expected, we found a large list length effect for
the first block, t(48) � 2.86, p � .01, d � 0.81, and no list length
effect for the second block, t(48) � �0.56.

Response latencies. Although participants were not instructed
to respond as fast as possible, it is important to analyze response
latencies in interference paradigms because a potential decrease in
performance might not be attributable to interference processes but
the result of a speed–accuracy trade-off. Response time analyses
showed that this interpretation can be ruled out. The means of the
individual median response times are shown in Table 2. The results
were in line with the accuracy analysis: There was a main effect of
List Length, F(1, 48) � 14.20, p � .01, 	p

2 � .23, showing that
response times for short lists (M � 1633.80 ms) were faster than
for long lists (M � 1811.29 ms). The significant interaction of the
factors List Length and Order, F(1, 48) � 4.11, p � .05, 	p

2 � .08,
demonstrated that the difference between short and long list was
more pronounced if the short list was studied first. These results
are perfectly in line with results from the accuracy analysis. The
main effect of Order Landscapes was not significant (F � 1).

Flowers.
Within-subjects analysis. The mean portions of correct an-

swers for the flowers subset are shown in Table 1. Performance for
short lists (M � .77) was only numerically better than performance
for long lists (M � .74), F(1, 48) � 1.99, p � .17. More impor-

Table 1
Mean Percent Correct Answers (and Standard Errors) in Two-Alternative Forced Choice
Recognition Tests in Experiments 1–3 Depending on Material, Length of Lists, and Order of the
List Lengths Studied

Experiment Materials

Order of lists

Short–Long list length Long–Short List Length

Short Long Short Long

Exp. 1 Landscapes .87 (.015) .79 (.015) .78 (.014) .77 (.011)
Flowers .84 (.018) .75 (.025) .71 (.030) .73 (.018)

Exp. 2 Homogeneous scenes .89 (.015) .85 (.017) .86 (.024) .83 (.027)
Heterogeneous scenes .91 (.015) .91 (.017) .92 (.011) .90 (.014)

Exp. 3 Homogeneous faces .90 (.021) .84 (.021) .81 (.027) .84 (.022)
Heterogeneous faces .94 (.011) .90 (.018) .91 (.018) .94 (.017)

Note. Standard errors were estimated between subjects. For repeated measurement analyses the corresponding
error term might be smaller.
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tantly, we again found a significant List Length � Order interac-
tion, F(1, 48) � 6.37, p � .05, 	p

2 � .12. Post hoc tests showed
that this interaction means that there is a clear list length effect
when the short list is studied first, t(46)� 2.62, p � .05, d � 0.73,
but not when the long list is studied first, t(46) � �0.66. Note that
considering the effect of interlist interference, this pattern is again
exactly in line with the predictions made by MINERVA 2. In
contrast to the pictures of landscapes, with pictures of flowers we
found a significant main effect of Order, F(1, 48) � 8.45, p � .01,
	p
2 � .15, showing that the overall performance was better when
the short list was studied first (M � .79), compared with the
condition where the long list was studied first (M � .72). We had
not expected to find this main effect. However, it could be attrib-
uted to a decrease in motivation after studying the long list with

flowers. Because this is the most difficult condition in the exper-
iment, subjects might have become a little frustrated and slightly
less engaged in the following list.

Between-subjects analysis. As pointed out above, the most
sensible analysis to test for a list length effect is to look at the first
block only. For the flowers, we found a strong list length effect in
the first block, t(48) � 4.09, p � .01, d � 1.16, with better
performance in the short list (M � .84) than in the long list (M �
.73). In the second block, intralist interference was masked by
interlist interference, caused by items encountered during the first
block. Consequently, we found no list length effect in the second
block, t(48) � �1.17, p � .25.

Response latencies. Response latencies for the flowers may be
obtained from Table 2. There was a significant effect of list length,

First Block Second Block

Short Long Short Long

0.5

0.6

0.7

0.8

0.9

1.0

List Length

P
(c

or
re

ct
)

Experiment
Exp 1  Flowers

Exp. 1  Landscapes

Exp. 2  Heterogeneous Scenes

Exp. 2  Homogeneous Scenes

Exp. 3  Heterogeneous Faces

Exp. 3  Homogeneous Faces

Simulation  Heterogeneous

Simulation  Homogeneous

Figure 3. Summary of the results of Experiment 1–3 and a simulation of MINERVA 2. The data of the
simulation show the means of 500 simulated experiments with 80 participants respectively and the same design
as in Experiments 2 and 3. The parameters for the simulation were M � 40, L(items) � .3, L(extra items) � .1,
N(short list) � 20, N(long list) � 80, h(heterogeneous) � .5, h(homogeneous) � .8, and N(extra list) � 5000.
Note that there is a pronounced list length effect only for homogeneous material in the first block in both the
empirical data as well as in the simulation. In the second block, there is no list length effect irrespective of the
type of study material.

Table 2
Mean of the Median Response Latencies (and Standard Errors) in Milliseconds in Two-
Alternative Forced Choice Recognition Tests in Experiments 1–3 Depending on Material, Length
of Lists, and Order of the List Lengths Studied

Experiment Material

Order of lists

Short–Long list length Long–Short List Length

Short Long Short Long

Exp. 1 Landscapes 1603.39 (101.07) 1888.57 (116.92) 1659.70 (59.60) 1745.46 (99.56)
Flowers 1614.20 (86.52) 1704.48 (90.04) 1571.57 (94.38) 1682.54 (71.92)

Exp. 2 Homog. scenes 1683.03 (70.47) 1763.49 (47.01) 1660.65 (84.92) 1734.78 (78.87)
Heterog. scenes 1403.94 (61.66) 1419.25 (48.70) 1373.09 (53.26) 1496.20 (53.11)

Exp. 3 Homog. faces 1470.08 (71.43) 1829.10 (95.90) 1847.35 (128.20) 1789.02 (98.87)
Heterog. faces 1285.93 (68.80) 1492.82 (74.84) 1333.67 (55.72) 1252.63 (43.42)

Note. Standard errors were estimated between subjects. For repeated measurement analyses the corresponding
error term might be smaller.
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F(1, 48) � 5.85, p � .05, 	p
2 � .11, with faster responses for short

lists (M � 1591.18 ms) compared to long lists (M � 1692.63 ms).
The effect of Order Flowers and the interaction of Order Flowers
and List Length were not significant (Fs � 1). Therefore, a
speed–accuracy trade-off can again be ruled out.

Discussion

Overall, the pattern found in Experiment 1 is quite consistent
and in line with predictions of MINERVA 2. First, analyzing the
within-subjects data, there is only a small list length effect for
the landscape data and no list length effect for the flower data. In
some sense, this pattern reflects the ambiguous situation found in
the literature concerning the list length effect. Although the anal-
ysis of a within-subjects design is quite common, from a global
matching perspective it might be misleading. This is because there
should be an influence of interlist interference in the second list.
Taking interlist interference into account, one would expect a list
length effect when the short list is studied first, but no or at least
a reduced list length effect when the long list is studied first. This
is exactly the pattern we found for the landscape and the flower
pictures. Interestingly, the effect of order of list lengths is usually
not reported at all in list length experiments.
An unbiased view on the effect of intralist interference is ob-

tained if one looks at the first block for each type of material only.
Assuming that there is only negligible interference between flow-
ers and landscapes, there cannot be any interlist interference in the
first blocks. Moreover, from a global matching perspective, inter-
ference from preexperimental items (i.e., extralist items) should be
small for homogeneous material like landscapes and flowers. In-
deed, we found a strong and consistent performance advantage for
short lists. The size of the list length effect in the first block is
comparable to the effect size predicted by MINERVA 2 (see
Figure 1).
If the second block is analyzed separately, predictions of MINERVA

2 change dramatically. For the short list, there is a small amount of
intralist interference and a large amount of interlist interference.
For the long list, MINERVA 2 predicts a large amount of intralist
interference and a small amount of interlist interference. Given that
the context of the first and the second list is highly similar (as it is
the case in our study and in most other studies), intralist and
interlist interference should add to a comparable amount of inter-
ference for both short and long list in the second trial. Therefore,
no list length effect is expected to be found in the second trial,
which is exactly the pattern we found in Experiment 1.
The third source of interference discussed is extralist interfer-

ence, that is, the influence of preexperimental learning episodes.
We argued that from a global matching perspective, the influence
of extralist interference is reduced for homogeneous material, and
the critical effect of intralist variance can be observed. The fact
that we observed a list length effect in the first trial can be seen as
indirect evidence for this line of argumentation. Nevertheless, it is
clear that the homogeneity of the material can only reduce the
influence of memory representations that do not stem from the
same type of stimuli. The missing list length effect in the second
blocks shows that learning the same type of material in preceding
blocks has a huge impact on performance in the current block.
Obviously, this interlist interference is a special kind of extralist

interference, which cannot be reduced by the homogeneity of the
material.
Although all results of Experiment 1 are in line with the pre-

dictions of a global-matching model, we still cannot be sure that
homogeneity is the critical variable that minimizes the influence of
extralist interference, because we used material that is homoge-
neous according to some face validity only. Therefore, we want to
explicitly manipulate the homogeneity of the stimulus material in
Experiment 2.

Experiment 2

In Experiment 2 we wanted to further test the impact of extralist
items on homogeneous and heterogeneous item material. To sup-
port our notion that homogeneity is the crucial variable underlying
the occurrence of the list length effect, we directly manipulated the
homogeneity of our material. The experiment was again based on
Experiment 4 by Kinnell and Dennis (2012). Using a rather het-
erogeneous set of photographs of scenes, the authors found no list
length effect. We wanted to replicate this finding in one condition
using heterogeneous material as well. In the other condition,
however, we modified exactly the same photographs using image-
processing filters, leading to an increase of the similarity between
the pictures, and therefore an increase of the homogeneity of our
material. Using such homogenized material, we expected to find a
list length effect, particularly when only the first block is analyzed,
which is not affected by interlist interference. For the second
block, we did not expect a list length effect for either the hetero-
geneous or the homogeneous scenes. See Figure 4 for the model
predictions based on a simulation of MINERVA 2.

Method

Participants. Overall, 123 participants took part in Experi-
ment 2, of which 80.5% were female. Mean age of participants was
22.02 years, ranging from 18 to 44 years. Almost all participants
were students of psychology at the University of Mannheim and
received course credit in return for their participation. Four sub-

Figure 4. Example of the material used in Experiment 2. Stimuli were
photographs of scenes (A) in the heterogeneous condition. In the homo-
geneous conditions (B) the same pictures were used, but the photographs
were experimentally homogenized by applying image-processing filters.
See the online article for the color version of this figure.
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jects were excluded from analysis because their memory perfor-
mance did not differ significantly from chance level. Because
overall performance was very high, it is likely that these partici-
pants did not follow task instructions.

Materials. The stimuli were 150 photographs showing a wide
variety of scenes, for example, traffic jam, a swimming hall, a
market, or a fitness center, to name just a few. In the heterogeneous
condition, these photographs were left in their original shape. In
the homogeneous condition, the same pictures were shown, but
this time we applied the pencil sketch and the high dynamic range
image-processing filters implemented in the software Picasa to all
images. As a consequence, all pictures looked more similar to each
other compared with the heterogeneous condition, although they
still displayed exactly the same content. Figure 4 shows examples
of the stimuli in the heterogeneous and homogeneous condition.
As in Experiment 1, pictures in the study phase were presented in
400 � 400 pixels size. In the two-alternative forced choice test,
pictures were scaled down to 300 � 300 pixels.

Design. We used a 2 � 2 � 2 factorial design with the factors
List Length (short vs. long), Material (homogeneous vs. heteroge-
neous), and Order (short-long vs. long-short). The factor List
Length was manipulated within subjects. Dependent variables
were the proportion of correct answers in a two-alternative forced
choice recognition test and response latencies. All factor levels
were randomly assigned to participants.

Procedure. The procedure was the same as in Experiment 1,
except that every participant only passed two blocks in total.
Because recognition for heterogeneous picture material is usually
very high, we reduced the presentation time to 700 ms in the
heterogeneous condition. In the homogeneous condition, pictures
were each presented for 900 ms.

Results

Within-subjects analysis. Means of correct answers for all
conditions are shown in Table 1 (see also Figure 3, for a graphical
representation). Memory performance for short lists (M � .90) was
better than memory performance for long lists (M � .87), F(1,
155) � 5.29, p � .05, 	p

2 � .04. Moreover, recognition perfor-
mance for items of heterogeneous lists was higher (M � .91) than
for items of homogeneous lists (M � .86), F(1, 115) � 15.81, p �
.05, 	p

2 � .14. There was no main effect of Order, F(1, 115) �
1.17, p � .05. As stated above, we expected to find a list length
effect for homogeneous but not for heterogeneous material. How-
ever, neither the interaction of Length and Material was signifi-
cant, F(1, 115) � 1.50, p � .05, nor the two other two-way
interactions (greatest F � 1.41). Of particular interest in this
analysis is the three-way interaction of Order, Length, and Mate-
rial. We expected the Order x Length interaction to be evident for
homogeneous lists (thereby replicating the results from Experi-
ment 1) but not for heterogeneous lists. Somewhat unexpectedly,
this three-way interaction was not significant (F � 1). Neverthe-
less, it again might be insightful to look at the first and second
block separately.

Between-subjects analysis. In the first block, only extralist
interference and intralist interference affect memory performance.
We hypothesized that extralist interference is quite large for het-
erogeneous items and therefore intralist interference should be
masked by the huge amount of extralist interference. Homoge-

neous items on the other hand should be at least partially immune
to the influence of extralist interference. Thus, we expected a list
length effect for homogeneous but not for heterogeneous items. A
simple main effect analysis of the effect of Length nested in
Material confirmed this predictions. First, there was a significant
main effect of Material, F(1, 115)� 5.40, p � .05, 	p

2 � .05, with
better performance for heterogeneous items (M � .91) than for
homogeneous items (M � .86). More importantly, we found a
significant list length effect for homogeneous material,
F(1,115) � 7.58, p � .01, 	p

2 � .06, but not for heterogeneous
material (F � 1).
In the second block, interlist interference comes into play.

Again, for heterogeneous material the additional impact of interlist
interference should be small, considering the supposedly large
impact of extralist interference. For homogeneous items, interlist
interference is more critical because homogeneity can protect only
from the influence of preexperimental learning episodes if items
are independent of the study material. For the short list length in
the second block there should be a greater amount of interlist
interference (because the long list was studied in the first block)
and only a small amount of intralist interference. For the long list,
there should be only a small amount of interlist interference and a
large amount of intralist interference. Therefore, the list length
effect should be absent for heterogeneous material and absent or at
least reduced for homogeneous material. Again, this prediction
was confirmed with a simple main effects analysis. The main
effect of Material was significant, F(1, 115) � 14.53, p � .01,
	p
2 � .11, but both nested main effects of Length were not signif-
icant (both Fs � 1).

Response latencies. Means of median response times for Ex-
periment 2 are shown in Table 2. There was a significant main
effect of Material, F(1, 115) � 25.23, p � .01, 	p

2 � .18, caused
by faster response times for the heterogeneous list (M � 1425.57
ms) compared with the homogeneous list (M � 1713.13 ms). Also,
participants responded faster to items of the short list (M �
1526.05 ms) than to items of the long list (M � 1605.41 ms), F(1,
115) � 7.18, p � .01, 	p

2 � .06. Neither the main effect of Order
nor any of the interactions were significant (greatest F � 1.09).
This pattern of response latencies disqualifies the interpretation
that performance differences are due to a speed–accuracy trade-
off. On the contrary, longer response latencies were associated
with lower memory performance.

Discussion

The results of Experiment 2 further confirm our notion that
homogeneity is the key to understand list length effects in recog-
nition memory. Overall, there was only a small list length effect.
The between-subjects analyses showed that this effect is mainly
driven by the first block of the homogeneous condition. Analyses
of the second block further demonstrated that homogeneity alone
is not enough to explain a list length effect. In the homogeneous
condition, there is no longer a list length effect in the second block.
This result replicates the finding from Experiment 1 where we
argued that homogeneity might minimize the influence of unre-
lated extralist items, but it cannot protect from interlist interference
when items from the same stimulus material were studied before.
In the heterogeneous condition, there was no list length effect in
the first nor in the second block. The most important aspect of
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Experiment 2 concerns the manipulation of homogeneity: Partic-
ipants in both the heterogeneous and homogeneous condition
studied the same set of pictures, only in the homogeneous condi-
tion image-processing filters were used to make the pictures ap-
pear more similar. In Experiment 3, we will demonstrate that this
manipulation of homogeneity also works with a different type of
stimulus material.

Experiment 3

To investigate to which extent the findings from Experiment 2
are applicable to other stimuli and to further test the impact of
extralist items on homogeneous versus heterogeneous stimulus
material, we conducted a third experiment. In their second exper-
iment, Kinnell and Dennis (2012) found a list length effect using
pictures of faces. Like the photographs of scenes used in our
Experiment 2, faces are a very familiar material in the sense that
we see faces (and pictures of faces) every day. But unlike the
photographs of scenes, the pictures of faces used by Kinnell and
Dennis (2012) were very homogeneous, as they all showed faces
of middle-aged Caucasian adults (of both genders) on a neutral
background. Just as in our previously reported findings, we argue
that homogeneity of the faces is the crucial factor that allowed
Kinnell and Dennis (2012) to find a list length effect with this
stimulus material. If this argumentation is correct, it should be
possible to switch off the list length effect using more heteroge-
neous face material and again switch on the effect by homogeniz-
ing the material with image-processing techniques as used in
Experiment 2.

Method

Participants. In Experiment 3, 107 participants were tested,
of which 82.2% were female. Mean age of participants was 21.69
years, ranging from 18 to 37 years. Almost all participants were
students of psychology at the University of Mannheim and re-
ceived course credit for their participation. Four subjects were
excluded prior to the analysis because their performance did not
significantly exceed chance level.

Material. Our stimulus set contained 271 photographs of
faces, which represented both genders, different ethnicities, cov-
ered a wide age range (including children and elderly people), and
expressed different emotional states (although most faces dis-
played a neutral or happy expression). There were different back-
grounds in the pictures; however, we ensured that it was more or
less neutral, that is, there were no people or dominating objects in
the background. Some of the people in the pictures wore headgear,
glasses, or make-up. In the heterogeneous condition, all photo-
graphs were shown without any alteration. However, in the homo-
geneous condition, we again applied the pencil sketch and the high
dynamic range image-processing filters implemented in the soft-
ware Picasa to all images. As a consequence, all pictures appeared
to be more similar to each other in the homogeneous condition
than they did in the heterogeneous condition, although the actual
content of the pictures, that is, the faces, remained the same. Just
like in Experiments 1 and 2, pictures in the learning phase were
presented in 400 � 400 pixels size. In the two-alternative forced
choice recognition test, pictures were scaled down to 300 � 300
pixels. For the training phase, we used faces of cartoon figures to

minimize interference with the material used in the actual exper-
iment.

Design. We used a 2 � 2 � 2 factorial design with the factors
List Length (short vs. long), Material (homogeneous vs. heteroge-
neous), and Order (short-long vs. long-short). The factor List
Length was manipulated within subjects. Dependent variables
were the performance of correct answers in a two-alternative
forced choice recognition test and response latencies. All factor
levels were randomly assigned to participants.

Procedure. The procedure was the same as in Experiment 2,
and again, presentation time in the heterogeneous condition was
700 ms and 900 ms in the homogeneous condition with a 200-ms
interstimulus interval.

Results

Within-subjects analysis. Means of correct answers for all
conditions are shown in Table 1 (see also Figure 3, for a graphical
representation). Memory performance for heterogeneous faces
(M � .92) was better than for homogeneous faces (M � .85), F(1,
101) � 22.37, p � .01, 	p

2 � .18. There was no main effect of List
Length (F � 1) but a significant interaction of Length and Order,
F(1, 101) � 13.42.37, p � .01, 	p

2 � .12. Separate repeated
measurements ANOVAs revealed that there was a significant list
length effect (M(short) � .92, M(long) � .87) when the short list
was studied first, F(1, 51) � 13.22.37, p � .01, 	p

2 � .21, and a no
list length effect when the long list was studied first (M(short) �
.86, M(long) � .89), F(1, 52) � 3.36, p � .07. We expected this
pattern to be more pronounced for the homogeneous condition but
the three-way interaction including the factor Material was not
significant (F � 1). All other effects were also not significant
(greatest F � 1.63).

Between-subjects analysis. Analyzing just the first block in a
between-subjects simple main effect analysis, we found a signifi-
cant effect of Material, F(1, 101) � 16.65, p � .01, 	p

2 � .14,
showing that memory performance for heterogeneous material
(M � .94) was better compared to homogeneous material (M �
.87). More importantly, recognition accuracy for short lists (M �
.90) was better than for long list (M � .84) in the homogeneous
condition only, F(1, 115) � 4.71, p � .05, 	p

2 � .05. In the
heterogeneous condition, this list length effect was not significant
(F � 1).
In the second block, items from heterogeneous lists were re-

membered better (M � .91) than items from homogeneous lists
(M � .83), F(1, 101) � 14.75, p � .01, 	p

2 � .13. Because in the
second block interlist interference masks the effect of intralist
interference, we expected the list length effect to be absent in the
homogeneous condition. Indeed, the simple main effect of Length
was not significant, neither nested in the homogeneous condition,
F(1, 101) � 1.44, p � .23, nor in the heterogeneous condition
(F � 1).

Response latencies. Means of individual median response
times for Experiment 3 are shown in Table 2. Overall, response
latencies were faster for items from heterogeneous lists (M �
1341.26 ms) than for items from homogeneous lists (M � 1735.54
ms), F(1, 101) � 26.72, p � .01, 	p

2 � .21. Further, there was a
significant main effect of Length, F(1, 101) � 10.36, p � .01,
	p
2 � .09, showing that items from short lists were associated with
faster responses (M � 14.81.07 ms) than items from long lists
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(M � 1584.47 ms). Analogously to the accuracy data, there was a
significant interaction of Order and Length, F(1, 101) � 28.33,
p � .01, 	p

2 � .22. Separate ANOVAs for the two Order conditions
revealed that there is a huge effect of Length on response times
(M(short) � 1374.46 ms, M(long) � 1654.49 ms) when the short
list is studied first, F(1, 51) � 36.14, p � .01, 	p

2 � .42, but no
effect when the long list is studied first, F(1, 52) � 2.18, p � .15.
All other main effects or interactions were not significant (greatest
F � 3.04). Overall, this pattern is in line with the accuracy data.
Manipulations which decrease memory performance (by increas-
ing homogeneity or list length) concurrently increase response
latencies. A speed–accuracy trade-off can definitively be ruled out
by this pattern in the response latencies.

Discussion

In sum, the results of Experiment 3 confirm the results of
Experiment 2. This time, we used stimulus material for which
Kinnell and Dennis (2012) found a list length effect. If there was
something special about faces, then it should not make a difference
whether we used unaltered or manipulated pictures of faces. We
argue that there is nothing special about faces per se, but that the
homogeneity of the material is critical for the list length effect to
occur. Following this line of reasoning, the list length effect should
be eliminated when using more heterogeneous pictures of faces.
This is exactly what we found in the between-subjects analysis.
Furthermore, following the same logic as in Experiment 2, we took
the same set of heterogeneous faces and homogenized it by ap-
plying a set of image-processing filters. For these homogenized
pictures of faces there is a strong list length effect in the first block.
In this block, only intralist interference (which varies as a function
of list length) and interference from extralist items (which is
constant for different list lengths) affects participants’ perfor-
mance. Because, according to MINERVA 2, homogeneity reduces
the influence of extralist items, the differences of intralist inter-
ference, that is, the effect of differing list lengths, should be
observable. This situation changes dramatically in the second
block, where interlist interference a) varies for different list lengths
and b) works against the effect of intralist interference. As a
consequence, the list length effect disappears even in the homo-
geneous condition in Block 2. To summarize, our results strongly
support our assumption that homogeneity of the stimulus material
is the crucial variable in the occurrence of a list length effect and
not the type of material per se.

General Discussion

The list length effect is a controversial phenomenon. Empiri-
cally, several studies replicated the effect (e.g., Brandt, 2007; Cary
& Reder, 2003; Gillund & Shiffrin, 1984; Gronlund & Elam, 1994;
Yonelinas, 1994), whereas others failed to do so (e.g., Buratto &
Lamberts, 2008; Dennis & Humphreys, 2001; Kinnell & Dennis,
2012). Theoretically, item noise models predict the effect attrib-
utable to intralist interference, whereas context noise models ne-
gate any intralist interference and therefore predict a null list
length effect. Recently, Kinnell and Dennis (2012) showed that the
effect only holds for certain item material. Further, they speculated
that item interference only emerges when interstimulus similarity
(i.e., the homogeneity of the stimulus material) is high enough.

Based on their research, we offered a theoretical explanation for
their results by means of the item noise model MINERVA 2.
According to our approach, preexperimental memory traces

increase the variances of echo-intensity distributions of both old
and new test items. These increases in the variances of the under-
lying distributions mask the relatively small increase in variances
that is attributable to a longer study list with heterogeneous ma-
terial. However, studying homogeneous material changes the sit-
uation: Increasing the homogeneity of the stimulus material will
enlarge the variances of echo-intensity distributions. As a conse-
quence, the relative impact of the additional variances due to
extralist items is reduced, that is, homogeneous material immu-
nizes against the impact of extralist items such that intralist inter-
ference can be observed. Note, however, that only the impact of
unrelated extralist items is reduced for homogeneous stimulus
material. In a multilist within-subjects design, items from previ-
ously learned lists of the same stimulus category will reduce the
list length effect for items in late blocks irrespective of the homo-
geneity. In within-subjects analyses, the list length effect therefore
is predicted to be reduced not only for heterogeneous but also for
homogeneous material. Analyzing the first and the second block of
a within-subjects design separately (i.e., between subjects), our
approach suggests a stronger list length effect for the first block
and a reduced list length effect for the second block, compared to
within-subjects analyses.
We tested our approach in three experiments. In Experiment 1,

we used photographs of flowers and landscapes to address the
homogeneity hypothesis. With both kinds of material we found the
predicted interaction of list length and order of length studied. In
between-subjects analyses, the list length effect was significant
only in the first block but not in the second block. In Experiments
2 and 3, we tested the homogeneity hypothesis more thoroughly. In
Experiment 2, we used a set of photographs of heterogeneous
scenes comparable with those used by Kinnell and Dennis (2012,
Exp. 4). By applying image-processing filters to these photos, we
experimentally homogenized the material. As predicted, we repli-
cated the null list length effect in the heterogeneous condition but
found a list length effect for homogeneous material. Experiment 3
was conducted in reference to the results of Experiment 2 by
Kinnell and Dennis (2012). Using pictures of faces, they found a
significant list length effect. We hypothesized that this effect
resulted from the homogeneous nature of the faces used in their
experiment and should be eliminated by using more heterogeneous
faces. Indeed, we found no list length effect for heterogeneous
faces in Experiment 3. However, when we applied the same
image-processing filters to the pictures as we did in Experiment 2,
we indeed found a list length effect for the same set of photos in
the between-subjects analysis of the first block. In all experiments,
response time analyses confirmed that the list length effects we
found were not simply attributable to a speed–accuracy trade-off.
To see that the pattern of the results of Experiments 1–3 quan-

titatively match model predictions of MINERVA 2, we ran a
simulation of 500 experiments with 80 participants each, imple-
menting the design of Experiments 2 and 3. The empirical results
as well as the results of the simulation are shown in Figure 3.
Although the performance level is lower in the simulation than in
the experiments, the overall pattern is quite clear. There is only a
substantial list length effect for homogeneous material in the first
block of the study. For heterogeneous material, the effect is very
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small in the first block. In the second block, there is a null effect
for both levels of homogeneity. It is puzzling that we did not find
a significant three-way interaction between the factors Length,
Homogeneity, and the Order of testing. We argue that this effect is
attributable to a lack of statistical power. Given the perfect simu-
lated data shown in Figure 3 we found a significant three-way
interaction only in about 10% of the cases. Thus, it is very likely
not to find any significant interaction given this sample size. This
is a general problem of finding predicted interference effects of
item noise models, such as the list length effect or the list strength
effect. These effects are statistically small effects and, hence,
difficult to detect in empirical data.
Moreover, in our experimental data, the influence of the critical

variable homogeneity is rather weak, especially in Experiment 2
and 3. In these experiments, we started with heterogeneous mate-
rial in order to show that extralist interference eliminates the list
length effect. This was confirmed for heterogeneous scenes (Exp.
2) and heterogeneous faces (Exp. 3). We tried to find a manipu-
lation that renders the scenes and faces into more homogeneous
material using some picture manipulation. However, such a ma-
nipulation can influence the homogeneity only slightly because the
semantics of the pictures are not affected. Therefore, it is not
surprising that the effect sizes for homogeneity are small and the
statistical results are not completely convincing. Our manipulation
of the homogeneity—as it was done in Experiments 2 and
3—might be weak, but it points to the potential underlying mech-
anism instead of focusing on effects for certain stimulus catego-
ries. The effect of the order of testing, on the other side, is strong
and stable in our data. Note that the order of testing refers to the
influence of interlist interference only. Assuming that the learning
context does not change greatly from list 1 to list 2 and MINERVA
2 holds, after the second study list, participants all have the same
number of items in memory and no list length effect is to be
expected in the second block. This argument holds irrespective of
the homogeneity of the material. The effect of homogeneity in our
account is to constrain the influence of unrelated extralist items,
not of items of the same category learned in a previous list. As a
consequence, a list length effect in within-subjects designs is hard
to find and usually smaller than model predictions, as long as the
context of the lists is not manipulated to be very different. If this
was the case, homogeneity of the contexts would homogenize
every single list and the influence of list 1 items on list 2 items
should be partially blocked.
It is also important to note that we adhered to the procedure of

Kinnell and Dennis (2012) as close as possible. We additionally
tried to eliminate all possible confounds discussed in Kinnell and
Dennis (2011). The only structural difference in the experiments
was that we implemented a two-alternative forced choice recog-
nition test, whereas Kinnell and Dennis (2012) used a yes/no
recognition test. We used the forced choice test because estimators
of the signal-detection-based performance measure d’ are biased
when the underlying distributions for old and new test items have
unequal variances (e.g., Verde, Macmillan, & Rotello, 2006).
Because MINERVA 2 predicts unequal variances, this might be an
issue.
We did not investigate the other types of material used by

Kinnell and Dennis (2012). In Experiment 3, they found a list
length effect for fractals. Following our line of reasoning, this
effect should disappear using more heterogeneous fractals. Unfor-

tunately, it is not easy to create heterogeneous fractals. Also, the
impact of extralist items should be stronger if items of the same
material have frequently been encountered before the experiment.
Assuming that participants do not admire the beauty of fractals too
often in their spare time, it should be hard to find a substantial
impact of extralist items at all. Nevertheless, even with this rather
unusual stimulus material, we would predict an interaction of list
length and order of study lists in a within-subjects design. This is
because even unusual homogeneous material is prone to the impact
of interlist interference. Unsurprisingly, Kinnell and Dennis found
a significant interaction of these factors in their study. Unfortu-
nately, they neither discuss this effect nor do they present the
descriptive data for the first and second block. Based on our
theoretical analyses and our empirical results, we predict that the
list length effect was stronger in the first block of their experiment
than in the second block.
In their first experiment, Kinnell and Dennis (2012) found no

list length effect when they used word pairs as stimuli. The reason
why we did not examine the influence of homogenizing word
material on the list length effect will be discussed in the following
section. We will refer to an important study that seems to contra-
dict our approach at a first glance.

The Inverse List Length Effect

Dennis and Chapman (2010) showed that under certain circum-
stances, recognition accuracy can increase with list length. This
so-called inverse list length effect does not seem to be compatible
with the item noise approach proposed in this paper. This approach
can predict a null list length effect if noise from extralist items
masks the interference caused by intralist items but an inverse
effect seems impossible. However, a closer look at their experi-
mental procedures reveals that this is not the case. In their exper-
iments, Dennis and Chapman used word material of eight taxo-
nomic categories. For the shortest list, participants studied one
word, for the medium list they studied three words, and for the
long list they studied eight words from each category. For targets,
they observed a weak increase in the hit rate. If distractors were
unrelated, that is, words were not drawn from the taxonomic
categories, the false alarm rate decreased with list length. In other
words, comparing targets with unrelated distractors results in an
inverse list length effect. It is important to note that this very
situation does not reflect a typical list length effect study, because
distractors and targets were not drawn from the same stimulus
pool. In fact, under the assumption that words from the same
category are semantically related, item noise models actually pre-
dict exactly this pattern. MINERVA 2, for example, predicts that
the variances of both the target and the distractor distributions
indeed increase with list length. But, as opposed to a typical list
length experiment, the difference of the means between the two
echo-intensity distributions is not unaffected in this situation. For
unrelated distractors, the mean of the echo-intensity distribution is
zero, irrespective of list length. The mean of the target distribution,
however, will increase with list length, especially for homoge-
neous lists. When the length of a homogeneous study list is
increased, the number of similar items in memory rises accord-
ingly: There is one matching and seven unrelated memory repre-
sentations in the short list; one matching memory representation,
two similar, and 21 unrelated memory representations in the me-
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dium list, and one matching, nine similar, and 70 unrelated mem-
ory representations in the long list. Because the local activation of
a single memory representation that is similar to the test item is
greater than zero (cf., formula 7), increasing mean differences
might outperform the increasing variances in this list length ex-
periment. Therefore, the better performance in the longer lists is
perfectly in line with the model predictions of MINERVA 2. The
situation is different if targets and distractors from the same
taxonomic category are compared. In this case, the mean differ-
ences of the target and distractor distributions remain constant with
increasing list length. Therefore, a typical list length effect should
emerge. Fortunately, Dennis and Chapman also tested distractors
from the taxonomic categories. Here the false alarm rates increase
with list length, and, importantly, this increase is stronger than the
increase in hit rates. In other words, a typical list length effect can
be observed as it is predicted by the item noise approach.
Dennis and Chapman (2010) argue that there is no representa-

tional overlap (i.e., no similarity) in word material because words
are usually well learned and therefore highly discriminable. Their
empirical argument for this assumption is that list length effects
are seldom found with word material. Therefore, the comparison
of targets with unrelated distractors seems to be justified. On the
other hand, from their point of view it is not easy to explain why
false alarms increase with list length for related distractors. Our
explanation is different: We agree that it is difficult to observe list
length effects with word material. But, according to our approach,
this occurs because words are often encountered and therefore
frequently represented in memory. Hence, word material leads to
strong extralist interference that masks the intralist interference
predicted by item noise models. To overcome these problems, one
may (a) increase power and (b) use homogenized material. Inter-
estingly, this is exactly what Dennis and Chapman did. First, they
increased power by comparing a short and a long list which
strongly differed in length by a factor of 10, which is quite
unusual. Second, they increased the homogeneity of stimulus
material by using semantic categories. As shown in our experi-
ments, in MINERVA 2 this homogeneity of the stimulus material
immunizes against the disruptive influence of extralist items.
One critical aspect of the study by Dennis and Chapman (2010)

is the fact that the false alarm rate decreases with list length for
unrelated distractors. Because—according to MINERVA 2—the
mean of the echo-intensity distribution is constant for unrelated
distractors and the variance increases with list length, this pattern
still seems incompatible with our assumptions. However, because
the mean of the target distributions rises, it is plausible that
participants adopt a different response criterion in this situation
(Hirshman, 1995). Allowing for varying response criteria, we
computed the predictions of MINERVA 2 for the experimental
procedure of Dennis and Chapman using the following parameters:
We assumed 30 features for every item. Homogeneity was set to
h � .75 within every semantic category. Furthermore, we assumed
that there were 20,000 extralist items moderately learned with
Lextra � .05, all unrelated to the categories. The experimental items
were learned with L � .35. The model predictions qualitatively
matched the pattern found by Dennis and Chapman (see Figure 5):
There was a moderate increase in the hit rate, a pronounced
increase in the false alarm rate for related distractors and a mod-
erate decrease in the false alarm rate for unrelated distractors.
Therefore, assuming different response criteria, MINERVA 2 can

both model the inverse as well as the typical list length effect in the
paradigm of Dennis and Chapman (2010).
Although we were quite successful in modeling both the list

length effect and the inverse list length effect of Experiment 1 of
Dennis and Chapman (2010), MINERVA 2 cannot explain the
results of Experiment 2 in their paper. In this experiment, Dennis
and Chapman used the same stimulus material and design as in
their Experiment 1. But this time they randomized the positions of
all the items within and between categories in the study phase.
Thus, only the order of memory representations is different, com-
pared to Experiment 1. As a result of this manipulation, the list
length effect remained but the inverse list length effect disap-
peared. Because the order of memory representations is not rele-
vant in MINERVA 2, it is clear that this results cannot be modeled
by MINERVA 2 without any further assumptions, for example,
concerning the learning strategy. Alternatively, one could eventu-
ally adjust the response criteria to fit the data. But we see no
theoretical reason for response criteria to vary with the order of the
study list. To summarize, MINERVA 2 can in principle model a
list length effect and an inverse list length effect, but in its current
form, it cannot account for the whole pattern of results found by
Dennis and Chapman (2010).

Conclusions

According to item noise models such as MINERVA 2, adding
items to a study list increases the variance of the familiarity
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Figure 5. Model predictions of MINERVA 2 in the experimental para-
digm of Dennis and Chapman (2010). Note that recognition performance
increases with list length when targets are compared with related distrac-
tors, but decreases with list length when targets are compared with unre-
lated distractors. MINERVA 2 parameters: M � 30, L � .35, h � .75,
20.000 unrelated extra list items learned with Lextra � .05. Response
criteria were set to 0.02, 0.024, and 0.036 for the short, medium, and long
list, respectively.
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distribution of both targets and distractors. As a consequence,
intralist interference emerges and recognition performance should
drop with increasing list lengths. But these models do not only
predict intralist interference. They also predict interlist interfer-
ence: Items from a previous study list will influence memory
performance for items tested later. Interlist interference and addi-
tional interference from preexperimental items can mask intralist
interference. With heterogeneous and familiar material, the list
length effect is predicted to be masked by the influence of extralist
items and no list length effect is expected in both blocks of a
within-subjects design. This is exactly the pattern we found in our
experiments (see Figure 3). In the between-subjects analyses of our
experiments, however, we found a pronounced list length effect
with homogeneous material in the first block. In the second block,
there is no list length effect even for homogeneous material.
In this paper, we focused on the model MINERVA 2 but we

think that this prediction also holds for other global memory
models. In fact, the idea that interference effects predicted by these
models might be masked by extralist items has already been
discussed as continuous memory by, for example, Murdock and
Kahana (1993). Moreover, even the idea that homogenization
immunizes against the influence of extralist item is not new.
Hintzman (1988) argues that identical context features in the study
phase minimize the influence of previously learned items. Accord-
ing to him, homogenization is due to a common study context,
whereas in our approach, identical item features additionally in-
crease homogenization. This seems to be especially important if
the context and the study material are familiar. Because reading
words on a computer screen is a very familiar task, this homoge-
nization by means of identical item features seems to be highly
relevant.
In context noise models such as the BCDMEM (Dennis &

Humphreys, 2001), the different contexts in which an item was
studied are the only source of errors because items are represented
orthogonally in memory. As a consequence, adding different items
to a study list should not add noise to a single item and no list
length effect should occur. Allowing only for context noise, the
model neither can explain the results of our experiments, nor the
results reported by Kinnell and Dennis (2012). Moreover, it is hard
to explain why our homogeneity manipulation (i.e., applying
image-processing filters) has such drastic effects on item presen-
tations. Moreover, pure context noise models are inherently weak
in explaining the typical rise in false alarm rates for similar
distractors, which is routinely found for word material (e.g., An-
isfeld & Knapp, 1968; Gillund & Shiffrin, 1984) as well as abstract
material (e.g., Franks & Bransford, 1971; Posner & Keele, 1970).
Although for verbal material an implicit associative response pro-
cess (Underwood, 1965) might be possible, this process seems to
be hardly plausible for abstract visual material. At last, there is no
logical reason for the strict representational distinction of context
and stimulus information. If the learning episode is a bit more
complex than the presentation of a single word, participants will
not always know whether a single feature is part of the item itself
or the context. For example, studying the revelation effect, Cam-
eron and Hockley (2000, Exp. 5) presented their participants with
pairs of words in the study phase. However, in the following
recognition test they tested only a single word. Thus, one of the
words constitutes the item information, the other one is part of the
context information. How could item information in this case be

represented fully orthogonally, but context information with rep-
resentational overlap?
Although context noise models cannot explain intralist-

interference effects, they offer a promising account for word-
frequency effects. Because high-frequency words have been en-
countered a lot in different contexts, the retrieved context of a test
word is noisier compared to low-frequency words. As a result,
recognition performance is better for low-frequency words (Schul-
man, 1967). Moreover, the typical mirror effect (Glanzer & Ad-
ams, 1985) found in recognition memory is a consequence of the
Bayesian decision rule of the model (but see Hemmer & Criss,
2013, for a more complex pattern). Both the word-frequency effect
and the mirror effect cannot be explained by global matching
without additional assumptions. One exception might be the REM
model (Shiffrin & Steyvers, 1997) that also has a Bayesian deci-
sion rule, but a slightly different approach for the frequency
effects. Nevertheless, when context information is taken into ac-
count in a global matching approach, items tested in the same
context should elicit a stronger memory signal than test items from
different contexts. This prediction has been confirmed empirically
(e.g., Arndt, 2010; Murnane & Phelps, 1993).
Dual-process models of recognition memory (Jacoby, 1991;

Mandler, 1980) explain an observed list length effect by a dis-
rupted recollection process (Yonelinas, 1994), whereas the famil-
iarity process is unaffected by additional items in the study list. In
principle, this approach is in line with the results of our experi-
ments. In fact, there is some evidence that participants rely more
on recollection if the similarity of test items increases (e.g., Nor-
man, 2002). Thus, for more homogeneous material a stronger list
length effect might be expected. However, it is at least astonishing
from that point of view that the relative contribution of recollection
is higher for abstract visual material such as fractals (Kinnell &
Dennis, 2012) or checkerboard patterns (Brandt, 2007) compared
with word material. Concerning the between-subjects analysis, we
see no obvious reason why the recollection process is selectively
impaired in the first blocks only.
The goal of this paper was to shed light on some seemingly

contradicting results concerning the list length effect. Kinnell and
Dennis (2012) argued that homogeneity might be a necessary
condition for creating intralist interference in recognition memory.
Based on this assumption, we presented a profound theoretical
analysis of this issue based on the MINERVA 2 model. In short,
according to our approach, intralist interference is always present
but its effect is masked by the influence of preexperimental mem-
ory representations when familiar heterogeneous stimulus material
is used. Although we focused on MINERVA 2, we are convinced
that this argument also holds for other global matching models.
Moreover, we do not think a definite decision has to be made
between item noise or context noise models. In a more recent
paper, Osth and Dennis (2015) reanalyzed several experiments
with a model incorporating item noise, context noise and back-
ground noise (i.e., the effect of extralist items) and estimated the
relative amount of these sources of interference in several para-
digms. Whereas global matching models used to focus on item
noise mainly and the BCDMEM model focused on context noise,
it is definitively promising to consider all sources of interference
within a single model. Analyzing the experiments of Kinnell and
Dennis (2012), Osth and Dennis concluded that item noise is
relatively strong for fractals and scenes. But like Kinnell and
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Dennis (2012), they did not offer a sound theoretical explanation
for this finding. With the theoretical and empirical work in this
paper, on the other hand, we do offer an explanation. Within our
approach, intralist interference does not depend on certain stimulus
material, but highly frequent heterogeneous item material opens
the door for background noise, which minimizes the relative
amount of intralist interference.
The current paper provides some evidence for item-specific

interference, which it is at the heart of item noise models. Never-
theless, the role of context-specific interference as well as back-
ground noise might also play an important role in these models.
For example, having learned an item many times in very different
contexts can completely disturb the process of contextual reinstate-
ment in item noise models and therefore constitute the basis of
semantic, that is, context-free, memories. Overall, we share the
belief that item noise as well as context noise play an important
role in recognition memory processes (Criss, Malmberg, & Shif-
frin, 2011; Criss & Shiffrin, 2004; Osth & Dennis, 2015).

References

Anisfeld, M., & Knapp, M. (1968). Association, synonymity, and direc-
tionality in false recognition. Journal of Experimental Psychology, 77,
171–179. http://dx.doi.org/10.1037/h0025782

Annis, J., Lenes, J. G., Westfall, H. A., Criss, A. H., & Malmberg, K. J.
(2015). The list-length effect does not discriminate between models of
recognition memory. Journal of Memory and Language, 85, 27–41.
http://dx.doi.org/10.1016/j.jml.2015.06.001

Arndt, J. (2010). The role of memory activation in creating false memories
of encoding context. Journal of Experimental Psychology: Learning,
Memory, and Cognition, 36, 66–79. http://dx.doi.org/10.1037/a0017394

Brandt, M. (2007). Bridging the gap between measurement models and
theories of human memory. Zeitschrift für Psychologie/Journal of Psy-
chology, 215, 72–85. http://dx.doi.org/10.1027/0044-3409.215.1.72

Buratto, L. G., & Lamberts, K. (2008). List strength effect without list
length effect in recognition memory. The Quarterly Journal of Experi-
mental Psychology, 61, 218 –226. http://dx.doi.org/10.1080/
17470210701566713

Cameron, T. E., & Hockley, W. E. (2000). The revelation effect for item
and associative recognition: Familiarity versus recollection. Memory &
Cognition, 28, 176–183. http://dx.doi.org/10.3758/BF03213797

Cary, M., & Reder, L. M. (2003). A dual-process account of the list-length
and strength-based mirror effects in recognition. Journal of Memory and
Language, 49, 231–248. http://dx.doi.org/10.1016/S0749-596X(03)
00061-5

Clark, S. E., & Gronlund, S. D. (1996). Global matching models of
recognition memory: How the models match the data. Psychonomic
Bulletin & Review, 3, 37–60. http://dx.doi.org/10.3758/BF03210740

Criss, A. H., Malmberg, K. J., & Shiffrin, R. M. (2011). Output interfer-
ence in recognition memory. Journal of Memory and Language, 64,
316–326. http://dx.doi.org/10.1016/j.jml.2011.02.003

Criss, A. H., & Shiffrin, R. M. (2004). Context noise and item noise jointly
determine recognition memory: A comment on Dennis and Humphreys
(2001). Psychological Review, 111, 800–807. http://dx.doi.org/10.1037/
0033-295X.111.3.800

Dennis, S., & Chapman, A. (2010). The inverse list length effect: A
challenge for pure exemplar models of recognition memory. Journal of
Memory and Language, 63, 416–424. http://dx.doi.org/10.1016/j.jml
.2010.06.001

Dennis, S., & Humphreys, M. S. (2001). A context noise model of episodic
word recognition. Psychological Review, 108, 452–478. http://dx.doi
.org/10.1037/0033-295X.108.2.452

Dennis, S., Lee, M. D., & Kinnell, A. (2008). Bayesian analysis of
recognition memory: The case of the list-length effect. Journal of
Memory and Language, 59, 361–376. http://dx.doi.org/10.1016/j.jml
.2008.06.007

Franks, J. J., & Bransford, J. D. (1971). Abstraction of visual patterns.
Journal of Experimental Psychology, 90, 65–74. http://dx.doi.org/10
.1037/h0031349

Gillund, G., & Shiffrin, R. M. (1984). A retrieval model for both recog-
nition and recall. Psychological Review, 91, 1–67. http://dx.doi.org/10
.1037/0033-295X.91.1.1

Glanzer, M., & Adams, J. K. (1985). The mirror effect in recognition
memory. Memory & Cognition, 13, 8–20. http://dx.doi.org/10.3758/
BF03198438

Godden, D. R., & Baddeley, A. D. (1975). Context-dependent memory in
two natural environments: On land and underwater. British Journal of
Psychology, 66, 325–331. http://dx.doi.org/10.1111/j.2044-8295.1975
.tb01468.x

Gronlund, S. D., & Elam, L. E. (1994). List-length effect: Recognition
accuracy and variance of underlying distributions. Journal of Experi-
mental Psychology: Learning, Memory, and Cognition, 20, 1355–1369.
http://dx.doi.org/10.1037/0278-7393.20.6.1355

Hemmer, P., & Criss, A. H. (2013). The shape of things to come: Evalu-
ating word frequency as a continuous variable in recognition memory.
Journal of Experimental Psychology: Learning, Memory, and Cogni-
tion, 39, 1947–1952. http://dx.doi.org/10.1037/a0033744

Hintzman, D. L. (1986). ‘Schema abstraction’ in a multiple-trace memory
model. Psychological Review, 93, 411–428. http://dx.doi.org/10.1037/
0033-295X.93.4.411

Hintzman, D. L. (1988). Judgments of frequency and recognition memory
in a multiple-trace memory model. Psychological Review, 95, 528–551.
http://dx.doi.org/10.1037/0033-295X.95.4.528

Hintzman, D. L., & Waters, R. M. (1970). Recency and frequency as
factors in list discrimination. Journal of Verbal Learning and Verbal
Behavior, 9, 218 –221. http://dx.doi.org/10.1016/S0022-5371(70)
80054-8

Hirshman, E. (1995). Decision processes in recognition memory: Criterion
shifts and the list-strength paradigm. Journal of Experimental Psychol-
ogy: Learning, Memory, and Cognition, 21, 302–313. http://dx.doi.org/
10.1037/0278-7393.21.2.302

Humphreys, M. S., Bain, J. D., & Pike, R. (1989). Different ways to cue a
coherent memory system: A theory for episodic, semantic, and proce-
dural tasks. Psychological Review, 96, 208–233. http://dx.doi.org/10
.1037/0033-295X.96.2.208

Jacoby, L. L. (1991). A process dissociation framework: Separating auto-
matic from intentional uses of memory. Journal of Memory and Lan-
guage, 30, 513–541. http://dx.doi.org/10.1016/0749-596X(91)90025-F

Kinnell, A., & Dennis, S. (2011). The list length effect in recognition
memory: An analysis of potential confounds. Memory & Cognition, 39,
348–363. http://dx.doi.org/10.3758/s13421-010-0007-6

Kinnell, A., & Dennis, S. (2012). The role of stimulus type in list length
effects in recognition memory. Memory & Cognition, 40, 311–325.
http://dx.doi.org/10.3758/s13421-011-0164-2

Macmillan, N. A., & Creelman, C. D. (2008). Detection theory: A user’s
guide. New York, NY: Psychology Press.

Mandler, G. (1980). Recognizing: The judgment of previous occurrence.
Psychological Review, 87, 252–271. http://dx.doi.org/10.1037/0033-
295X.87.3.252

Murdock, B. B. (1993). TODAM2: A model for the storage and retrieval
of item, associative, and serial-order information. Psychological Review,
100, 183–203. http://dx.doi.org/10.1037/0033-295X.100.2.183

Murdock, B. B. (1997). Context and mediators in a theory of distributed
associative memory (TODAM2). Psychological Review, 104, 839–862.
http://dx.doi.org/10.1037/0033-295X.104.4.839

T
hi
s
do
cu
m
en
t
is
co
py
ri
gh
te
d
by
th
e
A
m
er
ic
an
Ps
yc
ho
lo
gi
ca
l
A
ss
oc
ia
tio
n
or
on
e
of
its
al
lie
d
pu
bl
is
he
rs
.

T
hi
s
ar
tic
le
is
in
te
nd
ed
so
le
ly
fo
r
th
e
pe
rs
on
al
us
e
of
th
e
in
di
vi
du
al
us
er
an
d
is
no
t
to
be
di
ss
em
in
at
ed
br
oa
dl
y.

16 BRANDT, ZAISER, AND SCHNUERCH



Murdock, B. B., & Kahana, M. J. (1993). Analysis of the list-strength
effect. Journal of Experimental Psychology: Learning, Memory, and
Cognition, 19, 689–697. http://dx.doi.org/10.1037/0278-7393.19.3.689

Murnane, K., & Phelps, M. P. (1993). A global activation approach to the
effect of changes in environmental context on recognition. Journal of
Experimental Psychology: Learning, Memory, and Cognition, 19, 882–
894. http://dx.doi.org/10.1037/0278-7393.19.4.882

Norman, K. A. (2002). Differential effects of list strength on recollection
and familiarity. Journal of Experimental Psychology: Learning, Mem-
ory, and Cognition, 28, 1083–1094. http://dx.doi.org/10.1037/0278-
7393.28.6.1083

Osth, A. F., & Dennis, S. (2015). Sources of interference in item and
associative recognition memory. Psychological Review, 122, 260–311.
http://dx.doi.org/10.1037/a0038692

Posner, M. I., & Keele, S. W. (1970). Retention of abstract ideas. Journal
of Experimental Psychology, 83, 304–308. http://dx.doi.org/10.1037/
h0028558

Roediger, H. L., & McDermott, K. B. (1995). Creating false memories:
Remembering words not presented in lists. Journal of Experimental
Psychology: Learning, Memory, and Cognition, 21, 803–814. http://dx
.doi.org/10.1037/0278-7393.21.4.803

Schulman, A. I. (1967). Word length and rarity in recognition memory.
Psychonomic Science, 9, 211–212. http://dx.doi.org/10.3758/
BF03330834

Shiffrin, R. M., & Steyvers, M. (1997). A model for recognition memory:
REM – retrieving effectively from memory. Psychonomic Bulletin &
Review, 4, 145–166. http://dx.doi.org/10.3758/BF03209391

Strong, E. K. J. (1912). The effect of length of series upon recognition
memory. Psychological Review, 19, 447–462. http://dx.doi.org/10.1037/
h0069812

Underwood, B. J. (1965). False recognition produced by implicit verbal
responses. Journal of Experimental Psychology, 70, 122–129. http://dx
.doi.org/10.1037/h0022014

Verde, M. F., Macmillan, N. A., & Rotello, C. M. (2006). Measures of
sensitivity based on a single hit rate and false alarm rate: The accuracy,
precision, and robustness of d’, az, and a’. Perception & Psychophysics,
(4), 643–654. http://dx.doi.org/10.3758/BF03208765

Yonelinas, A. P. (1994). Receiver-operating characteristics in recognition
memory: Evidence for a dual-process model. Journal of Experimental
Psychology: Learning, Memory, and Cognition, 20, 1341–1354. http://
dx.doi.org/10.1037/0278-7393.20.6.1341

Received February 20, 2017
Revision received February 19, 2018

Accepted February 22, 2018 �

T
hi
s
do
cu
m
en
t
is
co
py
ri
gh
te
d
by
th
e
A
m
er
ic
an
Ps
yc
ho
lo
gi
ca
l
A
ss
oc
ia
tio
n
or
on
e
of
its
al
lie
d
pu
bl
is
he
rs
.

T
hi
s
ar
tic
le
is
in
te
nd
ed
so
le
ly
fo
r
th
e
pe
rs
on
al
us
e
of
th
e
in
di
vi
du
al
us
er
an
d
is
no
t
to
be
di
ss
em
in
at
ed
br
oa
dl
y.

17ITEM MATERIAL, LIST LENGTH, AND RECOGNITION MEMORY


