Theoretical physics V Sheet 3

SoSe 2024

Due for the 09.05.2024

Exercise 7 Properties of the gamma matrices

The Hamiltonian corresponding to the Dirac equation is given by

$$\hat{H} = c \,\boldsymbol{\alpha} \cdot \boldsymbol{p} + \beta m c^2, \tag{1}$$

with $\boldsymbol{\alpha} = (\alpha^x, \alpha^y, \alpha^z)$. The matrices α^j and β exhibit the following properties: $(\alpha^j)^{\dagger} = \alpha^j$, $\operatorname{Tr}[\alpha^j] = 0 = \operatorname{Tr}[\beta]$ as well as $\{\alpha^j, \alpha^k\} = 2\delta^{jk}\mathbf{1}_4$ and $\{\alpha^j, \beta\} = 0$, where the anticommutator is defined as $\{A, B\} = AB + BA$.

Beside, the Dirac Equation in the van-der-Waerden form is given by

$$(i\hbar\gamma^{\mu}\partial_{\mu} - mc)\,\psi(\boldsymbol{r}, t) = 0,\tag{2}$$

where the γ -matrices are defined by the general expression $\gamma^{\mu} = \beta \alpha^{\mu}$, namely $\gamma^{0} = \beta$, while $\gamma^{j} = \beta \alpha^{j}$ for j = 1, 2, 3. Show the following properties, without explicitly writing the gamma matrices:

a) The anticommutating relation $\{\gamma^{\mu}, \gamma^{\nu}\} = 2\eta^{\mu\nu} \mathbf{1}_4$ holds,

(1 point)

- b) That the matrices γ^j are anti-hermitian,
- c) The trace of the γ^{μ} vanishes.

(1 point)

(1 point)

Exercise 8 Dirac spinor and Lorentz boost

The solutions for the Dirac equation for a free particle of mass m moving with momentum p belong to a Hilbert space spanned by the basis $\psi^{(j)}$ whose elements are defined as:

$$\psi^{(j)}(\boldsymbol{x},t) = \mathcal{N}u^{(j)}(\boldsymbol{p})e^{i(\boldsymbol{p}\cdot\boldsymbol{x} - Et)/\hbar} \text{ with } \mathcal{N} = \sqrt{(|E| + mc^2)/(2|E|V)},$$
(3)

where the spinors $u^{(j)}$ take the form

$$u^{(1)}(\boldsymbol{p}) = \begin{pmatrix} 1 \\ 0 \\ \frac{cp_z}{E + mc^2} \\ \frac{c(p_x + ip_y)}{E + mc^2} \end{pmatrix}, \quad u^{(2)}(\boldsymbol{p}) = \begin{pmatrix} 0 \\ 1 \\ \frac{c(p_x - ip_y)}{E + mc^2} \\ -\frac{cp_z}{E + mc^2} \\ \frac{c(p_x + ip_y)}{|E| + mc^2} \\ \frac{1}{0} \end{pmatrix}, \quad u^{(4)}(\boldsymbol{p}) = \begin{pmatrix} -\frac{c(p_x - ip_y)}{|E| + mc^2} \\ \frac{cp_z}{|E| + mc^2} \\ \frac{1}{0} \\ \frac{1}{1} \end{pmatrix}.$$

with p_x , p_y , p_z being the components of the momentum \boldsymbol{p} , while E stands for the energy of the particle and V for the volume available to the particle.

a) We have previously seen that Dirac spinors transform as $\psi' = S\psi$ for a change of reference frame. Transform the solutions for the free electron Dirac equation in the case of $\boldsymbol{p} = p\boldsymbol{e}_x$ to a moving reference frame with $v = \beta c$, where $\beta = cp/E$. The Lorentz transformation for a boost in the x-direction is given by

$$S_L = \cosh\frac{\chi}{2}\mathbf{1}_4 - \alpha_x \sinh\frac{\chi}{2},\tag{4}$$

for $\tanh \chi = \beta$. Compare these results with the solutions of the electron at rest. Check whether the states are normalized.

(2 points)

b) Show that positive- (negative-) energy solutions of the Dirac equation for p = 0 transform via a Lorentz boost into another positive- (negative-) energy solution of the Dirac equation.

Hint: Use the spinor transformation to a reference frame of rapidity χ along the direction -n:

$$S_L = \cosh \frac{\chi}{2} \mathbf{1}_4 + \mathbf{n} \cdot \boldsymbol{\alpha} \sinh \frac{\chi}{2}.$$
(2 points)

Exercise 9 Helicity conservation

The helicity operator is defined as $\hat{h} = \Sigma \cdot \hat{p}$, where the elements of the vector $\Sigma = (\Sigma^x, \Sigma^y, \Sigma^z)$ take the form

$$\Sigma^j = \begin{pmatrix} \sigma^j & 0\\ 0 & \sigma^j \end{pmatrix}$$

Show that the helicity is a conserved quantity of motion, namely that

$$[\hat{H}, \hat{h}] = 0,$$
 (5)

where \hat{H} is defined in Eq. (1).

(2 points)

Exercise 10 Charge conjugation

Let us introduce the charge conjugation operator $\mathcal{C} = -i\beta\alpha^2 = -i\gamma^2$, where

$$\alpha^{j} = \begin{pmatrix} 0 & \sigma^{j} \\ \sigma^{j} & 0 \end{pmatrix}$$
 and $\beta = \begin{pmatrix} \mathbf{1}_{2} & 0 \\ 0 & -\mathbf{1}_{2} \end{pmatrix}$.

a) Verify that, given the wave function $\psi(\boldsymbol{x},t) = u_{\boldsymbol{p}}e^{i(\boldsymbol{p}\cdot\boldsymbol{x}-Et)/\hbar}$ of a negative-energy electron with momentum \boldsymbol{p} , then $v_{\boldsymbol{p}} = Cu_{\boldsymbol{p}}^*$ satisfy the Dirac equation with energy E > 0 and momentum $-\boldsymbol{p}$.

(2 points)

b) Show that $\mathcal{C} = \mathcal{C}^{\dagger}$ and $\mathcal{C}^2 = \mathbf{1}_4$. Write down the explicit form of \mathcal{C} as a 4×4 matrix.

(1 point)

c) Verify then the validity of the relation

$$j^{\mu} = \phi^{\dagger} \alpha^{\mu} \phi = \psi^{\dagger} \alpha^{\mu} \psi, \tag{6}$$

with $\phi = C\psi^*$, therefore showing that the probability and flow density are identical for both the negative-energy electron and the positron.

(2 points)