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Motivation & Outline

• Develop the “best” high-speed 100G electronics solutions
• Consider SiGe: Inherently fast, high performing, cheap,  

homogeneous integration (Bi+CMOS), energy efficient
• Outline: – State-of-the-art & design considerations 

– Actual SiGe ADC and DAC demonstrators
– Outlook
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Digital (OOK) MUX

• Fastest device on earth
– InP HBT MUX

165 Gb/s, 400 mVpp, 1.6 W

– High speed allows trade-off:
100 Gb/s, 700 mVpp, 0.8 W

• SiGe speed is sufficient:
132 Gb/s, 500 mVpp, 1.45 W

• MUX output selector is inhe-
rently fast(est circuit)

• Speed supported by gm↑
~ gain & output conductance

•  CMOS (gm↓) < 50 Gb/s

4:1 MUX

HBT gm  I 0 ≈ 10 MOS gm I 0
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Digital Modulator Driver

• Aim: power + cost saving

• Consider: MZI, Vπ= 2 V, 
push-pull config.

• Direct drive by Power-MUX:
✔ 50 Gb/s, 2 Vpp (1998) 

(Si-bipolar ft/fmax=72/75 GHz)
● Standard MUX

● 0.7 Vpp @ 100 Gb/s (InP)
● 0.5 Vpp @ 132 Gb/s  (SiGe)
● to be optimized for voltage swing ↑
● support by next gen. HBT technol.

● Expect > 1 Vpp @ 112 Gb/s in SiGe
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Analog MUX: DAC
circuit example
later in this talk

• MUX concept enables 
very fast SiGe DACs 

• Direct push-pull modulator drive 
with 2 Vpp @ 30 GHz possible
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Linear Modulator Driver 

• Higher speed: parasit. C ↓
• Distributed amp. concept

– L compensates for  C
– but HBTs input impe-

dance is not pure C

• Emitter degeneration
– input impedance → C
– linearizes
– gain ↓ but x 2 is suffic.

• Next. gen. SiGe HBTs:
– BVCEO → 1 V, but ...

– push-pull > 2Vpp @ 40GHz
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(Transimpedance) Amplifier

product design

• Parallel feedback (RF):

– low ohmic Zin

– linearization

• Volt. amp. must have
mag(Gv)↑ +  phase(Gv)↓
→ HBTs (gm↑)

• Parasitics for f ↑: 
Zin → 50 Ω (34 dBΩ)

• Use 50-Ω pre-amp. w/o 
feedback ↔ noise
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Autom. Gain Control (AGC) Amp

• How to get P↓?
– next SiGe tech. is 3x faster
– integrate with ADC

• saves 50-Ω I/O
• digital peak detect.

• fintens<< fAGC << min(fsig) ?

• DSP task: gain dependency?

source: Sewiolo et.al [45]



9

OOK: CDR & DeMUX

• Marginal 112 Gb/s performance
→High power consumption (2..5 W)

• Improvements by
– next gen. HBT technol.

(ft/fmax ≈ 300 / 500 GHz)

– “novel” circuit concepts
• “Novel”:

– don't squeeze out bipolar 
transistor performance
(gm↑  → operating currents ↑)

– Look how CMOS copes with it's 
inherent worse gm!

only retiming
(1 MSD-FF)

same circuit type
(bang-bang detect., 
1:2 DeMUX)
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Analog RX: ADC

circuit example
in this talk

next gen. targets?

448 Gb/s!!!

CMOS SiGe

sampl. rate

ENOB

power diss.

tech. outlook

bandwidth
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• Next generation
– 60/120 GS/s,
– ENOB > 5/4
– BW > 25/50 GHz
– P = 2 W ?

• DSP < 45 nm

→
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SiGe HBT DAC / ADC demonstrators 

• Part of European 100GET R&D program to
– evaluate pros, cons and future potential of SiGe converters

• main target: maximum bandwidth

– enable system design and transmission experiments
• main target: real time operation

• Real time interface to commercially available FPGAs 
– Xilinx Virtex 4/5: 24 Transceivers up to 6.5 Gb/s
– Altera Stratix 4: 24 … 48 Transceivers up to 8.5 Gb/s

• 6 bit resolution; 4 times multiplexed interface = 24 lanes
– Virtex4/5: 26 GS/s (+ overclocking)
– Stratix 4: 34 GS/s



12

30 GS/s 6 bit ADC demonstrator  

• Transparent sampling 0-30 GS/s
→ scalable: trade speed against power

• Differential or single-ended operation 
and ac-coupling possible

• 282 mVpp full-scale input

• Input bandwidth ≈ 22 GHz

• On-chip 100 ps clock phase shifter 

• Sampling point adjustment

• Interleaving of 4x 30GS/s ADCs 

• Pure SiGe HBT cell based design  
fT/fmax, 200/250 GHz.
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ADC static performance
 INL 
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● Optimization of automatic calibration 
currently in progress:
─ to adjust threshold, offset, and gain 

of converter stages
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ADC dynamic performance

• Design issue: ringing of ADC output drivers to FPGA 
• Max. interface rate limits sampling rate to 18 GS/s
• Workaround: store 16 samples to internal memory → transfer data via serial low 

speed register interface to PC → calculate sine-fit (IEEE-STD-1241)

• Measurement: SR=30 GS/s

• ENOB estimate based on 
only 16 samples

• Measurement with internal 
RC-Oscillator (noise)



15

ADC power dissipation map
• 10.0 W total power diss.

• ADC core power:
  0.65 W input amp
  1.96 W T&H
  0.43 W Clock
  1.80 W ADC
  4.84 W

• Logistics + auxiliary: 
  4.16 W FPGA I/O
  1.16 W Aux.         

• Savings:
- safety margins
- circuit concepts
- next Bi+CMOS gener.

• Target: 4 W (65 GS/s, 
25 GHz BW, 5 ENOB)
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30 (38) GS/s 6 bit DAC demonstrator

• CML output, on-chip 50-Ω term.

• Full-scale output programmable:
0.25 … 0.9 mVpp (single ended)
0.50 ... 1.8 Vpp (differential). 

• Bandwidth:  > 25 GHz.

• Speed limit at 28 GS/s 
(7 Gb/s overclocked Virtex 4 I/Os)

• 38 GS/s core speed 
(but timing issue to be solved)

• Pure SiGe HBT cell based design  
fT/fmax, 200/250 GHz.
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DAC power dissipation map

If all blocks powered on:

  8.4 W FPGA I/O+Sync.
  1.3 W Regs., cal, ...
  3.3 W High speed circ. 
13.0 W Total 

High speed consumes 
„only“ ¼ of total power

¾ of total power 
due to „logistics“ 
at 7.5...15 Gb/s.
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DAC performance
Integral Nonlinearity vs. code (test mode)

Module #2
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• INL measurement 
• DC Ramp
• DAC running at 30 GS/s
• Code applied via internal register 
• 50-Ω DC termination
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• Dynamic FOMs @ 28GS/s 
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DAC transient performance 

• FOM 1: glitches
– MSB-1↔MSB
– all along a ramp
– step response 

(over/undershoot)
– shall be < ± ½ LSB

• FOM 2: rise/fall time
– full scale step
– shall reach ± ½ LSB  

of start and end 
values

• Is this really required?

FOM1

FOM1

FOM2: < 12ps
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ADC/DAC boards for real time experiments

Xilinx ML424 Board with Virtex4-FX140  

15 GHz Clock →
input

Reference clock 
(:40) for FPGA is 
generated by
the DAC

48 RF-cables for 
24 differential 
SerDes links

DAC module 

30 GS/s output 
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Outlook on high-speed electronics

• Rethink transceiver partitioning: combine, relax and release 
functions/tasks and performance
– direct MZM drive, integrate AGC, adaptive DAC step size ...
– DSP algorith. to consider electronics as a part of the channel  

• Next generation BiCMOS technology: speed x2
– trade speed against power efficiency

– novel concepts to replace gm-driven performance

• SiP: no need for low-ohmic 50-Ω TML interfaces
– Use simple + high ohmic, high-speed interfaces 

• 3-D TSV interconnects becomes cheap Si standard assembly 
(DRAM, MEMS). Tend: 2000 I/Os, ø=2μm, l=20μm  
– combine best CMOS and SiGe technologies → Bi+CMOS

source: Samsung


