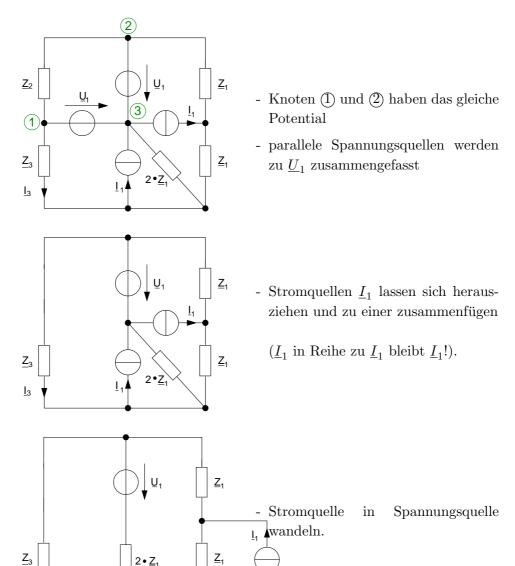
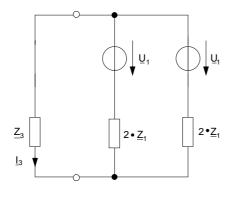
Klausur Elektronik II, WS0809 Lösungsvorschlag

Aufgabe 1 (6 Punkte): Netzwerkberechnung

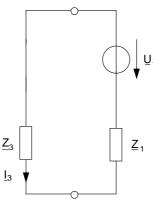
1) Der Strom \underline{I}_3 durch den Widerstand \underline{Z}_3 soll bestimmt werden.



a) Annahme: $\underline{U}_1 = \underline{I}_1 \cdot \underline{Z}_1$

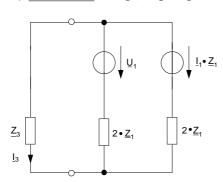


- Umwandlung der Spannungsquellen in Stromquellen
- Anschließend:
 Zusammenfassen der Stromquellen
 und der beiden parallelen Widerstände

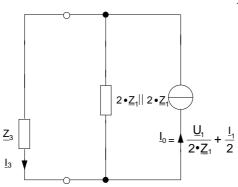


 $\Rightarrow \qquad \underline{I}_3 = \frac{\underline{U}_3}{\underline{Z}_1 + \underline{Z}_3}$

b) Annahme: $\underline{U}_1 \neq \underline{I}_1 \cdot \underline{Z}_1$



- Umwandlung der Spannungsquellen in Stromquellen



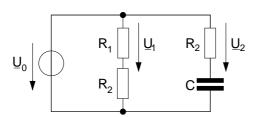
- Stromteiler:

$$\underline{I}_{3} = \frac{\underline{Z}_{1}}{\underline{Z}_{1} + \underline{Z}_{3}} \cdot \underline{I}_{0}$$

$$= \frac{\underline{Z}_{1}}{\underline{Z}_{1} + \underline{Z}_{3}} \cdot \left(\frac{\underline{U}_{1}}{2 \cdot \underline{Z}_{1}} + \frac{\underline{I}_{1}}{2}\right)$$

$$= \frac{\underline{U}_{1}}{2 \cdot (\underline{Z}_{1} + \underline{Z}_{3})} + \frac{\underline{I}_{1} \cdot \underline{Z}_{1}}{2 \cdot (\underline{Z}_{1} + \underline{Z}_{3})}$$

Aufgabe 2 (10 Punkte): Ortskurve



- Netzwerk zur Ortskurvenbestimmung

Info: es handelt sich um das sogenannte duale Netzwerk zur Aufgabe 2) SS 2008. Das duale Netzwerk geht durch Umwandlung Parallel- \to Reihenschaltung, $L \to C$ und $\underline{I} \to \underline{U}$ hervor und besitzt die entsprechend gleiche Lösung.

1) Dimensioniere R_2 so, dass $|\underline{U}_1 - \underline{U}_2| = \text{const.}$:

$$\frac{\underline{U}_1}{\underline{U}_0} = \frac{R_1}{R_1 + R_2} = Z \quad \land \quad \frac{\underline{U}_2}{\underline{U}_0} = \frac{R_2}{R_2 + \frac{1}{j\omega C}}$$

$$\left| \frac{\underline{U}_1 - \underline{U}_2}{\underline{U}_0} \right| = \left| Z - \frac{R_2}{R_2 + \frac{1}{j\omega C}} \right|$$

$$= \left| \frac{Z \cdot (R_2 + \frac{1}{j\omega C}) - R_2}{R_2 + \frac{1}{j\omega C}} \right|$$

$$= \left| \frac{R_2 \cdot (Z - 1) + Z \cdot \frac{1}{j\omega C}}{R_2 + \frac{1}{j\omega C}} \right|$$

$$= \sqrt{\frac{R_2^2 \cdot (Z - 1)^2 + \frac{Z^2}{\omega^2 C^2}}{R_2^2 + \frac{1}{\omega^2 C^2}}}$$

 $\Rightarrow~$ Zähler muss ein Vielfaches des Nenners sein, damit $|\underline{U}_1-\underline{U}_2|={\rm const.}\,.$

$$+(Z-1)^2 \stackrel{!}{=} Z^2$$

$$\pm (Z-1) = Z$$

Resub.: $Z = \frac{R_1}{R_1 + R_2}$

$$\pm \left(\frac{R_1}{R_1 + R_2} - 1\right) = \frac{R_1}{R_1 + R_2}$$

$$1 = \frac{2R_1}{R_1 + R_2}$$

$$\Leftrightarrow$$
 $R_2 = R_1$

2) Ortskurve der Wirkungsfunktion $\frac{\underline{U}_1-\underline{U}_2}{\underline{U}_0}$ im Frequenzbereich $0\leq\omega\leq\infty$:

$$\underline{R_2} = R_1:$$

$$\frac{\underline{U}_1 - \underline{U}_2}{\underline{U}_0} = \frac{1}{2} - \frac{R_1}{R_1 + \frac{1}{i\omega C}}$$

 $\underline{\omega} = 0$:

$$\frac{\underline{U}_1 - \underline{U}_2}{U_0} = \frac{1}{2} - j \cdot 0$$

$$\frac{\omega = \frac{1}{R_1C}:}{\frac{U_1 - U_2}{\underline{U}_0} = \frac{1}{2} - j \cdot \frac{R_1}{R_1 - j \cdot R_1} = \frac{1}{2} - \frac{R_1 \cdot (R_1 + j \cdot R_1)}{2 \cdot R_1^2} = -j \cdot \frac{1}{2}$$

$$\frac{\omega \to \infty:}{\frac{U_1 - U_2}{\underline{U}_0}} = \frac{1}{2} - \frac{R_1}{R_1} = -\frac{1}{2}$$

$$\lim_{\omega \to \infty} \left(\frac{\underline{U}_1 - \underline{U}_2}{\underline{U}_0}\right)$$
Halbkreis mit $\mathbf{r} = \frac{1}{2}$

$$\omega = 0$$

$$\mathbf{Re} \left(\frac{\underline{U}_1 - \underline{U}_2}{\underline{U}_0}\right)$$

Aufgabe 3 (10 Punkte): Schaltungsdimensionierung und -berechnung

1) Es gilt: Gleicher Spannungsabfall über R_C, R_E und der CE-Strecke des Transistors.

$$\begin{array}{ll} \underline{\text{RB:}} & U_{RE} = U_{RC} = U_{CE} = \frac{U_0}{3}, \, B \gg 1. \\ \\ \Rightarrow & I_C + I_B = I_E \approx I_C \\ \\ U_1 = U_{AP} - U_{BE} = \frac{U_0}{3} & \Rightarrow \quad U_{AP} = \frac{U_0}{3} + U_{BE} \\ \\ U_2 = I_C \cdot R_C \approx \frac{U_1}{R_E} \cdot R_C = \frac{U_0}{3} \\ \\ = \frac{U_{AP} - U_{BE}}{R_E} \cdot R_C = \frac{U_0}{3} & \Rightarrow \quad R_E = R_C. \end{array}$$

 $(I_C$ nicht eindeutig bestimmbar: beliebige Kombinationen von $I_C \cdot R_C = \frac{U_0}{3}$ möglich.)

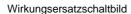
2) Kleinsignal - Wechselstromberechnung

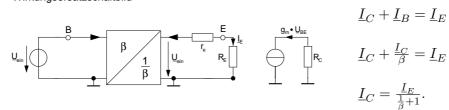
a)
$$I_C = \frac{U_0}{3 \cdot R_C} = \frac{U_0}{3 \cdot R_E}$$
 \Rightarrow $g_m = \frac{I_C}{U_T} = \frac{U_0}{3 \cdot R_E \cdot U_T}$
b) $\frac{1}{g_m} = R_E \cdot \frac{3 \cdot U_T}{U_0} \stackrel{!}{\ll} R_E$, da gilt: $R_E > \frac{10}{g_m}$.
$$R_E \cdot \frac{3 \cdot U_T}{U_0} \ll \frac{R_E}{10}$$

$$\frac{3 \cdot U_T}{U_0} \ll \frac{1}{10}$$

$$U_0 \gg 30 \cdot U_T = 30 \cdot 27 \,\mathrm{mV} \approx 1 \,\mathrm{V}$$

3) Verstärkungen:





 β endlich:

$$\underline{I}_C + \underline{\underline{I}_C}_{\beta} = \underline{I}_E$$

Abb.: KGS kann angenommen werden, da ideale Kollektorstromquelle.

$$\begin{split} &\underline{I}_C \cdot R_C = -\underline{U}_2 = \frac{\underline{I}_E}{\frac{1}{\beta} + 1} \cdot R_C = \underline{U}_{ein} \cdot \frac{R_C}{\left(\frac{1}{\beta} + 1\right) \cdot \left(r_e + R_E\right)} \\ \Rightarrow & \underline{v}_{a2} = \underline{\underline{U}_2} \bigg|_{\underline{I}_1 = 0, \underline{I}_2 = 0} = -\frac{R_C}{\left(\frac{1}{\beta} + 1\right) \cdot \left(\frac{1}{gm} + R_E\right)} \\ &\underline{U}_1 = \underline{I}_E \cdot R_E = \underline{\underline{U}_{ein}} \cdot R_E \\ \Rightarrow & \underline{v}_{a1} = \underline{\underline{U}_1} \bigg|_{\underline{I}_1 = 0, \underline{I}_2 = 0} = \frac{R_E}{r_e + R_E} = \frac{R_E}{\frac{1}{gm} + R_E} \end{split}$$

Eingangsimpedanz:

$$\underline{I}_{ein} = \frac{\underline{U}_{ein}}{r_e + R_E} \cdot \frac{1}{\beta}$$
 (aus T-Operator ESB).

$$\Rightarrow \underline{Z}_e = \frac{\underline{U}_{ein}}{\underline{I}_{ein}} \Big|_{\underline{I}_1 = 0, \underline{I}_2 = 0} = \beta \cdot \left(r_e + R_E\right) = \beta \cdot \left(\frac{1}{g_m} + R_E\right)$$

4) Verstärkungen:

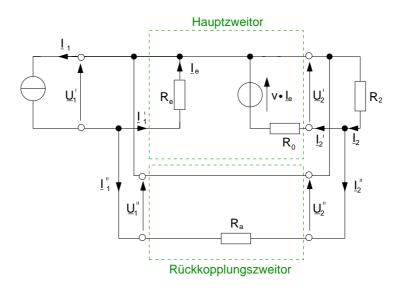
$$\begin{split} \Rightarrow \quad & \underline{v}_{a1} = \frac{\beta \cdot R_E}{\underline{Z}_e} \\ \Rightarrow \quad & \underline{v}_{a2} = -\frac{R_C \cdot \beta}{\left(\frac{1}{\beta} + 1\right) \cdot \underline{Z}_e} = -\frac{R_E \cdot \beta}{\left(\frac{1}{\beta} + 1\right) \cdot \underline{Z}_e} \\ \to \quad & \text{für } \underline{v}_{a1}, \underline{v}_{a2} \uparrow \text{ muss } \underline{Z}_e \downarrow \end{split}$$

Für $|\underline{v}_{a1}| = |\underline{v}_{a2}|$ muss gelten:

$$\left| \frac{\beta \cdot R_E}{\underline{Z}_e} \right| = \left| \frac{-R_E}{\underline{Z}_e} \cdot \frac{\beta}{\frac{1}{\beta} + 1} \right| , \text{ für } \beta \gg 1.$$

Aufgabe 4 (14 Punkte): Rückkopplung, Zweitor

- 1) Keine, da Strom durch C_P immer 0. \Rightarrow keine Wirkung.
 - \Rightarrow kann auf beliebige Werte gesetzt werden.
- 2) <u>Umformung für eine Betrachtung mit einem Haupt- und einem</u> Rückkopplungszweitor:



3) Es handelt sich hierbei um eine Parallel-Parallel-Kopplung (PPK). Dafür eignet sich die Betrachtung mit einer \underline{Y} - Matrix (Admittanz - Matrix). Dabei addieren sich jeweils die Ströme, die Spannungen bleiben jedoch gleich.

4) Hauptzweitor:

Rückkopplungszweitor:

$$\underbrace{Y_{11}^{(2)}}_{11} = \underbrace{\frac{I_{1}}{U_{1}}}_{U_{2}=0} = \underbrace{\frac{1}{R_{a}}}_{R_{a}} \underbrace{U_{1}}_{U_{1}} \underbrace{V_{2}^{(2)}}_{U_{1}=0} = \underbrace{\frac{I_{1}}{R_{a}}}_{U_{1}} \underbrace{U_{1}}_{U_{2}=0} \underbrace{V_{2}^{(2)}}_{U_{2}=0} = \underbrace{\frac{I_{2}}{U_{2}}}_{U_{2}=0} = \underbrace{\frac{1}{R_{a}}}_{R_{a}} \underbrace{V_{2}^{(2)}}_{U_{2}=0} = \underbrace{\frac{I_{2}}{L_{2}}}_{U_{2}=0} = \underbrace{\frac{1}{R_{a}}}_{R_{a}} \Rightarrow \underbrace{\left[\underline{Y}^{(2)}\right]}_{\underline{Y}^{(2)}} = \begin{bmatrix} \frac{1}{R_{a}} & -\frac{1}{R_{a}}\\ -\frac{1}{R_{a}} & \frac{1}{R_{a}} \end{bmatrix}$$

$$\Rightarrow \underbrace{\left[\underline{Y}\right]}_{\underline{Y}^{(1)}} = \underbrace{\left[\underline{Y}^{(1)}\right]}_{\underline{Y}^{(2)}} + \underbrace{\left[\underline{Y}^{(2)}\right]}_{\underline{Y}^{(2)}} = \begin{bmatrix} \frac{1}{R_{a}} + \frac{1}{R_{a}} & -\frac{1}{R_{a}}\\ \frac{-v}{R_{0} \cdot R_{E}} - \frac{1}{R_{a}} & \frac{1}{R_{0}} + \frac{1}{R_{a}} \end{bmatrix}$$

5) Allgemeine Bestimmung der Verstärkung \underline{Z}_G :

$$\underline{Z}_G = \frac{\underline{U}_2}{\underline{I}_1} \bigg|_{R_2 \in \mathbb{R}} \qquad \Rightarrow \quad \frac{-\underline{U}_2}{\underline{I}_2} = R_2$$

$$\frac{-\underline{U}_2}{R_2} = \underline{Y}_{21} \cdot \underline{U}_1 + \underline{Y}_{22} \cdot \underline{U}_2$$

$$-\underline{Y}_{21} \cdot \underline{U}_1 = \underline{U}_2 \cdot \left(\underline{Y}_{22} + \frac{1}{R_2}\right)$$

$$\underline{U}_1 = \underline{U}_2 \cdot \left(\frac{\underline{Y}_{22} + \frac{1}{R_2}}{-\underline{Y}_{21}}\right)$$

$$\underline{I}_1 = \underline{Y}_{11} \cdot \frac{\underline{Y}_{22} + \frac{1}{R_2}}{-\underline{Y}_{21}} + \underline{Y}_{12} \cdot \underline{U}_2$$

$$= \underline{U}_2 \cdot \left(\underline{Y}_{12} - \frac{\underline{Y}_{11} \cdot \left(\underline{Y}_{22} + \frac{1}{R_2}\right)}{\underline{Y}_{21}}\right)$$

$$\Rightarrow \underline{Z}_G = \frac{1}{\underline{Y}_{12} - \frac{\underline{Y}_{11} \cdot \left(\underline{Y}_{22} + \frac{1}{R_2}\right)}{\underline{Y}_{21}}} = \frac{\underline{Y}_{21}}{\underline{Y}_{12} \cdot \underline{Y}_{21} - \underline{Y}_{11} \cdot \underline{Y}_{22} - \frac{\underline{Y}_{11}}{R_2}}$$

$$= \frac{vG_0G_e - G_a}{-G_a \cdot \left(-vG_0G_e - G_a\right) - \left(G_e + G_a\right) \cdot \left(G_0 + G_a\right) - G_2 \cdot \left(G_e + G_a\right)}$$

$$6) \ |v| \to \infty, G_2 \to \infty$$

6)
$$|v| \to \infty, G_2 \to \infty$$

a)
$$\underline{Z}_G \to \frac{-vG_0G_e}{vG_0G_eG_a - G_2(G_e + G_a)} = \frac{-1}{G_a - \frac{G_2 \cdot (G_e + G_a)}{vG_0G_eG_a}}$$

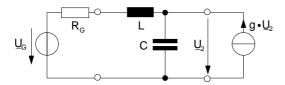
b) Wunsch:
$$|\underline{Z}_G| = \frac{1}{G_a}$$
 $|R_2 \cdot v|$?

$$\Rightarrow G_a \gg \frac{G_2(G_e + G_a)}{vG_0G_e}$$

$$R_2 \cdot v \gg \frac{G_e + G_a}{G_0G_eG_a} = R_0 \cdot \frac{\frac{1}{R_e} + \frac{1}{R_a}}{\frac{1}{R_e} \cdot \frac{1}{R_a}} = R_0(R_e + R_a)$$

$$\Rightarrow R_2 \cdot v \gg R_0(R_e + R_a)$$

Aufgabe 5 (11 Punkte): Stabilität, Netzwerk



Betrachte \underline{U}_2 für $\underline{U}_G \to 0$ als Größe für die Instabilität (Wirkungsfkt.).

1) Es sei $s = j\omega$.

Maschenumlauf:

I:
$$-\underline{U}_G + \underline{I}_G \cdot (R_G + sL) + \underbrace{(\underline{I}_G + g \cdot \underline{U}_2) \cdot \frac{1}{sC}}_{=\underline{U}_2} = 0$$

$$\Rightarrow \underline{I}_G = \underline{U}_2 \cdot (sC - g)$$

in I:

$$\underline{U}_{2} \cdot \left(1 + \left(R_{G} + sL\right) \cdot \left(sC - g\right)\right) = \underline{U}_{G}$$

$$\underline{U}_{2} = \underline{F}(s) \cdot \underline{U}_{G} = \frac{1}{1 + \left(R_{G} + sL\right) \cdot \left(sC - g\right)} \cdot \underline{U}_{G}$$

$$\Rightarrow \underline{F}(s) = \frac{1}{1 + \left(R_{G} + sL\right) \cdot \left(sC - g\right)}$$
(Wirkungsfunktion)

2) Für $\underline{U}_G \to 0$ folgt $\underline{U}_2 \to 0,$ außer WF ist instabil.

instabil wenn,

$$1 + (R_G + SL) \cdot (sC - g) \stackrel{!}{=} 0 \qquad \text{(mit } Re\{s\} \text{ in RHE } (>0))$$

$$s^2 \cdot LC + s \cdot (R_G \cdot C - gL) + (1 - R_G \cdot g) = 0$$

$$\Rightarrow s_{1,2} = \frac{gL - R_G \cdot C \pm \sqrt{(R_G \cdot C - gL)^2 - 4LC(1 - R_G \cdot g)}}{2 \cdot LC}$$

$$s_{1,2} = \frac{gL - R_G \cdot C}{2LC} \pm \sqrt{\frac{\left(R_G \cdot C - gL\right)^2}{4L^2C^2} + \frac{R_G \cdot g - 1}{LC}}$$

3) instabil, wenn $Re\{s\} > 0$ (2. Bedingung):

$$Re\{s\} = \frac{gL - R_G \cdot C}{2LC} > 0$$

$$gL - R_G \cdot C > 0$$

$$g > \frac{R_G \cdot C}{L}$$

Es ist ein instabiles Verhalten in Form einer aufklingenden, sinusförmigen Oszillation erwünscht:

 $\Rightarrow \omega \neq 0$, d.h. die Wurzel ist imaginär $(s = \sigma + j\omega)$.

$$\frac{\left(R_G \cdot C - gL\right)^2}{4L^2C^2} + \frac{R_G \cdot g - 1}{LC} < 0$$

$$(R_G \cdot C - gL)^2 + 4LC \cdot (R_G \cdot g - 1) < 0$$

$$(R_G \cdot C)^2 - 2 \cdot R_G \cdot CgL + (gL)^2 + 4LC \cdot R_G \cdot g - 4LC < 0$$

$$\left(R_G \cdot C + gL\right)^2 - 4LC < 0$$

bzw. für g:
$$R_G \cdot C + gL < \pm 2\sqrt{LC}$$

$$g < \left(\pm 2\sqrt{LC} - R_G \cdot C\right) \cdot \frac{1}{L}$$

$$g < \pm 2\sqrt{\frac{C}{L}} - \frac{R_G \cdot C}{L}$$

$$\Rightarrow \frac{R_G \cdot C}{L} < g < \pm 2\sqrt{\frac{C}{L}} - \frac{R_G \cdot C}{L}$$

4) Da Schwingungsbedingung $g>\frac{R_G\cdot C}{L}$ fordert, setze man

$$g = \frac{R_G \cdot C}{L} + \epsilon$$
 mit $\epsilon > 0$,

so wird aus

$$g < \pm 2\sqrt{\frac{C}{L}} - \frac{R_G \cdot C}{L}$$

$$\frac{R_G \cdot C}{L} + \epsilon < \pm 2\sqrt{\frac{C}{L}} - \frac{R_G \cdot C}{L}$$

$$\epsilon < \pm 2\sqrt{\frac{C}{L}} - 2 \cdot \frac{R_G \cdot C}{L}.$$

Wegen $\epsilon > 0$ und $L, C, R_G > 0$ folgt

$$\epsilon < +2\sqrt{\frac{C}{L}} - 2 \cdot \frac{R_G \cdot C}{L}$$

$$2 \cdot \frac{R_G \cdot C}{L} + \epsilon < 2\sqrt{\frac{C}{L}}$$

$$R_G + \frac{L\epsilon}{2C} < \sqrt{\frac{L}{C}}$$

d.h. Schwingung, wenn $R_G < \sqrt{\frac{L}{C}}$.

Aufgabe 6 (12 Punkte): Gleichtakt-, Gegentaktzerlegung

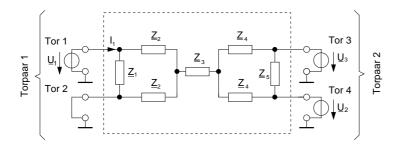
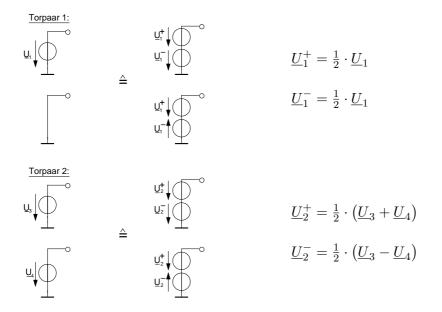
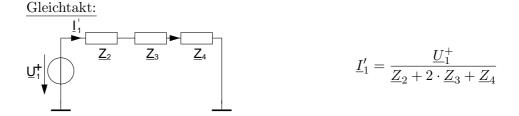


Abb.: Symmetrisches Netzwerk mit unsymmetrischer Ansteuerung an zwei Torpaaren.

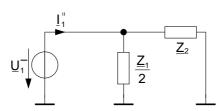
1) Überlagerung von Gleich- und Gegentaktquellen:



2) Ansteuerung an Torpaar 1:



Gegentakt:

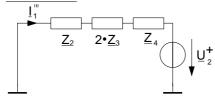


$$\underline{I}_{1}^{"} = \frac{\underline{U}_{1}^{-}}{\frac{\underline{Z}_{2} \cdot \underline{Z}_{1}}{2\left(\underline{Z}_{2} + \frac{\underline{Z}_{1}}{2}\right)}}$$

$$= \frac{\underline{U}_{1}^{-}\left(2\underline{Z}_{2} + \underline{Z}_{1}\right)}{\underline{Z}_{1} \cdot \underline{Z}_{2}}$$

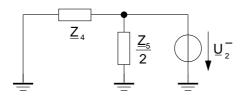
Ansteuerung an Torpaar 2:

Gleichtakt:



$$\underline{I}_{1}^{\prime\prime\prime} = \frac{-\underline{U}_{2}^{+}}{\underline{Z}_{2} + 2 \cdot \underline{Z}_{3} + \underline{Z}_{4}}$$

Gegentakt:



Kein Stromfluss, da $\ \underline{Z}_3$ virtuell kurzgeschlossen ist.

$$\underline{I}_1^{\text{iii}} = 0$$

3) Durch Überlagerung der vier Ströme aus den Gleich- und Gegentaktersatzschaltbildern erhalten wir den Strom $\underline{I}_1:$

$$\begin{split} \underline{I}_{1} &= \underline{I}_{1}' + \underline{I}_{1}'' + \underline{I}_{1}''' + \underline{I}_{1}'''' \\ &= \frac{\underline{U}_{1}^{+}}{\underline{Z}_{2} + 2 \cdot \underline{Z}_{3} + \underline{Z}_{4}} + \frac{\underline{U}_{1}^{-} (2\underline{Z}_{2} + \underline{Z}_{1})}{\underline{Z}_{1} \cdot \underline{Z}_{2}} + \frac{-\underline{U}_{2}^{+}}{\underline{Z}_{2} + 2 \cdot \underline{Z}_{3} + \underline{Z}_{4}} + 0 \\ &= \frac{\underline{U}_{1}^{+} - \underline{U}_{2}^{+}}{\underline{Z}_{2} + 2 \cdot \underline{Z}_{3} + \underline{Z}_{4}} + \frac{\underline{U}_{1}^{-} (2\underline{Z}_{2} + \underline{Z}_{1})}{\underline{Z}_{1} \cdot \underline{Z}_{2}} \\ &= \frac{\frac{1}{2} \cdot \underline{U}_{1} - \frac{1}{2} (\underline{U}_{3} + \underline{U}_{4})}{\underline{Z}_{2} + 2 \cdot \underline{Z}_{3} + \underline{Z}_{4}} + \frac{\frac{1}{2} \cdot \underline{U}_{1} (2\underline{Z}_{2} + \underline{Z}_{1})}{\underline{Z}_{1} \cdot \underline{Z}_{2}} \end{split}$$

Falls $\underline{U}_1 = \underline{U}_3 + \underline{U}_4$:

$$\underline{I_1} = \underline{\underline{U_1}} \cdot \underline{\underline{Z_2} + \underline{Z_1}}_{\underline{Z_1} \cdot \underline{Z_2}}$$

Aufgabe 7 (16 Punkte): Operationsverstärker, Bode-Diagramm

1) Bestimmung der Verstärkung $\underline{F}(j\omega)$:

a)
$$\underline{I}_1 = \underline{Y}_{11} \cdot \underline{U}_1 + \underline{Y}_{12} \cdot \underline{U}_2$$
 (1)
 $\underline{I}_2 = \underline{Y}_{21} \cdot \underline{U}_1 + \underline{Y}_{22} \cdot \underline{U}_2$ (2)

 $\underline{I}_e=\underline{I}_1,$ da idealer OP einen unendlich hohen Eingangswiderstand besitzt.

$$\begin{split} \underline{I}_e &= \underline{Y}_{11} \cdot \underline{U}_1 + \underline{Y}_{12} \cdot \underline{U}_2 \\ &= \underline{Y}_{11} \cdot \frac{-\underline{U}_2}{\underline{v}_u} + \underline{Y}_{12} \cdot \underline{U}_2 \\ &= \underline{U}_2 \cdot \left(\underline{Y}_{12} - \frac{\underline{Y}_{11}}{v_u}\right) \end{split} \tag{aus Maschenumläufen)}$$

$$\underline{U}_2 = \underline{I}_e \cdot \frac{1}{\underline{Y}_{12} - \frac{\underline{Y}_{11}}{\underline{v}_u}} = \underline{I}_e \cdot \frac{-\frac{\underline{v}_u}{\underline{Y}_{11}}}{1 - \frac{\underline{v}_u}{\underline{Y}_{11}} \cdot \underline{Y}_{12}}$$

$$\Rightarrow \quad \underline{F}(j\omega) = \frac{\underline{U}_2(j\omega)}{\underline{I}_e(j\omega)} = \frac{-\frac{\underline{v}_u}{\underline{Y}_{11}}}{1 - \frac{\underline{v}_u}{\underline{Y}_{11}} \cdot \underline{Y}_{12}} = \frac{\underline{F}_a}{1 + \underline{F}_a \cdot \underline{F}_2}$$

c) Schleifenverstärkung: $\underline{F}_0 = \underline{F}_a \cdot \underline{F}_2 = -\frac{\underline{v}_u}{\underline{Y}_{11}} \cdot \underline{Y}_{12}$

Stabilitätsanalyse mit Schleifenverstärkung: \underline{F}_a muss stabil sein.

b) (2) wird nicht benötigt, da (1) hinreichend. Mit anderen Worten wird \underline{U}_2 vom OP (idealer Ausgang) vorgegeben und \underline{I}_1 von der Eingangsquelle.

d)
$$\underline{F}(j\omega) \stackrel{|\underline{v}_u| \to \infty}{=} \frac{1}{\underline{Y}_{12}} = \frac{1}{\underline{F}_2}$$

$$\begin{array}{ll} \underline{\text{Im Folgenden gilt:}} & \underline{Y}_{11} = \underline{Y}_{22} = j\omega C + \frac{1}{R}, \underline{Y}_{12} = \underline{Y}_{21} = -\frac{1}{R} \ \text{und} \\ & \underline{v}_u(j\omega) = v_0 = 10^4. \end{array}$$

2) Definition: $\omega_0 = \frac{1}{RC}$

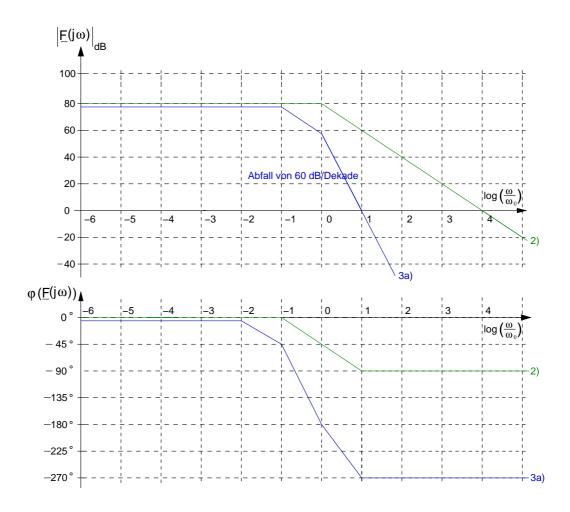
Einsetzen liefert:

$$\underline{F}_0 = -\frac{\underline{v}_u}{\underline{Y}_{11}} \cdot \underline{Y}_{12} = \frac{-v_0}{j\omega C + \frac{1}{R}} \cdot \left(-\frac{1}{R}\right)$$

$$= \frac{v_0 \cdot \frac{1}{R}}{j\omega C + \frac{1}{R}} = \frac{v_0}{1 + j\omega RC}$$

$$= \frac{v_0}{1 + j \cdot \frac{\omega}{\omega_0}} = \frac{10^4}{1 + j \cdot \frac{\omega}{\omega_0}}$$

Bode-Diagramm: Aufgabe 2) und 3a)

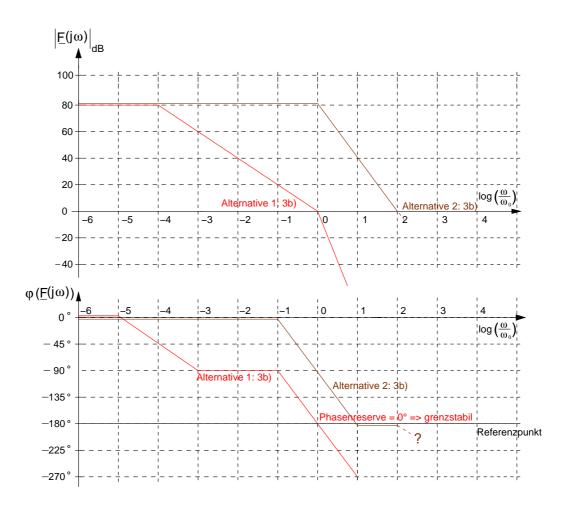


3) <u>Für die Verstärkung des OP's gilt nun:</u> $\underline{v}_u(j\omega) = \frac{v_0}{\left(1+j\cdot\frac{\omega}{\omega_0}\right)\left(1+j\cdot\frac{\omega}{\omega_x}\right)}$

a)
$$\underline{F}_0 = \underline{F}_a \cdot \underline{F}_2 = \frac{\underline{v}_u(j\omega)}{1+j\cdot\frac{\omega}{\omega_0}} = \frac{1}{1+j\cdot\frac{\omega}{\omega_0}} \cdot \frac{v_0}{\left(1+j\cdot\frac{\omega}{\omega_0}\right)\left(1+j\cdot\frac{\omega}{\omega_x}\right)} = \frac{v_0}{\left(1+j\cdot\frac{\omega}{\omega_0}\right)^2\left(1+j\cdot\frac{\omega}{\omega_x}\right)}$$

instabil, da Phasenreserve -90° beträgt.

Bode-Diagramm:



b) <u>1. Fall:</u>

Die Eckfrequenz ω_x wird so klein gewählt werden, dass $|\underline{F}_a \cdot \underline{F}_2| = 1$ nur durch ω_x verursacht wird, bevor die 2 Tiefpassterme bei ω_0 eine weitere Phasendrehung bewirken. \Rightarrow stabil, da die Phasenreserve in diesem Fall $\varphi_R = 90$ ° beträgt.

- \Rightarrow stabil für $\omega_x < \frac{\omega_0}{10^4}$,
- \Rightarrow grenzstabil für $\omega_x = \frac{\omega_0}{10^4}$,
- \Rightarrow instabil für $\omega_x > \frac{\omega_0}{10^4}$.

2. Fall:

Die Eckfrequenz ω_x wird so groß gewählt, so dass $|\underline{F}_a \cdot \underline{F}_2| = 1$ nur durch den doppelten Tiefpass bei ω_0 bestimmt wird. Dann ist $\varphi_R = 0$ für alle ω_x , die ausreichend hoch gewählt sind.

Da ω_x bereits bei $\frac{\omega_x}{10}$ eine Phasendrehung bewirkt, muss

$$\omega_x > 10 \cdot 100 \omega_0.$$

 $\omega_x > \underbrace{10}_{\smile} \cdot \underbrace{100}_{\smile} \omega_0.$ Abstand, da Phasendrehung bereits — Abstand von ω_x bis zur bei $\frac{\omega_x}{10}$ beginnt. Durchtrittsfrequenz.

- grenzstabil für $\omega_x \ge 1000 \cdot \omega_0$, $\varphi_R = 0$,
- instabil für $\omega_x < 1000 \cdot \omega_0, \quad \varphi_R < 0.$