Exercises for Theoretical physics V

SoSe 2023

Sheet 7

30.05.2023

Exercise 15 The Yukawa potential

Pions are scalar bosons that are involved in the binding of protons and neutrons in the nucleus. They are described by the real scalar field ϕ whose Lagrangian density reads

$$\mathcal{L} = \frac{\hbar^2}{m} \left[\frac{1}{2} \partial_\mu \phi \partial^\mu \phi - \frac{1}{2} \mu^2 \phi^2 - \rho \phi \right], \tag{1}$$

where $\mu = \frac{mc}{\hbar}$, with *m* being the mass of a pion and ρ corresponding to a source term.

- a) Determine the Hamiltonian density corresponding to the field ϕ .
- b) Show that the equation of motion of the field ϕ takes the form

$$\partial_{\mu}\partial^{\mu}\phi + \mu^{2}\phi = -\rho. \tag{2}$$

(1 point)

c) In the abscence of the source term, solve the Euler-Lagrange equation of the field ϕ . We shall use the Fourier transform in a *d*-dimensional space defined as

$$\phi(\boldsymbol{x}) = \frac{1}{(2\pi)^d} \int_{\mathbb{R}^d} \mathrm{d}^d \boldsymbol{x} \, e^{i\boldsymbol{k}\cdot\boldsymbol{x}} \hat{\phi}(\boldsymbol{k}), \tag{3}$$

where $\hat{\phi}(\boldsymbol{k})$ are the Fourier component of ϕ at vector \boldsymbol{k} .

Hint:We give the useful identity

$$\delta(f(x)) = \sum_{i} \frac{1}{|f'(x_i)|} \delta(x - x_i), \qquad (4)$$

where x_i are the roots of the equation f(x) = 0.

(2 points)

d) In the case of a static field, determine the form of the Green function associated to the Euler-Lagrange equation Eq. (3). Then, one may see that the pion field ϕ mediates an interaction expressed in terms of the so-called Yukawa potential. Comment on its range.

Hint: You shall use that

$$\int_{-\infty}^{+\infty} \frac{k}{k^2 + \mu^2} \sin(kr) \mathrm{d}k = \pi e^{-\mu r}.$$

(3 points)

Exercise 16 Photons with circular polarization

Let us consider a quantized electromagnetic field with a wavevector \mathbf{k} and two possible linear polarisations \mathbf{e}_1 and \mathbf{e}_2 , such that it respect the conditions $\mathbf{k} \cdot \mathbf{e}_1 = \mathbf{k} \cdot \mathbf{e}_2 = \mathbf{e}_1 \cdot \mathbf{e}_2 = 0$. The vectors $\mathbf{e}_{1,2}$ are unit vectors.

The energy of the electromagnetic field reads

$$\hat{H} = \hbar c |\mathbf{k}| (\hat{a}_1^{\dagger} \hat{a}_1 + \hat{a}_2^{\dagger} \hat{a}_2 + 1), \tag{5}$$

where the operators \hat{a}_{j}^{\dagger} act on the vacuum to create a photon at wavelength k and polarization e_{j} . The annhihilation and creation operators obey bosonic commutation relations

$$[\hat{a}_i, \hat{a}_j^{\dagger}] = \delta_{ij}, \tag{6}$$

$$[\hat{a}_i^{(\dagger)}, \hat{a}_j^{(\dagger)}] = 0.$$
(7)

a) We shall consider the circular polarization vectors

$$\boldsymbol{e}_{\pm} = \mp \frac{1}{\sqrt{2}} (\boldsymbol{e}_1 \pm i \boldsymbol{e}_2). \tag{8}$$

Using the definition of the quantized photon field

$$\boldsymbol{A}(\boldsymbol{x},t) = \frac{c}{\sqrt{V}} \sqrt{\frac{\hbar}{2\omega}} \sum_{j} \left[\hat{a}_{j}(t) e^{i\boldsymbol{k}\cdot\boldsymbol{x}} \boldsymbol{e}_{j} + \hat{a}_{j}^{\dagger}(t) e^{-i\boldsymbol{k}\cdot\boldsymbol{x}} \boldsymbol{e}_{j}^{*} \right],$$
(9)

show that it can written in terms of operators \hat{a}_{\pm} and \hat{a}_{\pm}^{\dagger} annihilating and creating photons with polarization e_{\pm} . Give their expression and show that they commute according to bosonic commutation relations.

(2 points)

b) Let us apply to e_+ and e_- a rotation around the wavevector k by an infinitesimal angle $\delta\theta$. Show that the polarization vectors are changed by a factor $\delta e_{\pm} = \mp i \delta \theta e_{\pm}$. What can you deduce about the spin of the photon ?

Hint: We remind that for a two-level system, the rotation operator $\hat{R}(\theta)$ reads

$$R(\theta) = \exp(i\theta(\boldsymbol{n}\cdot\boldsymbol{\sigma})) = I_2\cos\theta + i(\boldsymbol{n}\cdot\boldsymbol{\sigma})\sin\theta,$$

where the elements of the vector $\boldsymbol{\sigma}$ are Pauli matrices.

(2 points)

Exercise 17 Diffraction function and the Fermi golden rule Let us define the diffraction function as

$$\delta^{(T)}(E_f - E_i) = \frac{1}{2\pi\hbar} \int_{-T/2}^{T/2} \mathrm{d}\tau e^{i(E_f - E_i)\tau/\hbar},\tag{10}$$

which goes toward the Dirac δ function in the limit $T \to +\infty$. In the following, we will demonstrate some properties of the diffraction function.

a) Show the following indentity

$$\int_{-\infty}^{+\infty} dE \delta^{(T)} (E - E_i) \delta^{(T)} (E - E_f) = \delta^{(T)} (E_i - E_f).$$
(11)

(1 point)

b) Show that the diffraction function takes the form

$$\delta^{(T)}(E_f - E_i) = \frac{1}{\pi} \frac{\sin[(E_f - E_i)T/2\hbar]}{E_f - E_i},$$
(12)

deduce then that

$$\int_{-\infty}^{+\infty} \mathrm{d}E_f [\delta^{(T)} (E_f - E_i)]^2 = \frac{T}{2\pi\hbar}.$$
(13)

Hint: We give that

$$\int_{-\infty}^{+\infty} \mathrm{d}x \frac{\sin^2 x}{x^2} = \pi$$

(2 points)

c) Let us consider a simplified model of an ionized atom consisting in a ground state $|g\rangle$ at energy $\hbar\omega_0$ and a continuum of ionized states labeled $|I\rangle$ with an energy $\hbar(\omega_1 + \omega_I)$, such that $\omega_1 > \omega_0$. The ground state and the ionized states are coupled by a time-dependent perturbative term such that the total Hamiltonian reads

$$\hat{H} = \hbar\omega_0 |g\rangle\langle g| + \sum_I \hbar(\omega_1 + \omega_I) |I\rangle\langle I| + V_0 \sum_I (|I\rangle\langle g|e^{-i\omega t} + \text{h.c.}).$$
(14)

Let the system be prepared in state $|g\rangle$ at time t = 0, use the Fermi golden rule to determine the rate at which the atom is ionized toward a state $|I\rangle$.

Hint: You shall go to the continuous limit where $\sum_{I} \rightarrow \int dE_{I} \rho(E_{I})$.

(2 points)