Theoretical physics V
 Sheet 3

SoSe 2024
Due for the 09.05.2024

Exercise $7 \quad$ Properties of the gamma matrices

The Hamiltonian corresponding to the Dirac equation is given by

$$
\begin{equation*}
\hat{H}=c \boldsymbol{\alpha} \cdot \boldsymbol{p}+\beta m c^{2} \tag{1}
\end{equation*}
$$

with $\boldsymbol{\alpha}=\left(\alpha^{x}, \alpha^{y}, \alpha^{z}\right)$. The matrices α^{j} and β exhibit the following properties: $\left(\alpha^{j}\right)^{\dagger}=\alpha^{j}$, $\operatorname{Tr}\left[\alpha^{j}\right]=0=\operatorname{Tr}[\beta]$ as well as $\left\{\alpha^{j}, \alpha^{k}\right\}=2 \delta^{j k} \mathbf{1}_{4}$ and $\left\{\alpha^{j}, \beta\right\}=0$, where the anticommutator is defined as $\{A, B\}=A B+B A$.
Beside, the Dirac Equation in the van-der-Waerden form is given by

$$
\begin{equation*}
\left(i \hbar \gamma^{\mu} \partial_{\mu}-m c\right) \psi(\boldsymbol{r}, t)=0 \tag{2}
\end{equation*}
$$

where the γ-matrices are defined by the general expression $\gamma^{\mu}=\beta \alpha^{\mu}$, namely $\gamma^{0}=\beta$, while $\gamma^{j}=\beta \alpha^{j}$ for $j=1,2,3$. Show the following properties, without explicitly writing the gamma matrices:
a) The anticommutating relation $\left\{\gamma^{\mu}, \gamma^{\nu}\right\}=2 \eta^{\mu \nu} \mathbf{1}_{4}$ holds,
b) That the matrices γ^{j} are anti-hermitian,
c) The trace of the γ^{μ} vanishes.

Exercise 8 Dirac spinor and Lorentz boost

The solutions for the Dirac equation for a free particle of mass m moving with momentum \boldsymbol{p} belong to a Hilbert space spanned by the basis $\psi^{(j)}$ whose elements are defined as:

$$
\begin{equation*}
\psi^{(j)}(\boldsymbol{x}, t)=\mathcal{N} u^{(j)}(\boldsymbol{p}) e^{i(\boldsymbol{p} \cdot \boldsymbol{x}-E t) / \hbar} \text { with } \mathcal{N}=\sqrt{\left(|E|+m c^{2}\right) /(2|E| V)}, \tag{3}
\end{equation*}
$$

where the spinors $u^{(j)}$ take the form

$$
\begin{aligned}
& u^{(1)}(\boldsymbol{p})=\left(\begin{array}{c}
1 \\
0 \\
\frac{c p_{z}}{E+m c^{2}} \\
\frac{c\left(p_{x}+i p_{y}\right)}{E+m c^{2}}
\end{array}\right), \quad u^{(2)}(\boldsymbol{p})=\left(\begin{array}{c}
0 \\
1 \\
\frac{c\left(p_{x}-i p_{y}\right)}{E+m c^{2}} \\
-\frac{c p_{z}}{E+m c^{2}}
\end{array}\right) \\
& u^{(3)}(\boldsymbol{p})=\left(\begin{array}{c}
-\frac{c p_{z}}{|E|+m c^{2}} \\
-\frac{c\left(p_{x}+i p_{y}\right)}{|E|+m c^{2}} \\
1 \\
0
\end{array}\right), \quad u^{(4)}(\boldsymbol{p})=\left(\begin{array}{c}
-\frac{c\left(p_{x}-i p_{y}\right)}{|E|+m c^{2}} \\
\frac{c p_{z}}{|E|+m c^{2}} \\
0 \\
1
\end{array}\right),
\end{aligned}
$$

with p_{x}, p_{y}, p_{z} being the components of the momentum \boldsymbol{p}, while E stands for the energy of the particle and V for the volume available to the particle.
a) We have previously seen that Dirac spinors transform as $\psi^{\prime}=S \psi$ for a change of reference frame. Transform the solutions for the free electron Dirac equation in the case of $\boldsymbol{p}=p \boldsymbol{e}_{x}$ to a moving reference frame with $v=\beta c$, where $\beta=c p / E$. The Lorentz transformation for a boost in the x-direction is given by

$$
\begin{equation*}
S_{L}=\cosh \frac{\chi}{2} \mathbf{1}_{4}-\alpha_{x} \sinh \frac{\chi}{2} \tag{4}
\end{equation*}
$$

for $\tanh \chi=\beta$. Compare these results with the solutions of the electron at rest. Check whether the states are normalized.
b) Show that positive- (negative-) energy solutions of the Dirac equation for $\boldsymbol{p}=0$ transform via a Lorentz boost into another positive- (negative-) energy solution of the Dirac equation.
Hint: Use the spinor transformation to a reference frame of rapidity χ along the direction $-\boldsymbol{n}$:

$$
S_{L}=\cosh \frac{\chi}{2} \mathbf{1}_{4}+\boldsymbol{n} \cdot \boldsymbol{\alpha} \sinh \frac{\chi}{2} .
$$

Exercise 9 Helicity conservation

The helicity operator is defined as $\hat{h}=\boldsymbol{\Sigma} \cdot \hat{\boldsymbol{p}}$, where the elements of the vector $\boldsymbol{\Sigma}=\left(\Sigma^{x}, \Sigma^{y}, \Sigma^{z}\right)$ take the form

$$
\Sigma^{j}=\left(\begin{array}{cc}
\sigma^{j} & 0 \\
0 & \sigma^{j}
\end{array}\right)
$$

Show that the helicity is a conserved quantity of motion, namely that

$$
\begin{equation*}
[\hat{H}, \hat{h}]=0 \tag{5}
\end{equation*}
$$

where \hat{H} is defined in Eq. (1).

Exercise 10 Charge conjugation

Let us introduce the charge conjugation operator $\mathcal{C}=-i \beta \alpha^{2}=-i \gamma^{2}$, where

$$
\alpha^{j}=\left(\begin{array}{cc}
0 & \sigma^{j} \\
\sigma^{j} & 0
\end{array}\right) \quad \text { and } \quad \beta=\left(\begin{array}{cc}
\mathbf{1}_{2} & 0 \\
0 & -\mathbf{1}_{2}
\end{array}\right) .
$$

a) Verify that, given the wave function $\psi(\boldsymbol{x}, t)=u_{\boldsymbol{p}} e^{i(\boldsymbol{p} \cdot \boldsymbol{x}-E t) / \hbar}$ of a negative-energy electron with momentum \boldsymbol{p}, then $v_{\boldsymbol{p}}=\mathcal{C} u_{\boldsymbol{p}}^{*}$ satisfy the Dirac equation with energy $E>0$ and momentum $-\boldsymbol{p}$.
b) Show that $\mathcal{C}=\mathcal{C}^{\dagger}$ and $\mathcal{C}^{2}=\mathbf{1}_{4}$. Write down the explicit form of \mathcal{C} as a 4×4 matrix.
c) Verify then the validity of the relation

$$
\begin{equation*}
j^{\mu}=\phi^{\dagger} \alpha^{\mu} \phi=\psi^{\dagger} \alpha^{\mu} \psi, \tag{6}
\end{equation*}
$$

with $\phi=\mathcal{C} \psi^{*}$, therefore showing that the probability and flow density are identical for both the negative-energy electron and the positron.

