Theoretical physics V Sheet 4

SoSe 2025

Exercise 1 Solution of the Dirac equation

The Dirac equation is given by

$$i\hbar\frac{\partial}{\partial t}\psi = H\psi\,,\tag{1}$$

with the Hamiltonian

$$H = c \,\boldsymbol{\alpha} \cdot \boldsymbol{p} + \beta m c^2 \tag{2}$$

and $\boldsymbol{\alpha} = (\alpha^1, \alpha^2, \alpha^3)$. The matrices α^j and β exhibit the following properties: $(\alpha^j)^{\dagger} = \alpha^j$, $\operatorname{Tr}[\alpha^j] = 0 = \operatorname{Tr}[\beta]$ as well as $\{\alpha^j, \alpha^k\} = 2\delta^{jk}\mathbf{1}_4$ and $\{\alpha^j, \beta\} = 0$, where the anticommutator is defined as $\{A, B\} = AB + BA$. They are explicitly given by

$$\alpha^{1} \stackrel{\wedge}{=} \begin{pmatrix} 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \end{pmatrix} , \ \alpha^{2} \stackrel{\wedge}{=} \begin{pmatrix} 0 & 0 & 0 & -i \\ 0 & 0 & i & 0 \\ 0 & -i & 0 & 0 \\ i & 0 & 0 & 0 \end{pmatrix} , \ \alpha^{3} \stackrel{\wedge}{=} \begin{pmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & -1 \\ 1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \end{pmatrix} ,$$
(3)

and

$$\beta \stackrel{\wedge}{=} \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & -1 \end{pmatrix}.$$
 (4)

In this exercise, we consider a **particle at rest**, i.e., p = 0, so the Hamiltonian simplifies to $H = \beta mc^2$.

a) Determine the eigenvalues E_{ν} and normalized eigenstates Ψ_{ν} of the simplified Hamiltonian. How many distinct eigenvalues does H have and what are their degeneracies?

(1 point)

b) Using the Dirac equation, compute the time evolution of the eigenstates Ψ_{ν} . With this, construct a general solution $\psi(t)$ of the Dirac equation. (1 point)

Exercise 2 Properties of the gamma matrices

The Dirac Equation in the van-der-Waerden form is given by

$$(i\hbar\gamma^{\mu}\partial_{\mu} - mc)\,\psi(\boldsymbol{r}, t) = 0,\tag{5}$$

where the γ -matrices are defined by the general expression $\gamma^{\mu} = \beta \alpha^{\mu}$, namely $\gamma^{0} = \beta$, while $\gamma^{j} = \beta \alpha^{j}$ for j = 1, 2, 3. Show the following properties, without explicitly writing the γ -matrices:

29.04.2025

a) Anti-commutation relation $\{\gamma^{\mu}, \gamma^{\nu}\} = 2g^{\mu\nu}\mathbf{1}_4$, with the flat space-time metric

$$g^{\mu\nu} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & -1 \end{pmatrix} \,.$$

(1 point)

- b) The matrices γ^j are anti-hermitian.
- c) The trace of the matrices γ^{μ} vanishes.

(1 point)

(1 point)

Exercise 3 Helicity conservation

The helicity operator is defined as $h = \Sigma \cdot p$, with the momentum operator $\boldsymbol{p} = (p_1, p_2, p_3)$ and the spin operator $\boldsymbol{\Sigma} = (\Sigma^1, \Sigma^2, \Sigma^3)$, with components

$$\Sigma^j = \begin{pmatrix} \sigma_j & 0\\ 0 & \sigma_j \end{pmatrix}.$$

Here, σ_j , with j = 1, 2, 3, denote the Pauli matrices. Show that the helicity is a conserved quantity of motion, namely that

$$[H,h] = 0, (6)$$

where H is defined in Eq. (2).

(2 points)

Exercise 4 Weyl fermions and helicity

Let us consider the case of massless fermions described by the spinor $\psi(\mathbf{r}, t)$. Since the mass vanishes $m \to 0$, then the Dirac equation reads

$$i\hbar\gamma^{\mu}\partial_{\mu}\psi(\boldsymbol{r},t) = 0, \qquad (7)$$

where the matrices γ^{μ} take the explicit form

$$\gamma^0 = \begin{pmatrix} I_2 & 0\\ 0 & -I_2 \end{pmatrix} , \ \gamma^j = \begin{pmatrix} 0 & \sigma_j\\ -\sigma_j & 0 \end{pmatrix} ,$$

with the Pauli matrices σ_j , j = 1, 2, 3.

a) Let $\psi(\mathbf{r}, t) = (u_1, u_2, v_1, v_2)^T$ be the 4-component spinor (column vector), with positionand time-dependent components $u_{1,2}, v_{1,2} \in \mathbb{C}$. Using Eq. (7), show that the resulting equations of motion for the components $u_{1,2}, v_{1,2}$ can be brought into the form

$$\left(\frac{i\hbar}{c}\frac{\partial}{\partial t} + i\hbar\boldsymbol{\sigma}\cdot\boldsymbol{\nabla}\right)\chi_1 = 0, \tag{8a}$$

$$\left(\frac{i\hbar}{c}\frac{\partial}{\partial t} - i\hbar\boldsymbol{\sigma} \cdot \boldsymbol{\nabla}\right)\chi_2 = 0, \tag{8b}$$

with two-component vectors $\chi_1, \chi_2 \in \mathbb{C}^2$ and $\boldsymbol{\sigma} = (\sigma_1, \sigma_2, \sigma_3)^T$ the vector with Pauli matrices σ_j , j = 1, 2, 3, as entries. What are the explicit expressions for the vectors χ_1, χ_2 as a function of the components $u_{1,2}$ and $v_{1,2}$ of ψ . The fermionic fields χ describe so-called Weyl fermions.

(2 points)

b) We define the helicity operator as $(\boldsymbol{\sigma} \cdot \boldsymbol{\nabla})/|\boldsymbol{p}|$, with the momentum \boldsymbol{p} and $\boldsymbol{\sigma}$ defined as in a). Assuming that the components of $\psi(\boldsymbol{r},t)$ are of the form $u_j(\boldsymbol{r},t) = u_{0,j}(\boldsymbol{r})e^{-iE_{\boldsymbol{p}}t/\hbar}$ and $v_j(\boldsymbol{r},t) = v_{0,j}(\boldsymbol{r})e^{-iE_{\boldsymbol{p}}t/\hbar}$, with j = 1, 2, show by means of the result of a) that $\chi_{1,2}$ are eigenfunctions of the helicity operator. Determine the corresponding eigenvalues.

(2 points)