Übung zur Vorlesung Theoretische Physik III

SoSe 2022 Blatt 4 12.05.2022

Aufgabe 16 Operatoren und Messung

Betrachten Sie ein physikalisches System, das durch einen dreidimensionalen Zustandsraum beschrieben wird. $\mathcal{B} = \{|u_1\rangle, |u_2\rangle, |u_3\rangle\}$ sei eine orthonormale Basis des Zustandsraumes. Betrachten Sie den Zustand

$$|\psi\rangle = \alpha_1|u_1\rangle + \alpha_2|u_2\rangle + \alpha_3|u_3\rangle. \tag{1}$$

- a) Bestimmen Sie die Bedingungen an α_i für die $|\psi\rangle$ normalisiert ist. (1 Punkt)
- b) Berechnen Sie den Dichteoperator von $|\psi\rangle$

$$\hat{\rho} = |\psi\rangle\langle\psi|$$
.

in der Basis \mathcal{B} und geben Sie seine Matrixdarstellung an.

(1 Punkt)

c) Gegeben sei die Observable

$$\hat{A} = a |u_1\rangle\langle u_1| + a |u_2\rangle\langle u_2| + a' |u_3\rangle\langle u_3|. \tag{2}$$

Unter welchen Bedingungen für a und a' ist \hat{A} hermitesch?

(1 Punkt)

- d) Eine Messung der Observablen A wird an dem Zustand $|\psi\rangle$ durchgeführt. Was ist der resultierende Zustand wenn das Messergebnis a' ist? Wie groß ist die Wahrscheinlichkeit a' zu messen? (1 Punkt)
- e) Eine Messung der Observablen \hat{A} wird an dem Zustand $|\psi\rangle$ durchgeführt. Was ist der resultierende Zustand wenn das Messergebnis a ist? Wie groß ist die Wahrscheinlichkeit a zu messen? (1 Punkt)
- f) Betrachten Sie nun die Observable

$$\hat{B} = b_{11} |u_1\rangle\langle u_1| + b_{22} |u_2\rangle\langle u_2| + b_{11} |u_3\rangle\langle u_3| + b_{12} |u_1\rangle\langle u_2| + b_{21} |u_2\rangle\langle u_1| + b_{23} |u_2\rangle\langle u_3| + b_{32} |u_3\rangle\langle u_2|.$$
(3)

Unter welchen Bedingungen an die b_{ij} ist \hat{B} hermitesch? Berechnen Sie die Spur von \hat{B} . (1 Punkt)

- g) Berechnen Sie die Eigenwerte und Eigenvektoren von \hat{B} und schreiben Sie $|\psi\rangle$ in der Basis, in der \hat{B} diagonal ist.

 (1 Punkt)
- h) Welche Messwerte sind möglich und wie groß sind die Wahrscheinlichkeiten diese bei einer Messung von \hat{B} am Zustand $|\psi\rangle$ zu erhalten. (1 Punkt)

- i) Berechnen Sie die Spur von \hat{B} in seiner Diagonalform. Geben Sie die Projektoren auf die Eigenräume an und überprüfen Sie deren Orthogonalität und Vollständigkeit. (1 Punkt)
- j) Nun sei \hat{K} der Operator, der durch $\hat{K} = |\phi\rangle\langle\chi|$ definiert ist, wobei $|\phi\rangle$ und $|\chi\rangle$ zwei Zustände aus dem Zustandsraum sind. Unter welcher Bedingung ist \hat{K} hermitesch? Berechnen Sie \hat{K}^2 . Unter welcher Bedingung ist \hat{K} ein Projektor? Zeigen Sie dass \hat{K} immer in der Form $\hat{K} = \lambda P_1 P_2$ geschrieben werden kann, wobei λ eine Konstante darstellt und P_1 und P_2 Projektoren sind. (1 Punkt)

Aufgabe 17 Unitäre Operatoren I

Betrachten Sie den Zustandsraum \mathscr{E} eines physikalschen Systems. Zwei Observablen sind durch die Operatoren \hat{A} und \hat{B} mit $\hat{A}|a_j\rangle=a_j|a_j\rangle$ und $\hat{B}|b_j\rangle=b_j|b_j\rangle$ (\hat{A} und \hat{B} sind hermitesch) gegeben. Der Basiswechseloperator ist durch $\hat{U}_{ba}=\sum_{k=1}^n|b_k\rangle\langle a_k|$ gegeben.

a) Nehmen Sie an, dass $a_j = b_j$ für $j = 1, \ldots, n$. Zeigen Sie dafür

$$\hat{B}\hat{U}_{ba} = \hat{U}_{ba}\hat{A}.\tag{4}$$

(1 Punkt)

b) Zeigen Sie für den gleichen Fall, dass auch

$$f(\hat{B})\hat{U}_{ba} = \hat{U}_{ba}f(\hat{A}) \tag{5}$$

- c) Zeigen Sie, dass der Operator \hat{U}_{ba} unitär ist. (1 Punkt)
- d) Zeigen Sie, dass für jeden Operator $\hat{A},$ der eine Observable representiert, und jeden unitären Operator \hat{U}

$$\hat{U}^{-1}f(\hat{A})\hat{U} = f(\hat{U}^{-1}\hat{A}\hat{U}) \tag{6}$$

erfüllt ist. (1 Punkt)

Aufgabe 18 Unitäre Operatoren II

Gegeben ist ein hermitescher Operator \hat{A} ($\hat{A} = \hat{A}^{\dagger}$), der im Raum der Zustände \mathcal{E} definiert ist. Sei $\{|a_j\rangle\}$ die Eigenbasis von \hat{A} , so dass $\hat{A}|a_j\rangle = a_j|a_j\rangle$.

- a) Zeigen Sie, dass der Operator $\hat{O} = \exp(i\hat{A})$ unitär ist. (1 Punkt)
- b) Zeigen Sie, dass \hat{O} in der Eigenbasis von \hat{A} diagonal ist. Zeigen Sie, dass \hat{O} geschrieben werden kann als

$$\hat{O} = \sum_{j} |a_{j}\rangle\langle a_{j}|f(a_{j}), \tag{7}$$

wobei
$$f(a_j) = \exp(ia_j)$$
. (1.5 Punkte)