SoSe 2024

Exercises for Theoretical physics V
 Sheet 1

12.04.2023

Exercise 1 Quantum harmonic oscillator

Let us consider a particle of mass m in one dimension. We define the operator position \hat{x} and impulsion \hat{p} such that they obey the commutation relation $[\hat{x}, \hat{p}]=i \hbar \hat{\mathbf{1}}$. The particle is trapped in a harmonic potential such that it is described by the Hamiltonian

$$
\begin{equation*}
\hat{H}=\frac{\hat{p}^{2}}{2 m}+\frac{1}{2} m \omega^{2} \hat{x}^{2} \tag{1}
\end{equation*}
$$

where $\omega \in \mathbb{R}$.
a) Let us define the annihilation and creation operators $\hat{a}=\frac{1}{\sqrt{2}}\left(\frac{\hat{x}}{l}+i \frac{l \hat{p}}{\hbar}\right)$ and $\hat{a}^{\dagger}=\frac{1}{\sqrt{2}}\left(\frac{\hat{x}}{l}-i \frac{l \hat{p}}{\hbar}\right)$, where $l=\sqrt{\frac{\hbar}{m \omega}}$. Show that $\left[\hat{a}, \hat{a}^{\dagger}\right]=\mathbf{1}$ and that $\hat{H}=\hbar \omega\left(\hat{a}^{\dagger} \hat{a}+\frac{1}{2} \mathbf{1}\right)$
b) For $\hat{N}=\hat{a}^{\dagger} \hat{a}$, show then that $[\hat{N}, \hat{a}]=-\hat{a}$ and $\left[\hat{N}, \hat{a}^{\dagger}\right]=\hat{a}^{\dagger}$.
c) Let us consider the eigenvectors $|n\rangle$ of the operator \hat{N} and \hat{H}, such that $\hat{N}|n\rangle=n|n\rangle$, where $n \in \mathbb{N}$. Show that if the ground state $|0\rangle$ is not degenerate, then so are the other states $|n\rangle$.
d) Let us consider the state $\left|\psi_{0}\right\rangle=\sum_{n} c_{n}|n\rangle$, where $c_{n}=e^{-\frac{|\alpha|^{2}}{2}} \frac{\alpha^{n}}{\sqrt{n!}}$ and $\alpha \in \mathbb{C}$. Show that $\left\langle\psi_{0} \mid \psi_{0}\right\rangle=1$. Determine the expectation values $\langle\hat{x}\rangle,\langle\hat{p}\rangle,\left\langle\hat{x}^{2}\right\rangle$ and $\left\langle\hat{p}^{2}\right\rangle$.
(2 points)
e) Determine the expression of the evolved state $|\psi(t)\rangle=\hat{U}(t)\left|\psi_{0}\right\rangle$. What form takes then $\langle\hat{x}(t)\rangle$ and $\langle\hat{p}(t)\rangle$?

Exercise 2 Conservation equation of quantum probability

Let us consider a system described by the position- and time-dependent wavefunction $\psi(\boldsymbol{r}, t)$. The behaviour of the wavefunction is governed by the Schrödinger equation

$$
\begin{equation*}
i \hbar \frac{\partial}{\partial t} \psi(\boldsymbol{r}, t)=-\frac{\hbar^{2}}{2 m} \nabla^{2} \psi(\boldsymbol{r}, t)+V(\boldsymbol{r}) \psi(\boldsymbol{r}, t) . \tag{2}
\end{equation*}
$$

a) Defining the quantum probability density $\rho(\boldsymbol{r}, t)=|\psi(\boldsymbol{r}, t)|^{2}$, determine the equation of motion of ρ.
b) Show that it can be expressed in terms of a conservation equation

$$
\begin{equation*}
\frac{\partial}{\partial t} \rho(\boldsymbol{r}, t)+\nabla \cdot \boldsymbol{j}(\boldsymbol{r}, t)=0 \tag{3}
\end{equation*}
$$

Give the explicit form of the current of probability \boldsymbol{j}.
Hint: One shall use that $\nabla \cdot(f \nabla g)=(\nabla f) \cdot(\nabla g)+f \nabla^{2} g$.
(2 points)

Exercise 3 Relativistic notations

a) Let us define the four-momentum vector $P^{\mu}=m u^{\mu}=\left(E / c, p_{x}, p_{y}, p_{z}\right)$. Show that its pseudo-norm is constant and deduce the relation

$$
\begin{equation*}
E^{2}=p^{2} c^{2}+m^{2} c^{4} \tag{4}
\end{equation*}
$$

Assuming that the mass term is dominant $\left(m^{2} c^{4} \gg p^{2} c^{2}\right)$, determine the form of the energy E.
b) The Maxwell tensor $F_{\mu \nu}$ is defined from the four-potential $A^{\mu}=\left(\phi, A_{x}, A_{y}, A_{z}\right)$ (in Gauss units) as $F_{\mu \nu}=\partial_{\mu} A_{\nu}-\partial_{\nu} A_{\mu}$. Show that in the Lorenz gauge ($\partial_{\mu} A^{\mu}=0$), the equation of motion for the electric potential ϕ and the vector potential \boldsymbol{A} take the compact form

$$
\begin{equation*}
\partial_{\mu} \partial^{\mu} A^{\nu}=\frac{4 \pi}{c} j^{\nu} \tag{5}
\end{equation*}
$$

where the four-current is defined as $j^{\nu}=\left(\rho c, j_{x}, j_{y}, j_{z}\right)$.
Hint: In Gauss units, the Maxwell equations take the form

$$
\begin{align*}
\nabla \cdot \boldsymbol{E} & =4 \pi \rho \tag{6a}\\
\nabla \cdot \boldsymbol{B} & =0 \tag{6b}\\
\nabla \times \boldsymbol{E} & =-\frac{1}{c} \frac{\partial}{\partial t} \boldsymbol{B} \tag{6c}\\
\nabla \times \boldsymbol{B} & =\frac{1}{c}\left(4 \pi \boldsymbol{j}+\frac{\partial}{\partial t} \boldsymbol{E}\right) . \tag{6d}
\end{align*}
$$

