

Exploring the limits:

Development of Integrated High–Speed Circuits

Prof. Dr. M. Möller Saarland University MICRAM Microelectronic GmbH

40th Anniversary – Moores Law Still Valid

M.Möller, Uni Saarland, MICRAM

(Why) Does increase in speed slow down?

Do we need (even) faster Semiconductor-Technologies?

M.Möller, Uni Saarland, MICRAM

Speed does not scale with transistor cut–off frequency – WHY?

Outline: Some Speed–Limiting Factors...

... And Ways to Surpass the Limits.

- How fast is the "intrinsic" transistor?
- Troublesome layout parasitics
- High Mismatch High–Speed
- **Borderline design: Speed–Optimisation**
- Chip–Assembly a multidisciplinary challenge
- Measurement setup the Chicken and the Egg Dilemma
- Some latest 100 Gbit/s Receiver/Transmitter results

"A rough overview from the circuit designers perspectice"

What limits bipolar-transistor speed?

M.Möller, Uni Saarland, MICRAM

Parasitic Capacitances of Transistor Metallization

M.Möller, Uni Saarland, MICRAM

Electromigration determines minimum metal cross-section area

Capacity reduction by:

- Iower dielectric constant
- thicker dielectric
- smaller metal width/area (eg. Copper insted of Aluminum)

Technological limit almost exhausted

Fig. 7

Interconnect Parasitics Dominate Transistor Parasitics

M.Möller, Uni Saarland, MICRAM

Layout: Very komplex 3–Dim. RLCM Network with major influence on the circuit's speed.

Layout Determines Speed–Limit

Example: Layout of 1:2 Clock Distribution Amplifier

Small parasitic C: small (tall) wires, thick oxide, low dielectric constant Small parasitic L: broad wires (tradeoff with C), short wires (often not possible) -> L becomes critical!

Optimization Goal: Short Wiring

Fig. 9

Constraints: Line lengts of dedicated signals must be at the same length

Design Rules Impact on Speed

M.Möller, Uni Saarland, MICRAM

High–Speed needs High–Support by Design Rules

Bridgeover the Distance

M.Möller, Uni Saarland, MICRAM

Range of height and epsr limited: ZL < 80 Ohm

Fig. 11

Concept of Impedance Mismatch

M.Möller, Uni Saarland, MICRAM

The More Mismatch

High-Speed Circuit Topology

Example: Amplifier Stage

This is the Basic Principle Used in All High–Speed Circuits

Complex–Conjugate Mismatch

M.Möller, Uni Saarland, MICRAM

Utilize Complex–Conjugate Mismatch to Increase Speed

Transistor = Impedance-Transformator

M.Möller, Uni Saarland, MICRAM

Transformation Used to Optimize Pole/Zero Distribution of a Circuit

Fig. 16

Emitter–Follower Chain: A Tunable Resonance Network

M.Möller, Uni Saarland, MICRAM

Great Opportunity to Increase Circuit Speed but ...

Speed Optimized Circuits are Marginal Stable

Proof of Stability:

Every Litte Piece of Metal is Suspicious! Feedback Path might be different than Signal Path

Fast Technology: Low Breakdown Voltage (V_{CF0})

M.Möller, Uni Saarland, MICRAM

V CEO Limit can be extended up to V CBO by use of adequate Transistor–Models and Circuit Concepts

Fig. 19 Chip Assembly: High–Frequency Meets Precision Mechanics and Heat–Control

M.Möller, Uni Saarland, MICRAM

Design Goals: Small Inductances, High Thermal Conductivity

Using Bondwires to Optimize the Strip-Line to Chip Interface

M.Möller, Uni Saarland, MICRAM

Odd–Mode–Inductance can be adjusted by bondwire spacing

Bondwire can be used also for Noise– and Pulsshape–Optimization

Fig. 21/22

Omit Hot-Spots

High Speed = High Power Consumption

Power Density: Chip: Your kitchen hot–plate: $1 \frac{W}{mm^2} \iff 0.01 \frac{W}{mm^2}$ "Hot-Spots": Areas of high power density lead to local heat concentration "Self-heating" Transistor heat up due to its own power Time-constants in the ns-range!

Transistor cut–off frequency drops with increasing temperature:

Spread Elements / Distribute Power Over Chip Area

But: Longer Wiring!

Measurement of High–Speed Circuits

The Chicken and the Egg Dilemma

Measurement of 100 Gbit/s MUX and CDR&DEMUX Modules

Fig. 24

M.Möller, Uni Saarland, MICRAM

Measurement Concept with Auxiliary Circuits Must be Considered During Circuit Design

100 Gbit/s Output Eye Diagram of 2:1 MUX Module

M.Möller, Uni Saarland, MICRAM

Technologie: Infineon B10HF f_T = 225 GHz f_{max} = 300 GHz

Outputsignal:
320 mVpp, single ended
< 400 fs Jitter

Fig. 26 86 Gbit/s Reveiver (TIA, DEMUX, CDR, VCO) with On–Chip PLL

M.Möller, Uni Saarland, MICRAM

- German BMBF–Project: MultiTeraNet
- Technology: Infineon B10HF

Measurement Results:

- Min. Input Voltage (BER=0): < 30 mV single ended</p>
- Recovered Clock: < 400 fs Jitter</p>
- With Exteral VCO (50 GHz): 100 Gbit/s (BER=0)

That's it for Today – Thank You!