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Exercise 1 Classical limit of electrodynamics

Let us consider a polarized monochromatic electromagnetic wave of frequency ω with a wavevec-
tor k. The vector potential associated to the wave is described by the operator

Â(r, t) =

√
2πc2~
ωV

[
âei(k·r−ωt) + â†e−i(k·r−ωt)

]
e, (1)

where e is real-valued.

a) Determine the form of the corresponding electric field operator Ê(r, t) and compute the
expectation value 〈n|Ê(r, t)|n〉 for any Fock state |n〉.

(1 point)

b) Coherent states of an harmonic oscillator are defined as eingenstates of the annihilation
operator: â|α〉 = α|α〉, where α ∈ C. Defining α =

√
neiφ, determine the expectation

value of the electric field 〈α|Ê(r, t)|α〉. Give an interpretation of the number n.
(2 points)

c) Evaluate the variance of the amplitude of the electric field ∆E =

√
〈α|Ê2|α〉 − 〈α|Ê|α〉2,

then compare it to the amplitude of the electric field. In which limit do we recover the
behavior of a classical system?

(2 points)

Exercise 2 Photons with circular polarization

Let us consider a monochromatic electromagnetic field with a wavevector k and two possible
linear polarisations e1 and e2, such that it respect the conditions k · e1 = k · e2 = e1 · e2 = 0.
The vectors e1,2 are unit vectors.
The energy of the quantized electromagnetic field reads

Ĥ = ~c|k|(â†1â1 + â†2â2 + 1), (2)

where the operators â†j act on the vacuum to create a photon at wavelength k and polarization
ej. The annhihilation and creation operators obey bosonic commutation relations

[âi, â
†
j] = δij, (3)

[â
(†)
i , â

(†)
j ] = 0. (4)



a) We shall consider the circular polarization vectors

e± = ∓ 1√
2
(e1 ± ie2). (5)

Using the definition of the quantized photon field

Â(r, t) =

√
2πc2~
ωV

∑
j

[
âj(t)e

ik·rej + â†j(t)e
−ik·re∗

j

]
, (6)

show that it can written in terms of operators â± and â†± annihilating and creating
photons with polarization e±. Determine the explicit form of â± and show that they
obey to bosonic commutation relations.

(2 points)

b) Let us apply to e+ and e− a rotation around the wavevector k by an infinitesimal angle
δθ. Show that the polarization vectors are changed by a factor δe± = ∓iδθe±. What can
you deduce about the spin of the photon ?
Hint: We remind that for a two-level system, the rotation operator R̂(θ) by an angle θ
around the axis n reads

R̂(θ) = exp(iθ(n · σ)) = I2 cos θ + i(n · σ) sin θ,

where the elements of the vector σ are Pauli matrices.
(2 points)

Exercise 3 The Casimir effect (12 points)

Considering two parallel metallic plates in the vacuum, it is observed that an effective force
seems to attract the plates to each other, without any explanation by classical physics. In the
following, we will show that this phenomenon, coined as the Casimir effect, has a quantum
origin and can be captured by quantum electrodynamics.

Figure 1: Schematic representation of a box of length L (dashed rectangle) separated in three
sections by two parallel plates (solid lines) separated by distance a.

For the sake of simplicity, we assume thereafter that the system is one-dimensional.



a) Let us consider a box of length L containing an infinity of possible modes of the quantum
electromagnetic field. Each of these modes is associated to a wave function of the form
ψk(x) = a cos(kx) + b sin(kx), with wave vector k. What are the boundary conditions
imposed by the box? Show that the box imposes modes with wave vectors kn = πn/L.

(1 point)

b) The modes of the electromagnetic fields are treated as a collection of independent har-
monic oscillators such that the Hamiltonian reads

Ĥ =
∑
k

~ωk

(
â†kâk +

1

2

)
, (7)

where ωk = ck. To prevent the divergence of energy, we introduce a cut-off to the
frequency of the electromagnetic field: ω → ωe−ω/ωc . Determine the vacuum energy
E0(L) and show that it can be written as

E0(L) =
π~c
8L

1

sinh2

(
πc

2Lωc

) . (8)

Hint: Use the relation ∑
n

ne−an = − d

dx

1

1− e−x

∣∣∣∣
x=a

.

(2 points)

c) Assuming that πc/(ωcL) � 1, perform a Taylor expansion in 1/L and show that

E0(L) =
~
4

[
2Lω2

c

πc
− πc

6L

]
+O

(
1

ω2
c

)
. (9)

(2 points)

d) Assume now that, as depicted on Fig. 1 , the box is split into three sections by the
insertion of two plates: two of length (L− a)/2 and one of length a, corresponding to the
distance between the plates. Determine the total vacuum energy Etot as a function of L
and a. Show that in the limit a� L, the total vacuum energy is approximated by

Etot '
~ω2

c

2πc
L− π~c

6L
− π~c

24a
. (10)

Plot the energy as a function of a.
(2 points)

e) Show then that the energy (10) gives rise to an attractive force F between the plates that
is independent of the cut-off ωc.

(1 point)


