Exercises for Theoretical physics V

SoSe 2023 Sheet 1 11.04.2023

Exercise 1 Quantum harmonic oscillator

Let us consider a particle of mass m in one dimension. We define the operator position \hat{x} and impulsion \hat{p} such that they obey the commutation relation $[\hat{x}, \hat{p}] = i\hbar \hat{\mathbf{1}}$. The particle is trapped in a harmonic potential such that it is described by the Hamiltonian

$$\hat{H} = \frac{\hat{p}^2}{2m} + \frac{1}{2}m\omega^2 \hat{x}^2 \tag{1}$$

where $\omega \in \mathbb{R}$.

a) Let us define the annihilation and creation operators $\hat{a} = \frac{1}{\sqrt{2}}(\frac{\hat{x}}{l} + i\frac{l\hat{p}}{\hbar})$ and $\hat{a}^{\dagger} = \frac{1}{\sqrt{2}}(\frac{\hat{x}}{l} - i\frac{l\hat{p}}{\hbar})$, where $l = \sqrt{\frac{\hbar}{m\omega}}$. Show that $\left[\hat{a}, \hat{a}^{\dagger}\right] = \mathbf{1}$ and that $\hat{H} = \hbar\omega(\hat{a}^{\dagger}\hat{a} + \frac{1}{2}\mathbf{1})$

(1 point)

b) For $\hat{N} = \hat{a}^{\dagger}\hat{a}$, show then that $[\hat{N}, \hat{a}] = -\hat{a}$ and $[\hat{N}, \hat{a}^{\dagger}] = \hat{a}^{\dagger}$.

(1 point)

c) Let us consider the eigenvectors $|n\rangle$ of the operator \hat{N} and \hat{H} , such that $\hat{N}|n\rangle = n|n\rangle$, where $n \in \mathbb{N}$. Show that if the ground state $|0\rangle$ is not degenerate, then so are the other states $|n\rangle$.

(1 point)

d) Let us consider the state $|\psi_0\rangle = \sum_n c_n |n\rangle$, where $c_n = e^{-\frac{|\alpha|^2}{2}} \frac{\alpha^n}{\sqrt{n!}}$ and $\alpha \in \mathbb{C}$. Show that $\langle \psi_0 | \psi_0 \rangle = 1$. Determine the expectation values $\langle \hat{x} \rangle$, $\langle \hat{p} \rangle$, $\langle \hat{x}^2 \rangle$ and $\langle \hat{p}^2 \rangle$.

(2 points)

e) Determine the expression of the evolved state $|\psi(t)\rangle = \hat{U}(t)|\psi_0\rangle$. What form takes then $\langle \hat{x}(t)\rangle$ and $\langle \hat{p}(t)\rangle$?

(2 points)

Exercise 2 Conservation equation of quantum probability

Let us consider a system described by the position- and time-dependent wavefunction $\psi(\mathbf{r},t)$. The behaviour of the wavefunction is governed by the Schrödinger equation

$$i\hbar \frac{\partial}{\partial t} \psi(\mathbf{r}, t) = -\frac{\hbar^2}{2m} \nabla^2 \psi(\mathbf{r}, t) + V(\mathbf{r}) \psi(\mathbf{r}, t).$$
 (2)

a) Defining the quantum probability density $\rho(\mathbf{r},t) = |\psi(\mathbf{r},t)|^2$, determine the equation of motion of ρ .

(2 points)

b) Show that it can be expressed in terms of a conservation equation

$$\frac{\partial}{\partial t}\rho(\mathbf{r},t) + \nabla \cdot \mathbf{j}(\mathbf{r},t) = 0.$$
(3)

Give the explicit form of the current of probability j.

Hint: One shall use that $\nabla \cdot (f\nabla g) = (\nabla f) \cdot (\nabla g) + f\nabla^2 g$.

(2 points)

Exercise 3 Relativistic notations

a) Let us define the four-momentum vector $P^{\mu} = mu^{\mu} = (E/c, p_x, p_y, p_z)$. Show that its pseudo-norm is constant and deduce the relation

$$E^2 = p^2 c^2 + m^2 c^4. (4)$$

Assuming that the mass term is dominant $(m^2c^4\gg p^2c^2)$, determine the form of the energy E.

(2 points)

b) The Maxwell tensor $F_{\mu\nu}$ is defined from the four-potential $A^{\mu} = (\phi, A_x, A_y, A_z)$ (in Gauss units) as $F_{\mu\nu} = \partial_{\mu}A_{\nu} - \partial_{\nu}A_{\mu}$. Show that in the Lorenz gauge $(\partial_{\mu}A^{\mu} = 0)$, the equation of motion for the electric potential ϕ and the vector potential \mathbf{A} take the compact form

$$\partial_{\mu}\partial^{\mu}A^{\nu} = \frac{4\pi}{c}j^{\nu},\tag{5}$$

where the four-current is defined as $j^{\nu} = (\rho c, j_x, j_y, j_z)$.

Hint: In Gauss units, the Maxwell equations take the form

$$\nabla \cdot \mathbf{E} = 4\pi \rho, \tag{6a}$$

$$\nabla \cdot \mathbf{B} = 0, \tag{6b}$$

$$\nabla \times \boldsymbol{E} = -\frac{1}{c} \frac{\partial}{\partial t} \boldsymbol{B}, \tag{6c}$$

$$\nabla \times \boldsymbol{B} = \frac{1}{c} \left(4\pi \boldsymbol{j} + \frac{\partial}{\partial t} \boldsymbol{E} \right). \tag{6d}$$

(2 points)