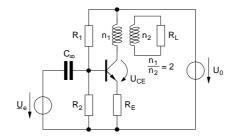
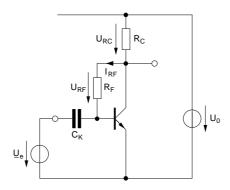

## Tutorium 4 Elektronik II SS 08

1. Welche Betriebsbereiche liegen vor für die Schaltung aus Abb. 1?  $U_1 =$  $U_2 > 0$ ;  $U_1 = U_2 < 0$ ;  $(U_1, U_2 > 0 \text{ und } U_1 = U_2 + 700 \text{mV})$ ;  $(U_2 > 0)$  $0, U_1 < 0; (U_2 < 0, U_1 > 0)$ 




- 2. Wie lautet die Kennlinie  $I_C(U_{CE})$  für die in Abb.2 gezeigte Schaltung?
- 3. Wie groß muss  $I_0$  sein, damit  $I_x = 0$  gilt? (Ohne Rechnung!)

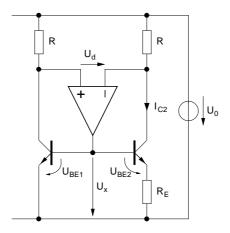



- (a) Zeichnen Sie das Gleichstromersatzschaltbild für die unten angegebene Schaltung.
  - (b) Dimensionieren Sie folgende Widerstände  $R_1,\ R_2$  und  $R_E$  (mit  $R_L = 500\Omega$ ,  $U_0 = 5V$ ,  $\beta_0 = \infty$ ,  $U_{BE} = 800mV$ ) so, dass die Bedingungen erfüllt werden:

$$U_{CE}=rac{1}{2}U_0 \ \ {
m und} \ \ I_Cpprox 10mA$$
 
$$\underbrace{P(R_1,R_2)}_{VerlustleistungdurchBasisspannungsteiler}=1mW$$

(c) Zeichnen Sie die Lastgerade im Ausgangskennlienenfeld ein.




- 5. (a) Dimensionieren Sie den Widerstand  $R_F$  (mit Näherungen) für die gegebenen Werte  $B_F=100,\ R_C=1k\Omega,\ U_0=5V,\ U_{RC,0}=\frac{U_0}{2}$  (Ausg.spannung im Arbeitspunkt),  $U_{BE}\approx 800mV$  (im Arbeitspunkt).
  - (b) Warum ist  $C_K$  nötig?
  - (c) Wie hängen  $B_F$  und  $\beta_0$  zusammen?



- 6. In unten angegebener Schaltung liegt ein idealer OP vor.
  - (a) Analysieren Sie die Funktion der Schaltung.
  - (b) Bestimmen Sie  $I_{C2}$ .

## Tipp:

- OP versucht Ausgangsspannung so einzustellen, dass  $U_d = 0$  ist.
- Vorraussetzung: Gegenkopplung

