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Exercise 8 Transformation of the spinor

The solutions for the Dirac equation for a free particle moving with momentum p are given by:

ψ(j)(x, t) = Nu(j)(p)ei(p·x −Et)/~ with N =
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(|E|+mc2)/(2|E|V ). (1)
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where px, py, pz are the components of the momentum p, m is the mass, E is the energy, V is
the volume.
Transform the solutions for the free electron Dirac equation in the case of p = pex to a moving
reference frame with v = βc, where β = cp/E. The Lorentz transformation for a boost in the
x-direction is given by
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for tanhχ = β. Compare these results with the solutions of the electron at rest. Check whether
the states are normalized.

(2 points)

Exercise 9 Weyl fermions and helicity

Let us consider the case of massless fermions described by the spinor ψ(r, t). Since the mass
vanishes m→ 0, then the Dirac equation reads

i~γµ∂µψ(r, t) = 0, (3)

where the matrices γµ take the form

γ0 =

(
I2 0
0 −I2

)
, γk =

(
0 σk
−σk 0

)
.



a) Show that the elements of the 4-component spinor ψ =
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)
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Provide the expression of χ1,2 as a function of u and v. The fermionic fields χ describe
so-called Weyl fermions.

(2 points)

b) We define the helicity operator as (σ ·∇)/|p|. Assuming that ψ(r, t) = ψ0(r)e−iEt/~,
show that χ1,2 are eigenfunctions of the helicity operator. Determine the corresponding
eigenvalues.

(2 points)


