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Exercise 15 The Yukawa potential

Pions are scalar bosons that are involved in the binding of protons and neutrons in the nucleus.
They are described by the real scalar field ϕ whose Lagrangian density reads

L =
ℏ2

m

[
1

2
∂µϕ∂

µϕ− 1

2
µ2ϕ2 − ρϕ

]
, (1)

where µ =
mc

ℏ
, with m being the mass of a pion and ρ corresponding to a source term.

a) Determine the Hamiltonian density corresponding to the field ϕ.

b) Show that the equation of motion of the field ϕ takes the form

∂µ∂
µϕ+ µ2ϕ = −ρ. (2)

(1 point)

c) In the abscence of the source term, solve the Euler-Lagrange equation of the field ϕ. We
shall use the Fourier transform in a d-dimensional space defined as

ϕ(x) =
1

(2π)d

∫
Rd

ddx eik·xϕ̂(k), (3)

where ϕ̂(k) are the Fourier component of ϕ at vector k.

Hint:We give the useful identity

δ(f(x)) =
∑
i

1

|f ′(xi)|
δ(x− xi), (4)

where xi are the roots of the equation f(x) = 0.

(2 points)

d) In the case of a static field, determine the form of the Green function associated to the
Euler-Lagrange equation Eq. (3). Then, one may see that the pion field ϕ mediates an
interaction expressed in terms of the so-called Yukawa potential. Comment on its range.

Hint: You shall use that ∫ +∞

−∞

k

k2 + µ2
sin(kr)dk = πe−µr.

(3 points)



Exercise 16 Photons with circular polarization

Let us consider a quantized electromagnetic field with a wavevector k and two possible linear
polarisations e1 and e2, such that it respect the conditions k · e1 = k · e2 = e1 · e2 = 0. The
vectors e1,2 are unit vectors.
The energy of the electromagnetic field reads

Ĥ = ℏc|k|(â†1â1 + â†2â2 + 1), (5)

where the operators â†j act on the vacuum to create a photon at wavelength k and polarization
ej. The annhihilation and creation operators obey bosonic commutation relations

[âi, â
†
j] = δij, (6)

[â
(†)
i , â

(†)
j ] = 0. (7)

a) We shall consider the circular polarization vectors

e± = ∓ 1√
2
(e1 ± ie2). (8)

Using the definition of the quantized photon field

A(x, t) =
c√
V

√
ℏ
2ω

∑
j

[
âj(t)e

ik·xej + â†j(t)e
−ik·xe∗

j

]
, (9)

show that it can written in terms of operators â± and â†± annihilating and creating photons
with polarization e±. Give their expression and show that they commute according to
bosonic commutation relations.

(2 points)

b) Let us apply to e+ and e− a rotation around the wavevector k by an infinitesimal angle
δθ. Show that the polarization vectors are changed by a factor δe± = ∓iδθe±. What can
you deduce about the spin of the photon ?

Hint: We remind that for a two-level system, the rotation operator R̂(θ) reads

R̂(θ) = exp(iθ(n · σ)) = I2 cos θ + i(n · σ) sin θ,

where the elements of the vector σ are Pauli matrices.

(2 points)

Exercise 17 Diffraction function and the Fermi golden rule
Let us define the diffraction function as

δ(T )(Ef − Ei) =
1

2πℏ

∫ T/2

−T/2

dτei(Ef−Ei)τ/ℏ, (10)

which goes toward the Dirac δ function in the limit T → +∞. In the following, we will
demonstrate some properties of the diffraction function.



a) Show the following indentity∫ +∞

−∞
dEδ(T )(E − Ei)δ

(T )(E − Ef ) = δ(T )(Ei − Ef ). (11)

(1 point)

b) Show that the diffraction function takes the form

δ(T )(Ef − Ei) =
1

π

sin[(Ef − Ei)T/2ℏ]
Ef − Ei

, (12)

deduce then that ∫ +∞

−∞
dEf [δ

(T )(Ef − Ei)]
2 =

T

2πℏ
. (13)

Hint: We give that ∫ +∞

−∞
dx

sin2 x

x2
= π

(2 points)

c) Let us consider a simplified model of an ionized atom consisting in a ground state |g⟩ at
energy ℏω0 and a continuum of ionized states labeled |I⟩ with an energy ℏ(ω1+ωI), such
that ω1 > ω0. The ground state and the ionized states are coupled by a time-dependent
perturbative term such that the total Hamiltonian reads

Ĥ = ℏω0|g⟩⟨g|+
∑
I

ℏ(ω1 + ωI)|I⟩⟨I|+ V0

∑
I

(|I⟩⟨g|e−iωt + h.c.). (14)

Let the system be prepared in state |g⟩ at time t = 0, use the Fermi golden rule to
determine the rate at which the atom is ionized toward a state |I⟩.
Hint: You shall go to the continuous limit where

∑
I →

∫
dEIρ(EI).

(2 points)


