Universität des Saarlandes Lehrstuhl für Elektronik und Schaltungstechnik Klausur Elektronik II WS13/14

Name	
Vorname	
Matrikelnummer	
Studiengang (Semester)	

Wichtige Hinweise zur Bearbeitung

Die Bearbeitungszeit der Aufgaben beträgt **120 Minuten**. Es sind **alle Hilfsmittel** erlaubt, mit Ausnahme elektronischer Geräte, die zur Kommunikation verwendet werden können. Dazu gehören zum Beispiel: Laptops, PDAs, Handys, etc.

Gewertet werden nur Lösungen mit vollständigem Lösungsweg und Begründung.

Verwenden Sie bitte für jede Aufgabe ein eigenes Lösungsblatt, das Sie mit Ihrem **Namen, Ihrer Matrikelnummer und der Nummer** der darauf bearbeiteten Aufgabe versehen.

In etwa die Hälfte der mittleren Gesamtpunktzahl von sechs Aufgaben ist zum Bestehen erforderlich.

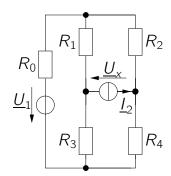
Beachten Sie bitte die an jeder Aufgabe **angegebene Punktzahl**. Sie ist ein Anhaltspunkt für die Schwierigkeit und den erforderlichen Arbeitsaufwand.

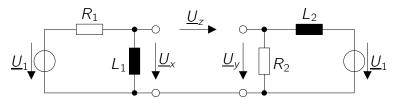
Heften Sie bitte alle Aufgaben- und Lösungsblätter, die Sie abgeben, zusammen.

Auswertung Ihrer Klausur

$$\sum$$
 / 90 P — Note

Aufgabe 1) Elementare Netzwerkberechnung, äquivalente Umformung Punkte: / 12




Abb. 1: Gegebenes Netzwerk.

Gegeben ist das Netzwerk in Abb. 1, in dem die Spannung \underline{U}_x zu berechnen ist.

- a) Zeichnen Sie den Graphen, sowie Baum und Co-Baum des Netzwerks aus Abb. 1 und nummerieren Sie die Knoten und Zweige.
- b) Stellen Sie die Knoteninzidenzmatrix [A] des Netzwerks auf.
- c) Wählen Sie einen Bezugsknoten und leiten Sie die Knotenadmittanzmatrix $[Y_n]$ sowie die Knotenströme $[I_{qn}]$ des Netzwerks formal mit Hilfe der Knoteninzidenzmatrix her. Hinweis: Stellen Sie zunächst anhand des Graphen aus Aufgabenteil a) eine Matrix auf, welche die Anordnung der Zweigadmittanzen des Netzwerks wiedergibt. (In der Vorlesung mit [Y] bezeichnet.)
- d) Geben Sie mit Hilfe der Ergebnisse aus Aufgabenteil c) einen Ausdruck zur Berechnung der Spannung \underline{U}_x an. Nehmen Sie hierzu an dass $R_1 = R_2 = R_x$ und $R_3 = R_4 = R_y$.

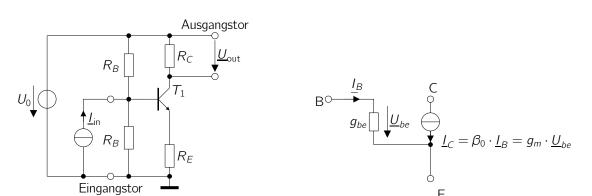
Aufgabe 2) Komplexe Rechnung, Ortskurve

Punkte: / 14

Abb. 2: Zu analysierende Schaltung.

Betrachtet wird die Schaltung aus Abb. 2 mit den Spannungen \underline{U}_x , \underline{U}_y und \underline{U}_z . Es gilt: $\underline{U}_1 \in \mathbb{R}$

a) Berechnen Sie die Wirkungsfunktionen


$$\frac{\underline{U}_x}{\underline{U}_1}$$
 und $\frac{\underline{U}_y}{\underline{U}_1}$

- b) Zeichnen Sie qualitativ den Verlauf der Ortskurven der Spannungen \underline{U}_x und \underline{U}_y im Bereich $0 \le \omega \le \infty$. Markieren Sie die Punkte, bei denen Real- und Imaginärteil jeweils ihre Maximal- und Minimalwerte besitzen und geben Sie die zugehörigen Werte der Spannungen und die Frequenzen, bei denen die Punkte erreicht werden, an.
- c) Die Ortskurve der Spannung \underline{U}_z soll im Folgenden für zwei unterschiedliche Fälle konstruiert werden.
 - i) Fall 1: Es gilt: $R_1 L_2 = R_2 L_1$. Zeichnen Sie die Ortskurve von \underline{U}_z qualitativ. Geben Sie die Frequenzen an und markieren Sie die Punkte, bei denen Real- und Imaginärteil jeweils ihre Maximal- und Minimalwerte besitzen.
 - ii) Fall 2: Es gilt:

$$R_2\gg \omega_x L_2$$
 im Frequenzbereich $\omega\leq \omega_x$ und $R_1\ll \omega_x L_1$ im Frequenzbereich $\omega\geq \omega_x$.

Zeichnen Sie die Ortskurve von \underline{U}_z qualitativ. Markieren Sie die Punkte auf der Ortskurve, die den Frequenzen $0, \omega_x, \infty$ zugeordnet werden können.

Aufgabe 3) Schaltungsdimensionierung

Punkte:

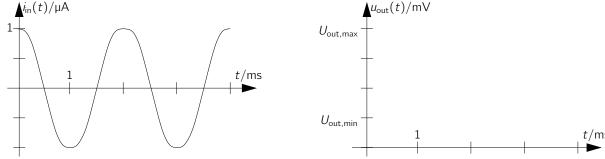

/ 13

Abb. 3: Links: Zu berechnende Schaltung mit der Wechselstromquelle \underline{I}_{in} für das Eingangssignal. Rechts: Kleinsignal-Ersatzschaltbild des Transistors T_1 .

- a) Bestimmen Sie unter der Annahme, dass die Basis-Emitter-Spannung im Arbeitspunkt $U_{BE} = U_{BE0}$ bekannt ist und der Basisstrom von T_1 vernachlässigt werden kann, den Kollektorstrom des Transistors im Arbeitspunkt (Formel). Wie groß ist die Steilheit g_m des Transistors?
- b) Geben Sie das maximale und das minimale Kollektorpotential an, für das sich der Transistor im normal aktiven Bereich befindet. Dimensionieren Sie den Lastwiderstand R_C so, dass das Kollektorpotential im Arbeitspunkt genau in der Mitte dieses Bereichs liegt.
- c) Zeichnen Sie das Wechselstromersatzschaltbild der Schaltung. Um welche Grundschaltung handelt es sich?
- d) Berechnen Sie allgemein die Transimpedanz $\underline{Z}_{trans} = \frac{\underline{U}_{out}}{\underline{I}_{in}}$ der Schaltung unter der Berücksichtigung des Basisstroms. Sie können mit den Näherungen des T-Operator-Ersatzschaltbildes rechnen.

Im Folgenden gilt: $\underline{Z}_{trans} = \beta_0 R_C$, $R_C = 100 \,\Omega$, $\beta_0 = 100$, $U_0 = 4 \,\mathrm{V}$.

e) Gegeben sei das dargestellte Stromsignal $i_{\rm in}(t)$, das in das Eingangstor eingespeist wird. Stellen Sie die zugehörige Spannung $u_{\rm out}(t)$, die sich am Ausgangstor einstellt, grafisch dar. Geben Sie Zahlenwerte für die maximale und minimale Ausgangsspannung an.

f) Wie groß darf die Amplitude des Eingangssignals $i_{in}(t)$ maximal werden, damit der Transistor T_1 im normal aktiven Bereich bleibt?

Aufgabe 4) Zweitor-Rechnung

Punkte: / 13

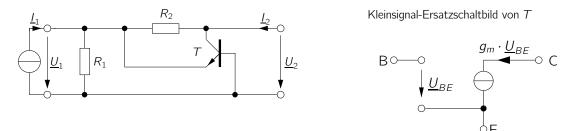


Abb. 4: Transistorschaltung und Kleinsignalersatzschaltbild des Transistors.

Gegeben ist die Schaltung in Abb. 4 links. Für den Transistor T gilt das auf der rechten Seite dargestellte Kleinsignalersatzschaltbild.

- a) Formen Sie die Transistorschaltung für eine Berechnung mit einem Haupt- und einem Rückkopplungszweitor um. Ordnen Sie dazu den Transistor $\mathcal T$ dem Hauptzweitor und die restlichen Bauelemente dem Rückkopplungszweitor zu. Das Zweitor wird durch die Quelle \underline{I}_1 angesteuert.
- b) Ersetzen Sie in der Schaltung aus Aufgabenteil a) den Transistor durch das in Abb. 4 rechts angegebene Ersatzschaltbild.
- c) i) Um welche Art der Rückkopplung handelt es sich?
 - ii) Wählen Sie eine für die Art der Rückkopplung geeignete Matrizendarstellung aus. Begründen Sie Ihre Entscheidung!
- d) Bestimmen Sie die Elemente der Matrix von Haupt- und Rückkopplungszweitor anhand des Kleinsignalersatzschaltbildes. Bestimmen Sie die Elemente der Matrix der Gesamtschaltung.
- e) Bestimmen Sie die Transimpedanz $\underline{Z}_T = \frac{\underline{U}_2}{\underline{I}_1}\Big|_{\underline{I}_2=0}$ mit Hilfe der Matrizendarstellung.
- f) Interpretieren Sie das Ergebnis für die Transimpedanz \underline{Z}_T aus Aufgabenteil e) hinsichtlich des Einflusses von R_2 .

Aufgabe 5) Stabilität, Netzwerktheorie

 $C = \underbrace{\frac{\underline{I}_{1}}{R_{S} \cdot \underline{I}_{C}}}_{R_{S} \cdot \underline{I}_{C}} \underbrace{\underline{U}_{1}}_{R_{G}}$

Punkte:

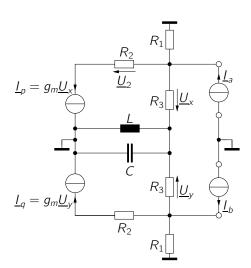

/ 12

Abb. 5: Zu untersuchende Schaltung.

Gegeben ist das Kleinsignalersatzschaltbild einer Verstärkerschaltung in Abb. 5, deren Stabilität zu untersuchen ist. Der Verstärker wird durch die Stromquelle \underline{I}_1 angesteuert. Der Verstärker enthält die gesteuerte Spannungsquelle $R_S \cdot \underline{I}_C$, deren Spannung proportional zum Strom \underline{I}_C durch die Kapazität C ist. Die Größen R_S , C, L und R_G sind reell, weiterhin ist $R_G > 0$, L > 0, C > 0 und insbesondere $R_S < 0$.

- a) Geben Sie eine Beziehung für den Strom \underline{I}_C in der Form $\underline{I}_C = \underline{F}(s)\underline{I}_1$ an. Darin ist $\underline{F}(s)$ die zugehörige Wirkungsfunktion.
- b) Erläutern Sie warum sich neben $\underline{F}(s)$ auch $\underline{Z}(s) = \frac{\underline{U}_1}{\underline{I}_1}$ für die Stabilitätsanalyse der Schaltung eignet.
- c) Berechnen Sie die Polstellen der Funktion $\underline{F}(s)$.
- d) In welchem Wertebereich muss R_S liegen, damit die Schaltung mit $|\underline{I}_1|=0\,\mathrm{A}$ ein instabiles Verhalten in Form einer aufklingenden, sinusförmigen Oszillation aufweisen kann? Hinweis: Es gelte $R_G>-R_S$.
- e) Welche Bedingung muss der Generatorwiderstand R_G erfüllen, damit sich das unter Aufgabenteil d) beschriebene Verhalten ergibt?

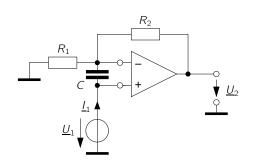
Aufgabe 6) Gleichtakt-/Gegentaktzerlegung

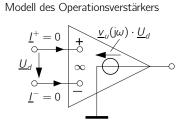
Punkte:

/ 14

Abb. 6: Zu analysierende Schaltung.

Gegeben ist das in Abb. 6 dargestellte Netzwerk mit unsymmetrischer Ansteuerung an zwei Toren ($\underline{I}_a,\underline{I}_b$). Mit Hilfe der Gleichtakt-, Gegentaktzerlegung soll die Spannung \underline{U}_2 bestimmt werden.


- a) Stellen Sie die Ansteuerung in Abbildung 6 äquivalent durch eine Überlagerung von Gleichtakt- und Gegentaktquellen dar. Bestimmen Sie die Phasoren der ansteuernden Gleich- und Gegentaktquellen in Abhängigkeit von \underline{I}_a und \underline{I}_b .
- b) Zeichnen Sie das einphasige Gegentakt- und das einphasige Gleichtakt-Ersatzschaltbild des Netzwerks.
- c) Bestimmen Sie anhand der Überlagerung der Ergebnisse von Gleich- und Gegentakt-Ersatzschaltung die Spannung \underline{U}_2 in Abhängigkeit von \underline{I}_a und \underline{I}_b .
- d) Nehmen Sie im Folgenden an, dass die die Ströme \underline{I}_p und \underline{I}_q jeweils von der gegenüberliegenden Spannung \underline{U}_y bzw U_x gesteuert werden, also

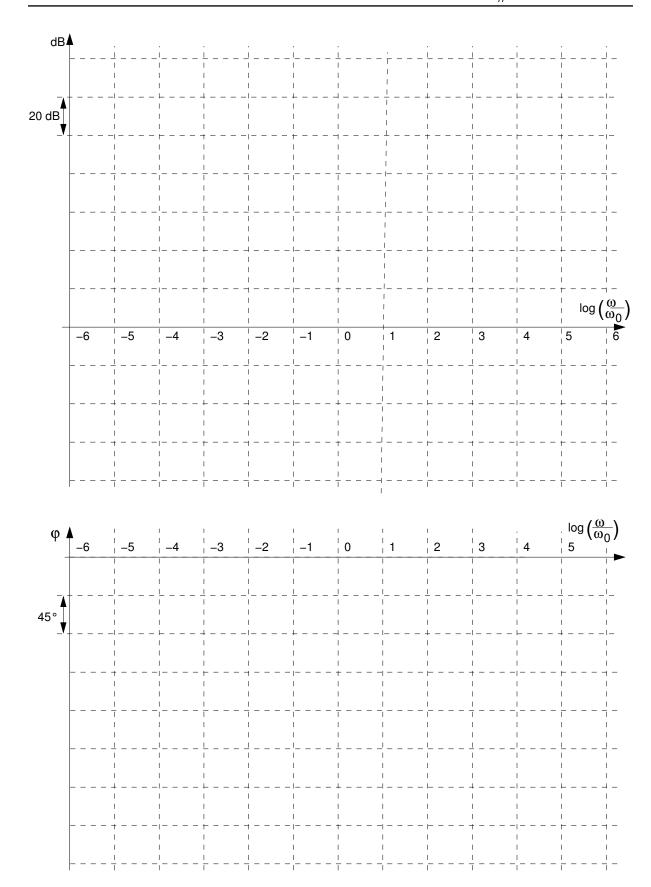

$$\underline{I}_{p} = g_{m}\underline{U}_{y},$$

$$\underline{I}_{q} = g_{m}\underline{U}_{x}.$$

Erläutern Sie **kurz** welche Folgen diese Änderung für die Ergebnisse der Gleich- und Gegentaktbetrachtungen aus Aufgabenteil b) bzw. c) hat?

Aufgabe 7) Frequenzgang, Operationsverstärker, Bode-Diagramm Punkte: / 12

Abb. 7: *Links:* zu analysierende Operationsverstärker-Schaltung. *Rechts:* Modell des Operationsverstärkers.


Gegeben ist die in Abb. 7 links gezeigte Operationsverstärker-Schaltung mit einem Kondensator C zur Frequenzgangskompensation. Das Modell des Operationsverstärkers, der eine frequenzabhängige Verstärkung $\underline{v}_u(j\omega)$ aufweist, ist auf der rechten Seite dargestellt.

- a) Bestimmen Sie allgemein den Frequenzgang $\underline{F}(j\omega) = \frac{\underline{U}_2(j\omega)}{U_1(j\omega)}$ der Schaltung.
- b) Welchen Wert nimmt $\underline{F}(j\omega)$ für den Sonderfall $|\underline{v}_{\mu}(j\omega)| \to \infty$ an?
- c) Stellen Sie den Frequenzgang in der Form $\underline{F}(j\omega) = \frac{\underline{F}_a}{1+\underline{F}_aF_2}$ dar. Achten Sie bei Ihrer Umformung bitte darauf, dass $F_2 \in \mathbb{R}$. Geben Sie \underline{F}_a , F_2 und die Schleifenverstärkung an.

Für den Operationsverstärker gilt im Folgenden: $\underline{v}_u(j\omega) = \frac{v_0}{(1+\frac{j\omega}{10\,\omega_0})(1+\frac{j\omega}{10000\,\omega_0})}$.

Falls Sie Aufgabenpunkt c) nicht lösen konnten, verwenden Sie im Folgenden $F_2=a=const. \in \mathbb{R}>0$ und $\underline{F}_a=\frac{\underline{v}_u(j\omega)}{(1+a)(1+j\omega\,\frac{R_1R_2}{R_1+R_2}\,C)}.$

d) Zeichnen Sie Betrag und Phase von \underline{F}_a für den Fall $C=\frac{R_1+R_2}{\omega_0R_1R_2}$ in das Bode-Diagramm auf der nächsten Seite ein. Markieren und geben Sie den entsprechenden Wert für $\underline{F}_a(\omega \to 0)$ an der Betragsachse an.

