Exercises for Theoretical physics V

SoSe 2023

Sheet 3

25.04.2023

Exercise 6 Properties of the gamma matrices

The Dirac-Hamiltonian operator is given by

$$\hat{H} = c \,\boldsymbol{\alpha} \cdot \boldsymbol{p} + \alpha_t m c^2, \tag{1}$$

with $\alpha_{\mu} = (\alpha_x, \alpha_y, \alpha_z, \alpha_t)$. It holds that $\alpha_{\mu}^{\dagger} = \alpha_{\mu}$, $\operatorname{Tr}[\alpha_{\mu}] = 0$ as well as $\{\alpha_{\mu}, \alpha_{\nu}\} = 2\delta_{\mu\nu}$, with the anticommutator defined as $\{A, B\} = AB + BA$. Beside, the Dirac Equation in the van-der-Waerden-Form is given by

$$\left(\gamma_{\mu}\partial^{\mu} + \frac{mc}{\hbar}\right)\psi(\boldsymbol{r}, t) = 0, \qquad (2)$$

where the γ -matrices are defined as $\gamma_j = -i\alpha_t \alpha_j$ for j = 1, 2, 3 and $\gamma_4 = \alpha_t$. Show the following properties, without explicitly writing the gamma matrices:

a) the anticommutators $\{\gamma_{\mu}, \gamma_{\nu}\} = 2\delta_{\mu\nu}$ hold,

(1 point)

(1 point)

- b) the γ_{μ} are hermitian,
- c) the trace of the γ_{μ} vanishes.

(1 point)

Exercise 7 Non-relativistic limit of the Dirac equation

Let us consider a fermion described by the spinor $\psi(\mathbf{r}, t)$. The behaviour of the spinor is governed by the Dirac equation

$$\left[i\hbar\gamma^{\mu}(\partial_{\mu}+i\frac{e}{\hbar}A_{\mu})-mc\right]\psi(\boldsymbol{r},t)=0,$$
(3)

where the matrices γ_{μ} take the form

$$\gamma_0 = \begin{pmatrix} I_2 & 0\\ 0 & -I_2 \end{pmatrix}$$
, $\gamma_k = \begin{pmatrix} 0 & \sigma_k\\ -\sigma_k & 0 \end{pmatrix}$.

a) Assuming that A_{μ} is time-independent, the spinor has the form $\psi = e^{-iEt/\hbar}\psi_0(\boldsymbol{x})$. Show that the behaviour of the spinor is described by two coupled equations

$$[\boldsymbol{\sigma} \cdot (\boldsymbol{p} - e\boldsymbol{A})] v = \frac{1}{c} (E - e\phi - mc^2)u, \qquad (4a)$$

$$-\left[\boldsymbol{\sigma}\cdot(\boldsymbol{p}-e\boldsymbol{A})\right]u = -\frac{1}{c}(E - e\phi + mc^2)v,$$
(4b)

where
$$\psi = \begin{pmatrix} u \\ v \end{pmatrix}$$
. (2 points)

b) Show that in the non-relativistic case, namely in the limit where $E = E_{NR} + mc^2$ with mc^2 being the largest energy scale ($mc^2 \gg E_{NR}$ and $mc^2 \gg e\phi$), the Dirac equation is approximated by the Schrödinger-Pauli equation

$$E_{NR}u \simeq \left[\frac{1}{2m}(\boldsymbol{\sigma} \cdot (\boldsymbol{p} - e\boldsymbol{A}))^2 + e\phi\right]u.$$
 (5)

(2 points)

c) Using the relation $(\boldsymbol{\sigma} \cdot \boldsymbol{a})(\boldsymbol{\sigma} \cdot \boldsymbol{b}) = \boldsymbol{a} \cdot \boldsymbol{b} + i\boldsymbol{\sigma} \cdot (\boldsymbol{a} \times \boldsymbol{b})$, show that the Schrödinger-Pauli equation takes the form

$$E_{NR}u \simeq \left[\frac{1}{2m}(\boldsymbol{p} - e\boldsymbol{A})^2 - \frac{e\hbar}{2m}\boldsymbol{\sigma} \cdot \boldsymbol{B} + e\phi\right]u.$$
(6)

Hint: You may use that $\nabla \times (u\mathbf{A}) = u(\nabla \times \mathbf{A}) + (\nabla u) \times \mathbf{A}$. (1 point)