Exercises for Theoretical physics V

SoSe 2023

Sheet 11

11.07.2023

Exercise 25 Energy conservation and time translations

Let us consider the Lagrangian density associated to a real-valued bosonic field

$$\mathcal{L} = \frac{1}{2} (\partial^{\nu} \psi) (\partial_{\nu} \psi) - V(\phi^2), \qquad (1)$$

where V is an arbitrary continuous function. Show that for such a Lagrangian density, the conservation of the energy implies the time translation symmetry of the system.

(2 points)

Exercise 26 First-order Lagrangian

Let us consider a classical system a classical system with two coordinates a and b. Take the Lagrangian to be

$$L(a,b,b) = ab - V(a,b).$$
(2)

The canonical rule says that a has no canonical conjugate. It is the conjugate to b

a) Determine the Euler-Lagrange equations for variables a and b.

(1 point)

b) Find the canonical momenta, as well as the Hamilton equations of motion. Check that they are consistent with the Lagrangian ones.

(2 points)

Exercise 27 Phase-invariance of the Dirac field

Considering the Lagrangian density of a Dirac field ψ :

$$\mathcal{L} = \overline{\psi}(i\hbar\gamma^{\mu}\partial_{\mu} - mc)\psi, \qquad (3)$$

a) Show that the system is invariant under the phase transformation $\psi \to \psi' = e^{i\alpha}\psi$.

(1 point)

b) Determine the Noether current j^{μ} associated to the phase-invariance of the Lagrangian density.

(1 point)

c) Show that the Noether current verify that $\partial_{\mu}j^{\mu} = 0$.

(2 points)

Exercise 28 Quantized Dirac field

Let us recall that the quantized Dirac field can be written in terms of fermionic creation and annihilation operators $a_{p,s}$ and $b_{p,s}$, such that for a periodic box-like space of volume Ω

$$\hat{\psi}(\boldsymbol{r},t) = \sum_{\boldsymbol{p},s} \sqrt{\frac{m}{\Omega E_{\boldsymbol{p}}}} \left[\hat{a}_{\boldsymbol{p},s} u(\boldsymbol{p},s) e^{i(\boldsymbol{p}\cdot\boldsymbol{r}-E_{\boldsymbol{p}}t)/\hbar} + \hat{b}_{\boldsymbol{p},s}^{\dagger} v(\boldsymbol{p},s) e^{-i(\boldsymbol{p}\cdot\boldsymbol{r}-E_{\boldsymbol{p}}t)/\hbar} \right],\tag{4}$$

with $u^{\dagger}(\boldsymbol{p}, s)u(\boldsymbol{p}, s') = v^{\dagger}(\boldsymbol{p}, s)v(\boldsymbol{p}, s') = E_{\boldsymbol{p}}\delta_{ss'}/m$. In other words, the operator $\hat{a}_{\boldsymbol{p},s}$ destroys a particle with wavefunction $u(\boldsymbol{p}, s)$, while $\hat{b}_{\boldsymbol{p},s}$ annihilates an antiparticle with wavefunction $v^{\dagger}(\boldsymbol{p}, s)$.

a) Using the following definitions,

$$\hat{H} = \int d^3 \boldsymbol{r} \hat{\psi}^{\dagger}(\boldsymbol{r}, t) (-i\hbar\boldsymbol{\alpha} \cdot \boldsymbol{\nabla} + \beta m) \hat{\psi}(\boldsymbol{r}, t), \qquad (5)$$

$$\hat{\boldsymbol{P}} = -i\hbar \int \mathrm{d}^{3}\boldsymbol{r}\hat{\psi}^{\dagger}(\boldsymbol{r},t)\boldsymbol{\nabla}\hat{\psi}(\boldsymbol{r},t), \qquad (6)$$

$$\hat{Q} = -e \int d^3 \boldsymbol{r} \hat{\overline{\psi}}(\boldsymbol{r}, t) \gamma^0 \hat{\psi}(\boldsymbol{r}, t), \qquad (7)$$

determine the form of the Hamiltonian \hat{H} , the momentum operator \hat{P} and the charge \hat{Q} in terms of operator $\hat{a}_{p,s}$ and $\hat{b}_{p,s}$.

(3 points)

b) Considering the two-particle state $|\Psi\rangle = \hat{a}^{\dagger}_{\boldsymbol{p},s}\hat{a}^{\dagger}_{\boldsymbol{p}',s'}|0\rangle$, show that such a state is antisymmetric and determine the expectation values of \hat{H} , \hat{P} and \hat{Q} .

(1 point)

c) For a two-anti-particle state $|\Psi\rangle = \hat{b}^{\dagger}_{\boldsymbol{p},s}\hat{b}^{\dagger}_{\boldsymbol{p}',s'}|0\rangle$, perform the same calculations as in the two-particle state case.