Theoretical physics V
 Sheet 2

SoSe 2024
Due for the 02.05.2024

Exercise 4 Non-relativistic limit of the Klein-Gordon equation

Let us consider a scalar boson described by the wave function $\phi(\boldsymbol{r}, t)$. The behaviour of the wave function is governed by the Klein-Gordon equation

$$
\begin{equation*}
\left(\partial_{\mu} \partial^{\mu}+\frac{m^{2} c^{2}}{\hbar^{2}}\right) \phi(\boldsymbol{r}, t)=0 \tag{1}
\end{equation*}
$$

where $\partial_{\mu} \partial^{\mu}=\eta^{\mu \nu} \partial_{\mu} \partial_{\nu}$ stands for the d'Alembert operator and $\eta^{\mu \nu}$ is the flat metric tensor of special relativity, a diagonal matrix with coefficients $\eta^{\mu \nu}=\operatorname{diag}(1,-1,-1,-1)$.
a) Assuming that the wave function has the form $\phi(\boldsymbol{r}, t)=e^{-i E t / \hbar} \phi_{0}(\boldsymbol{x})$, show that the behaviour of the wave function is described by the equation

$$
\begin{equation*}
E^{2} \phi(\boldsymbol{r}, t)=\left(-\hbar^{2} c^{2} \nabla^{2}+m^{2} c^{4}\right) \phi(\boldsymbol{r}, t) . \tag{2}
\end{equation*}
$$

b) Show that in the non-relativistic case, namely in the limit where $E=E_{N R}+m c^{2}$ with $m c^{2} \gg E_{N R}$, the Klein-Gordon equation is approximated by the Schrödinger equation of a free particle

$$
\begin{equation*}
E_{N R} \phi(\boldsymbol{r}, t) \simeq-\frac{\hbar^{2}}{2 m} \nabla^{2} \phi(\boldsymbol{r}, t) . \tag{3}
\end{equation*}
$$

(1 point)

Exercise 5 Transformation between inertial reference frames

As seen in the lectures, a change of reference frame leads to a transformation of the Dirac spinor $\psi^{\prime}=S \psi$. For the transformation S to leave the Dirac equation invariant, it needs to fulfill the following conditions

$$
\begin{equation*}
S^{\dagger} \alpha^{\mu} S=\Lambda_{\nu}^{\mu} \alpha^{\nu} \quad \text { and } \quad S^{\dagger} \beta S=\beta, \tag{4}
\end{equation*}
$$

where Λ is a transformation of the Lorentz group. The α and β matrices are defined as

$$
\alpha^{0}=\mathbf{1}_{4}, \quad \alpha^{i}=\left(\begin{array}{cc}
0 & \sigma^{i} \tag{5}\\
\sigma^{i} & 0
\end{array}\right) \quad \text { and } \beta=\left(\begin{array}{cc}
\mathbf{1}_{2} & 0 \\
0 & -\mathbf{1}_{2} .
\end{array}\right)
$$

Show that the operators S given in the following fulfill the conditions states in Eq. (4) for the corresponding reference frame transformations.
a) Consider a rotation around the z axis by an angle θ, coordinates transform as:

$$
\begin{aligned}
c t^{\prime}=c t ; z^{\prime} & =z \\
x^{\prime}=\cos \theta x+\sin \theta y ; y^{\prime} & =\cos \theta y-\sin \theta x .
\end{aligned}
$$

Identify the matrix elements of Λ and show that the transformation

$$
S=\cos \frac{\theta}{2}\left(\begin{array}{cc}
\mathbf{1}_{2} & 0 \tag{6}\\
0 & \mathbf{1}_{2}
\end{array}\right)+i \sin \frac{\theta}{2}\left(\begin{array}{cc}
\sigma^{z} & 0 \\
0 & \sigma^{z}
\end{array}\right),
$$

fulfills the conditions stated in Eq. (4).
(2 points)
b) We consider now a Lorentz boost along the x axis by a rapidity χ that transforms the coordinates as:

$$
\begin{gathered}
c t^{\prime}=\cosh \chi c t-\sinh \chi x ; x^{\prime}=\cosh \chi x-\sinh \chi c t ; \\
y^{\prime}=y ; z^{\prime}=z
\end{gathered}
$$

etermine the elements of the matrix Λ and show that the transformation

$$
S=\cosh \frac{\chi}{2}\left(\begin{array}{cc}
\mathbf{1}_{2} & 0 \tag{7}\\
0 & \mathbf{1}_{2}
\end{array}\right)-\sinh \frac{\chi}{2}\left(\begin{array}{cc}
0 & \sigma^{x} \\
\sigma^{x} & 0
\end{array}\right)
$$

fulfills the conditions stated in Eq. (4).
c) Let us finally consider a spatial reflection given by the transformation

$$
c t^{\prime}=c t ; x_{i}^{\prime}=-x_{i} .
$$

Identiy the form taken by the matrix Λ and show that the transformation

$$
\begin{equation*}
S=\beta \tag{8}
\end{equation*}
$$

fulfills the conditions stated in Eq. (4).

Exercise 6 Reminders on the Pauli matrices (Bonus)

The Pauli matrices are defined as

$$
\sigma_{x}=\left(\begin{array}{ll}
0 & 1 \tag{9}\\
1 & 0
\end{array}\right), \sigma_{y}=\left(\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right), \sigma_{z}=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right) .
$$

a) Show that the Pauli matrices fulfill the following relations

$$
\begin{equation*}
\sigma_{j} \sigma_{k}=\delta_{j k} \mathbf{1}_{2}+i \epsilon_{j k l} \sigma_{l} \text { and } \sigma_{x} \sigma_{y} \sigma_{z}=i \mathbf{1}_{2} \tag{10}
\end{equation*}
$$

where $j, k, l \in\{x, y, z\}$, where $\delta_{j k}$ stands for the Kronecker delta and $\epsilon_{j k l}$ as the LeviCivita tensor, such that $\epsilon_{x y z}=\epsilon_{y z x}=\epsilon_{z x y}=1$ and $\epsilon_{y x z}=\epsilon_{z y x}=\epsilon_{x z y}=-1$, otherwise $\epsilon_{j k l}=0$.
(2 points)
b) Prove that the Pauli matrices follow the commutation and anti-commutation relations:

$$
\begin{equation*}
\left[\sigma_{j}, \sigma_{k}\right]=2 i \epsilon_{j k l} \sigma_{l} \text { and }\left\{\sigma_{j}, \sigma_{k}\right\}=2 \delta_{j k} \mathbf{1}_{2} \tag{11}
\end{equation*}
$$

where the commutators and anticommutators of two operators A and B are defined as $[A, B]=A B-B A$ and $\{A, B\}=A B+B A$.
c) Show that the vector of Pauli matrices $\boldsymbol{\sigma}=\left(\sigma_{x}, \sigma_{y}, \sigma_{z}\right)$ and two vectors $\boldsymbol{a}, \boldsymbol{b} \in \mathbb{R}^{3}$ fulfill the following relation

$$
\begin{equation*}
(\boldsymbol{a} \cdot \boldsymbol{\sigma})(\boldsymbol{b} \cdot \boldsymbol{\sigma})=\boldsymbol{a} \cdot \boldsymbol{b}+i(\boldsymbol{a} \times \boldsymbol{b}) \cdot \boldsymbol{\sigma} . \tag{12}
\end{equation*}
$$

Use this equality on a normalized vector $\boldsymbol{n} \in \mathbb{R}^{3}$ to show that

$$
\begin{equation*}
(\boldsymbol{n} \cdot \boldsymbol{\sigma})^{2}=1 \tag{13}
\end{equation*}
$$

