Seminar zur Vorlesung Quantentheorie des Lichtes

SoSe 2012 Blatt 5 19. Juni

(Vorrechnen am 27. Juni)

Aufgabe 1 Thomson-Streuung

Wir wollen den elastischen Streuquerschnitt für die Streuung eines Photons mit Wellenvektor \mathbf{k} und Polarisation $\boldsymbol{\epsilon}$ an einem an ein Atom gebundenes Elektron berechnen. Dabei sei die Energie $\hbar\omega$ des Photons viel größer als die Ionisierungsenergie E_I des Atoms, $\hbar\omega\gg E_I$, jedoch noch klein genug, dass die Näherung für lange Wellenlängen anwendbar ist. Das Atom ist im Koordinatenursprung lokalisiert, und das System Atom-Photon befindet sich anfangs im Zustand $|\phi_i\rangle = |a;\mathbf{k};\boldsymbol{\epsilon}\rangle$, wobei mit $|a\rangle$ der Grundzustand des Atoms bezeichnet wird, und $|\mathbf{k},\boldsymbol{\epsilon}\rangle$ den Zustand des elektromagnetischen Feldes bezeichnet, der gerade eine Anregung in der Mode mit Wellenvektor \mathbf{k} und Polarisation $\boldsymbol{\epsilon}$ vorweist. Verwenden Sie den Wechselwirkungs-Hamiltonoperator in der Coulomb-Eichung

$$\hat{H}_{\rm int} = \hat{H}_{\rm int}^{(1)} + \hat{H}_{\rm int}^{(2)} \tag{1}$$

mit

$$\hat{H}_{\text{int}}^{(1)} = -\frac{e}{mc}\hat{\mathbf{p}} \cdot \hat{\mathbf{A}}^{\perp}, \tag{2}$$

$$\hat{H}_{\text{int}}^{(2)} = \frac{e^2}{2mc^2} \hat{\mathbf{A}}^{\perp} \cdot \hat{\mathbf{A}}^{\perp}, \tag{3}$$

(4)

wobei das Vektorpotential durch

$$\hat{\mathbf{A}}^{\perp} = \sum_{\lambda} \sqrt{\frac{2\pi\hbar c^2}{V\omega_{\lambda}}} \mathbf{e}_{\lambda} (\hat{a}_{\lambda} + \hat{a}_{\lambda}^{\dagger}) \tag{5}$$

bei linearer (reeller) Polarisation \mathbf{e}_{λ} gegeben ist.

a) Berechnen Sie jeweils bis in zweiter Ordnung in $\frac{e}{c}$ den Beitrag von $\hat{H}_{\text{int}}^{(1)}$ und $\hat{H}_{\text{int}}^{(2)}$ zum Übergangsmatrixelement \mathcal{T}_{fi} zwischen dem Anfangszustand $|\phi_i\rangle$ und dem Endzustand $|\phi_f\rangle = |a; \mathbf{k}'; \boldsymbol{\epsilon}'\rangle$. Weshalb gilt $\omega' = \omega$? (3 Punkte)

$$\mathcal{T}_{fi}^{(1)} = \langle f | \hat{H}_{\text{int}} | i \rangle$$

$$\mathcal{T}_{fi}^{(2)} = \lim_{\eta \to 0^{+}} \sum_{l} \frac{\langle f | \hat{H}_{\text{int}} | l \rangle \langle l | \hat{H}_{\text{int}} | i \rangle}{E_{i} - E_{l} + i\eta}$$

- b) Bestimmen Sie, welcher der beiden Terme mehr Gewicht hat. Begründen Sie dazu, welche Matrixelemente einen Beitrag zu der Summe $\mathcal{T}_{fi}^{(2)}$ geben und welche nicht, und nähern Sie geeignet mittels der Beziehung $\hbar\omega\gg E_I$. Um diese Näherung zu überprüfen, entwickeln Sie $\mathcal{T}_{fi}^{(2)}$ in niedrigster Ordnung in $(E_b-E_a)/\hbar\omega$, wobei die Zustände $|b\rangle$ eine Orthonormalbasis für die gebundenen und die Kontinuumszustände des Elektrons bilden. Geben Sie die Größenordnung der Skalierung zwischen den beiden Termen $\mathcal{T}_{fi}^{(1)}$ und $\mathcal{T}_{fi}^{(2)}$ als Funktion von $E_I/\hbar\omega$ in dieser Näherung an.
- c) Für das gestreute Photon betrachten wir einen Raumwinkelbereich um den Wellenvektor \mathbf{k}' herum. Die Übergangswahrscheinlichkeit pro Zeiteinheit und Raumwinkel Ω' ist dann gegeben durch

$$\frac{\delta w_{fi}}{\delta \Omega'} = \frac{2\pi}{\hbar} |\mathcal{T}_{fi}(E_f = E_i; \Omega'; \phi_i)|^2 \rho(E_f = E_i; \Omega'),$$

wobei $\mathcal{T}_{fi}(E_f = E_i; \Omega'; \phi_i)$ das zuvor berechnete Übergangsmatrixelement und $\rho(E_f = E_i; \Omega')$ die Dichte der Zustände in der Umgebung des Endzustandes ist. Leiten Sie daraus den differentiellen Streuquerschnitt

$$\frac{d\sigma}{d\Omega'} = r_0^2 (\boldsymbol{\epsilon} \cdot \boldsymbol{\epsilon}')^2$$

her, indem Sie den klassischen Elektronenradius $r_0 = e^2/(mc^2)$ einsetzen und durch den Photonenfluß c/V dividieren. Bestimmen Sie den gesamten Streuquerschnitt durch Integration von $(\boldsymbol{\epsilon} \cdot \boldsymbol{\epsilon}')^2$ über alle Raumwinkel, und vergleichen Sie Ihr Ergebnis mit demjenigen, das in der klassischen Elektrodynamik für ein elastisch gebundenes Elektron erhalten wird.

(3 Punkte)