Übung 9 Elektronik I WS 07/08

- 1. Berechnen Sie die Diffusionskonstante für Löcher und für Elektronen in einem Si, Ge und GaAs-Halbleiter, der mit einer Dotierungsdichte von $|N| = 10^{16}$ dotiert wurde. Der Halbleiter befindet sich bei 300 K.
 - (a) Es wird beobachtet, dass μ mit steigender Temperatur abnimmt. Begründen Sie dies anschaulich.
 - (b) Was erwarten Sie bezüglich der Beweglichkeit μ wenn die Dotierung vergrößert wird und die Temperatur konstant bleibt?
- 2. Was versteht man unter "Ergodizität"? Nennen Sie Beispiele!
- 3. Nennen und erklären Sie die Definition der mittleren Stoßzeit τ_c anhand eines Diagrammes.
- 4. In einem Halbleiter ist die Nettoeinfangrate für Elektronen größer als die Nettoeinfangrate für Löcher. Was folgt daraus für die Besetzung von Energieniveaus innerhalb der Bandlücke?
- 5. Wodurch unterscheidet sich Auger- und SRH-Rekombination?
- 6. Zeigen Sie, dass Gl. (2.167) gilt.
- 7. In welchen Fällen ist die Netto-Rekombinationsrate der Elektronen unter den in der Vorlesung gemachten Annahmen in einem Halbleiter ungleich Null?
 - (a) immer, wenn sich der Halbleiter in thermodynamischem Gleichgewicht befindet.
 - (b) immer, wenn der Halbleiter von einem Strom durchflossen wird.
 - (c) immer bei zeitlicher Änderung der Ladungsträgerdichte.
 - (d) immer, wenn die Nettorekombinationsrate der Löcher $\neq 0$ ist.
- 8. Für einen mit $10^{19} \,\mathrm{cm}^{-3}$ Arsen-Atomen und 10^{16} Bor-Atomen dotierten **Si**-Halbleiter wird ein linearer Verlauf der Leitungsband-Kante mit einer Steigung von $0.1 \, \frac{\mathrm{eV}}{\mathrm{m}}$ bei Raumtemperatur ermittelt. Die Ladungsverteilung ist homogen. Das Quasiferminiveau für Elektronen W_{Fn} liegt um $0.025 \,\mathrm{eV}$ unter W_C . Wie groß ist die Stromdichte der Elektronen in diesem Halbleiter? Ist der Löcherstrom dagegen vernachlässigbar?
- 9. Ein homogen dotierter **Si**-Halbleiters soll eine Leitfähigkeit von $\frac{1}{20 \,\Omega \,\mathrm{cm}}$ bei 300 K haben. Zur Auswahl steht **As** und **B**. Welche Dotierung und welches Material wählt man, um das geforderte Ergebnis zu erhalten?