Theoretical physics V Sheet 11

SoSe 2025

18.06.2025

Exercise 1 Goeppert-Mayer transformation

Let us consider an electron of mass m and charge q = -e in a central, binding potential $V_0(\mathbf{r}) = V_0(|\mathbf{r}|)$. The electron is in a bound state and we assume that the electric dipole approximation holds. The interaction of the electron with an external electric field $\mathbf{E} = -\frac{1}{c}\frac{\partial \mathbf{A}}{\partial t}$ is described by the minimal coupling Hamiltonian

$$\hat{H} = \frac{1}{2m} \left(\hat{\boldsymbol{p}} + \frac{e}{c} \hat{\boldsymbol{A}}(\boldsymbol{R}) \right)^2 + V_0(\hat{\boldsymbol{r}}), \qquad (1)$$

which is written in the electric dipole approximation and \mathbf{R} denotes the center of the potential. In the following, we will assume that we are in the Coulomb gauge $(\nabla \cdot \mathbf{A}(\mathbf{R}) = 0)$. Because of the electric dipole approximation, moreover, $\hat{\mathbf{p}}$ commutes with $\hat{\mathbf{A}}(\mathbf{R})$.

a) Considering a time-dependent unitary transformation $\hat{U}(t)$, such that a state $|\tilde{\psi}\rangle$ transforms into $|\psi\rangle$ following the relation $|\psi\rangle = \hat{U}|\tilde{\psi}\rangle$. Considering that the evolution of $|\psi\rangle$ is governed by the Schrödinger equation

$$i\hbar \frac{\mathrm{d}}{\mathrm{d}t}|\psi\rangle = \hat{H}|\psi\rangle,$$
 (2)

determine the effective Hamiltonian \hat{H}' describing the evolution of the transformed state $|\tilde{\psi}\rangle$.

(1 point)

b) We introduce the unitary operator $\hat{U}(t) = \exp\left(\frac{i}{\hbar c}\hat{d}\cdot\hat{A}(\boldsymbol{R},t)\right)$, where $\hat{d} = -e\hat{r}$ is the dipolar moment of the electron. Determine the expression of the commutator $\left[\hat{p}, \hat{U}\right]$. **Hint:** You may use that $\left[\hat{p}_i, (\hat{r}_i)^k\right] = -i\hbar k(\hat{r}_i)^{k-1}\delta_{ij}$, with $k \in \mathbb{N}$.

(2 points)

c) Show then that the effective Hamiltonian associated to the Goeppert-Meyer transformation $\hat{U}(t)$ introduced in the previous question reads

$$\hat{H}' = \frac{1}{2m}\hat{\boldsymbol{p}}^2 + V_0(\hat{\boldsymbol{r}}) - \hat{\boldsymbol{d}} \cdot \hat{\boldsymbol{E}}(\boldsymbol{R}), \qquad (3)$$

which is pivotal to the description of the light-matter interaction.

(2 points)

Exercise 2 Jaynes-Cummings model

Let us approximate an atom by a two-level system consisting of a ground state $|g\rangle$ and an excited state $|e\rangle$ with transition frequency ω_0 . This atom is set in an optical cavity formed by two mirrors, such that the light field within the cavity oscillates at a single frequency ω . The Hamiltonian of this system reads

$$\hat{H}_0 = \hbar\omega_0 |e\rangle \langle e| + \hbar\omega \hat{a}^{\dagger} \hat{a}, \qquad (4)$$

where \hat{a} annihilates a quantum of excitation of the light field. The light-matter interaction in this context is modeled by an interaction Hamiltonian

$$\hat{V} = \hbar g \hat{\sigma}^x \otimes (\hat{a}^\dagger + \hat{a}), \tag{5}$$

where $\hat{\sigma}^x = |g\rangle\langle e| + |e\rangle\langle g|$. This is the celebrated Jaynes-Cummings model. In the following, we will assume that the cavity is resonant with the transition frequency of the atom $\omega = \omega_0$.

a) Determine the matrix element of the interaction term \hat{V} in the basis $\{|g,n\rangle, |e,n\rangle\}$ combining the two levels $\{|g\rangle, |e\rangle\}$ of the atom and the levels $\{|n\rangle\}$ of the harmonic oscillator. Represent graphically the processes induced by the light-matter interaction and identify which one are resonant.

(2 points)

b) Determine up to second order in perturbation theory the energy shift of the ground state $|g, 0\rangle$ in the weak-coupling approximation $(g \ll \omega_0)$.

Hint: The first- and second-order energy corrections for an eigenstate $|E_0\rangle$ of the unperturbed Hamiltonian \hat{H}_0 due to a perturbation \hat{V} are given by

$$\delta E^{(1)} = \langle E_0 | \hat{V} | E_0 \rangle \quad \text{and} \quad \delta E^{(2)} = \lim_{\eta \to 0} \langle E_0 | \hat{V} \frac{1}{E_0 - \hat{H}_0 + i\eta} \hat{V} | E_0 \rangle,$$

where $\hat{H}_0 | E_0 \rangle = E_0 | E_0 \rangle.$ (1 point)

c) We assume that at time t = 0, the atom and the cavity are in the state $|\psi_0\rangle = |e, 0\rangle$. Determine the dynamics of the system, considering only resonant interaction processes between the atom and the cavity.

Exercise 3 Parity operator

In this exercise, we study the parity operator $\hat{\Pi}$ and its properties. Its action on the position and momentum eigenstates is defined by $\hat{\Pi}|\vec{r}\rangle = |-\vec{r}\rangle$ and $\hat{\Pi}|\vec{p}\rangle = |-\vec{p}\rangle$. As a result, for a given state $|\psi\rangle$ with wavefunction $\psi(\vec{r}) = \langle \vec{r} | \psi \rangle$, we have that $\psi(-\vec{r}) = \langle \vec{r} | \hat{\Pi} | \psi \rangle$, which illustrates that the action of $\hat{\Pi}$ corresponds to a reflection about the origin.

- a) Prove the following properties of the parity operator:
 - 1. $\hat{\Pi}^{\dagger} = \hat{\Pi}$
 - 2. $\hat{\Pi}\hat{\vec{r}}\hat{\Pi} = -\hat{\vec{r}}$ and $\hat{\Pi}\hat{\vec{p}}\hat{\Pi} = -\hat{\vec{p}}$
 - 3. $\hat{\Pi}^2 = 1$
 - 4. Show that the eigenvalues of $\hat{\Pi}$ are ± 1 .

(2 points)

Consider now a single-particle Hamiltonian of the form

$$\hat{H} = \frac{\hat{\vec{p}^2}}{2m} + V(\hat{\vec{r}}) \,,$$

where the potential $V(\vec{r})$ is an analytic function of the position \vec{r} .

- b) Determine the condition that the potential $V(\hat{\vec{r}})$ must satisfy in order for \hat{H} to commute with $\hat{\Pi}$, i.e., $[\hat{H}, \hat{\Pi}] = 0$. (1 point)
- c) Suppose that $[\hat{H}, \hat{\Pi}] = 0$, such that \hat{H} and $\hat{\Pi}$ have a common eigenbasis $\{|\Psi\rangle\}$. Show that $\langle \Psi | \hat{\vec{r}} | \Psi \rangle = 0$ and $\langle \Psi | \hat{\vec{p}} | \Psi \rangle = 0$. (1 point)

Exercise 4 Translation in momentum space

Let $|\vec{p}\rangle$ be the momentum eigenstate with momentum \vec{p} , thus satisfying $\hat{\vec{p}}|\vec{p}\rangle = \vec{p}|\vec{p}\rangle$. Define the operator $\hat{T}(\vec{q}) = \exp(i\vec{q}\cdot\hat{\vec{r}}/\hbar)$, where $\hat{\vec{r}}$ is the position operator and \vec{q} is an arbitrary vector. Show that $\hat{T}(\vec{q})$ acts as a translation in momentum space, i.e., $\hat{T}(\vec{q})|\vec{p}\rangle = |\vec{p} + \vec{q}\rangle$. (1 point)