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Exercise 1 Gauge transformation and the wave function

We consider a single electron, ¢ = —e, in the non-relativistic limit in a region of vanishing
magnetic field B = 0. The minimal-coupling Hamiltonian for the gauge choice ¢ = 0 reads
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a) Let 1 (r t) be the solution of the Schrodinger equation for the case of a vanishing vector
potential (A = 0):
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Verify that 1 (r,t) = S(r)y©(r,t), with

ie [
S(r) =exp <_h_c/ dr’ - A(r’)) : (3)

satisfies the Schrodinger equation for a non-vanishing A. Here, s(r) denotes a generic
path with endpoint 7. (2 points)

b) We now perform a gauge transformation: A — A’ = A 4+ VA, with some scalar function
A(r). Show that the solution ¢’ of the Schrédinger equation for A’ is related to the
previous solution for A via ¢’ = U1. Determine the explicit form of the transformation
U. (1 point)

Exercise 2 About the diffraction function

Let us define the diffraction function as
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for some time length 7" and energies £;, Ey. For T' — oo, the diffraction function approaches
the Dirac delta function 6(x), limr_, oo §T(E; — E;) = §(E; — E;). In the following, you shall
demonstrate some properties of the diffraction function.

a) Plot the diffraction function 6*)(z) as a function of x.

(1 point)



b) Show the following identity
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for finite T'.

c¢) Given the form of §™)(E) provided in Eq. (4), deduce that
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Hint: Use that

(2 points)



