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Exercise 16  About the diffraction function
Let us define the diffraction function as
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where limp_, | o (5(T)(Ef — E;) = 0(Ey — E;), with §(z) being the Dirac delta function. In the
following, we will demonstrate some properties of the diffraction function.

a) Plot the diffraction function §")(x) as a function of x.

(1 point)
b) Show the following identity
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for T finite.
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c¢) Given the form of 6")(E) provided in Eq. (1), deduce that
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(2 points)

Exercise 17  Ionization of an atom

Let us consider a simplified model for the ionization of an atom consisting in a ground state
lg) at energy hwg and a continuum of ionized states labeled |I) at energy h(w; + wy), such that
wy > wp. The ground state and the ionized states are coupled by a time-dependent perturbative
term such that the total Hamiltonian reads

H=Hy+V(t), (4)



where

Hy = huwolg) (gl + ) hlwr + w1,

Vi) = Vo (ID{gle™ +he),
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For an atom initially prepared in its ground state |g) at time ¢t = 0, determine the rate I" at
which the atom is ionized by using the expression
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where w;_, s is the transition amplitude over a time 7" from state |7) at energy E; to a state |f)
at energy F; due to a perturbation V(t).
Hint: You shall go to the continuous limit where >, — [dE;p(E;), with p(E) being the
density of state at energy F.

(2 points)

Exercise 18 Time-dependent perturbation theory

Let us consider a two-level system described over its energy eigenbasis by the states {|g), |e)},
such that its Hamiltonian reads

Hy = Ecle)(e| + Eylg){l, (6)

where £, > E, Adding a time-dependent perturbation such that H = Hy + AV(t), the
perturbating term V'(t) reads

V() = Qo (lg){ele™” + le){gle ™) . (7)
At initial time ¢ = 0, we assume that the system lies in state [1g) = |g).

a) Determine in first-order perturbation theory the probability amplitude of a transition to
state |e) at time ¢. Show that it takes the form
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where 1), = e#0]4)), is the state of the system in the interaction picture.
(2 points)

b) In the following, we define the transition detuning as § = E, — E; — iw. The dynamics
that we have just treted perturbatively can actually be solved exactly by the means of a
change of reference frame |¢)) = U(t)[¢)’), where

U(t) = e “2le)(e] + e2|g)(g]. (9)



Using this change of reference frame, show that the time-evolution of the two-level system
is described by a state of the form "), = c.(t)|e) + ¢,(t)|g), where
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Perform a Taylor expansion in A of the transition amplitude c.(¢) and compare it to the
result obtained with the perturbation theory.

(4 points)



