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Exercise 8 Transformation of the spinor

The solutions for the Dirac equation for a free particle moving with momentum p are given by:
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where p,, py, p. are the components of the momentum p, m is the mass, E is the energy, V' is
the volume.
Transform the solutions for the free electron Dirac equation in the case of p = pe, to a moving
reference frame with v = ¢, where § = ¢p/E. The Lorentz transformation for a boost in the
x-direction is given by

Sp = coshg — a, sinh g, (2)

for tanh y = . Compare these results with the solutions of the electron at rest. Check whether
the states are normalized.
(2 points)

Exercise 9 Weyl fermions and helicity

Let us consider the case of massless fermions described by the spinor ¢ (r,t). Since the mass
vanishes m — 0, then the Dirac equation reads

M0y (r,t) =0, (3)

where the matrices v* take the form
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a) Show that the elements of the 4-component spinor ¢ = <Z) as described by the set of

differential equations
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Provide the expression of x; 2 as a function of v and v. The fermionic fields x describe
so-called Weyl fermions.

(2 points)
b) We define the helicity operator as (o - V)/|p|. Assuming that ¢ (r,t) = o(r)e F/"

show that x;o are eigenfunctions of the helicity operator. Determine the corresponding
eigenvalues.

(2 points)



