
Aufgabe A) (Kleinsignalersatzschaltbild)

Gegeben ist die folgende Schaltung eines Verstärkers für den Sprachsignalfrequenz von $f_{gu} = 100$ Hz bis $f_{g0} = 10$ kHz.

Es gilt:

$$U_T = 27 \text{mV}$$

 $R_G = 600 \Omega$
 $R_L = 200 \Omega$, $R_E = 100 \Omega$
Transistor:
 $U_{be}(I_C = 10 \text{mA}) = 0,7 \text{V}$
 $\beta_0 = 100$
 $U_A = 100 \text{V}$ (Earlyspannung)

- 1. Dimensionieren Sie R_1 und R_2 für einen Kollektorstrom $I_{C0} = 10$ mA im Arbeitspunkt.
- 2. Bestimmen Sie den kleinsten Wert für C_1 , bei dem $|\underline{U}_1(f_{gu})|$ bei der unteren Grenzfrequenz f_{gu} maximal um den Faktor $\sqrt{2}$ größer ist, als für $f \to \infty$; es gilt also:

$$\frac{|\underline{U}_1(f_{gu})|}{|\underline{U}_1(f \to \infty)|} \le \sqrt{2}$$

(Der Eingangswiderstand des Transistors soll 330Ω betragen)

- 3. Wählen Sie C_2 so, dass der Betrag der Gegenkopplungsimpedanz am Emitter $(R_E||C_2)$ im gesamten Betriebsfrequenzbereich nie größer als $\frac{1}{100}$ seines Wertes bei Gleichspannung wird.
- 4. Nehmen Sie aufgrund der Dimensionierungen nach 2) und 3) C_1 und C_2 als Kurzschlüsse im Betriebsfrequenzbereich an. Zeichnen Sie das resultierende Wechselstromkleinsignal Ersatzschaltbild mit Basisbahnwiderstand r_b .

Bestimmen Sie die Werte der Parameter g_{be} , g_m und g_0 .

5. Bestimmen Sie mit Hilfe der Knotenspannungsanalyse die vier Betriebskenngrößen \underline{V}_u , \underline{V}_I , \underline{R}_{ein} , \underline{R}_{aus} im Betriebsfrequenzbereich unter Verwendung des Kleinsignal-Ersatzschaltbildes.

Es gilt:
$$\underline{V}_u = \frac{\underline{U}_2}{\underline{U}_1}$$
, $\underline{V}_I = \frac{\underline{I}_2}{\underline{I}_1}$, $\underline{R}_{ein} = \frac{\underline{U}_1}{\underline{I}_1}$, $\underline{R}_{aus} = \frac{\underline{U}_2}{\underline{I}_2}$

Aufgabe B)

Versuchen Sie den Temperaturkoeffizienten

$$\left. \frac{\partial U_{be}}{\partial T} \right|_{I_C = const.} = -\frac{1}{T} \left(U_g(T) + 3U_T(T) - U_{be}(T, I_C) \right)$$

mit den Angaben aus der Vorlesung selbst herzuleiten.

Aufgabe C) (Operationsverstärker)

Modell des Operationsverstärkers

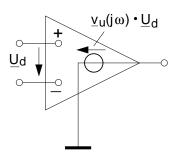


Abbildung 2: Nicht invertierender Verstärker mit Frequenzgangkompensation.

Gegeben ist die in Abbildung 2 gezeigte Operationsverstärkerschaltung eines nicht invertierenden Verstärkers.

- 1. Bestimmen Sie allgemein die Verstärkung $\frac{\underline{U}_{aus}(j\omega)}{\underline{U}_{ein}(j\omega)}$ der Schaltung unter Verwendung der komplexen Verstärkung $\underline{v}_u(j\omega)$.
- 2. Vergleichen Sie das Ergebnis unter 1) mit dem Frequenzgang eines rückgekoppelten Systems

$$\underline{F}(j\omega) = \frac{\underline{F}_a(j\omega)}{1 + \underline{F}_a(j\omega) \, \underline{F}_2(j\omega)}$$

Bestimmen Sie anhand des Vergleichs $\underline{F}_a(j\omega)$ und $\underline{F}_2(j\omega)$.